Kinetische Deutung der van-der-Waals-Gleichung

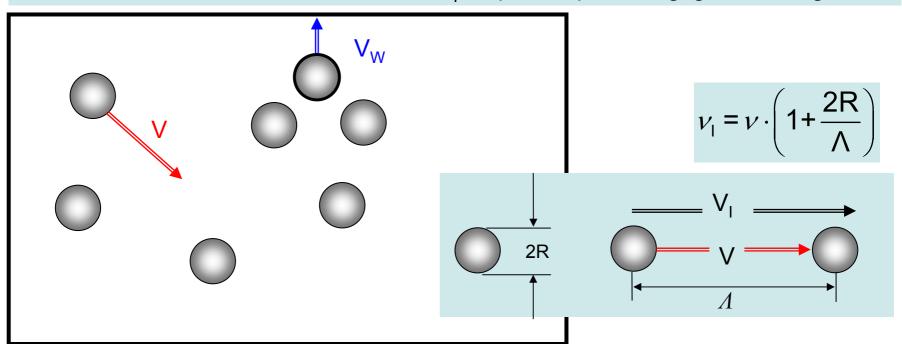
Modellannahme: Gasmoleküle sind harte Kugeln mit Radius R und mittlerer Geschwindigkeit V

Es wirken Kohäsionskräfte zwischen ihnen

Wir haben zu unterscheiden zwischen: v Molekülgeschwindigkeit

 $v_{\rm W}$ Aufprallgeschwindigkeit auf Wand

 v_{l} Impulsfortpflanzungsgeschwindigkeit



1. Molekülvolumen vergrößert die Impulsfortpflanzungsgeschwindigkeit

N Anzahldichte

V_m Molekülvolumen

$$Λ mittlere freie Weglänge:$$

$$Λ = \frac{1}{4 \cdot \pi \cdot R^2 \cdot N}$$

$$v_I = v \cdot \left(1 + \frac{2 \cdot R}{\Lambda}\right) = v \cdot (1 + 4 \cdot N \cdot V_m)$$

2. Kohäsionskräfte bremsen Moleküle vor der Wand ab

F - Kohäsionskraft soll proportional N sein! F führt zur **Impulsreduzierung** Δp beim Stoß mit der Wand. $F = \alpha \cdot N$

D – Molekülabstand zur Wand,

T - Flugzeit zur Wand mit T= d/V

$$\Delta p = F \cdot T = m \cdot (v - v_W) = F \cdot \frac{d}{v}$$

$$v_{w} = v - \frac{\alpha \cdot d \cdot N}{v \cdot m}$$

Berechnung des Drucks auf die Wand

Druck P = Anzahl der auftreffenden Moleküle (pro Zeit und Fläche) x 2 x Einzelimpuls

Anzahl der auftreffenden Moleküle pro Zeit und Fläche: $\frac{1}{6} \cdot N \cdot v_I$

Einzelimpuls: $m \cdot V_W$

$$\begin{split} P &= \frac{1}{6} \cdot N \cdot v_I \cdot 2 \cdot m \cdot v_W \\ &= \frac{1}{6} \cdot N \cdot v \cdot (1 + 4 \cdot N \cdot V_m) \cdot 2 \cdot m \cdot \left(v - \frac{\alpha \cdot d \cdot N}{v \cdot m} \right) \\ &= \frac{1}{3} \cdot N \cdot m \cdot v^2 \cdot (1 + 4 \cdot N \cdot V_m) - \frac{1}{3} \cdot \alpha \cdot d \cdot N^2 \end{split}$$

Betrachtung für 1 Mol Gas

mit N=N_A / V (Avogadrozahl N_A , Gefäßvolumen V) folgt:

$$P + \frac{1}{3} \cdot \frac{N_A^2 \cdot \alpha \cdot d}{V} = \frac{1}{3} \cdot N \cdot m \cdot v^2 \cdot (1 + 4N \cdot V_m)$$

Gleichverteilungssatz: $\frac{1}{3} \cdot N \cdot m \cdot v^2 = \frac{R \cdot T}{V}$

Also schließlich unter Verwendung von $(1+\epsilon) \approx 1 / (1-\epsilon)$ und Molvolumen V_{Mol}

$$\left(p + \frac{a}{V_{Mol}^{2}}\right) \cdot \left(V_{Mol} - b\right) = R \cdot T$$

mit dem **Binnendruck**
$$\frac{a}{V^2} = \frac{1}{3} \cdot \alpha \cdot d \cdot N^2$$
 und dem **Kovolumen**
$$b = 4 \cdot N_A \cdot V_m$$