
## Zur Physik und Physiologie des Auges









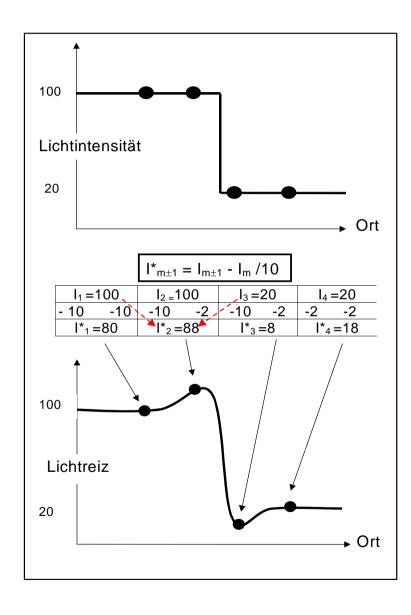
Die optische Wirkung des Auges beruht auf der

Hintereinanderschaltung von Hornhautkrümmung und Augenlinse

$$D = \frac{n}{f} = \frac{2 \cdot (n_L - n) - \frac{r_L \cdot n \cdot (n - 1)}{e \cdot (n - 1) - n \cdot r_H}}{r_L} = \frac{n}{f_L} + \frac{n}{f_H - e}$$

$$D \approx D_{Linse} + D_{Horn}$$

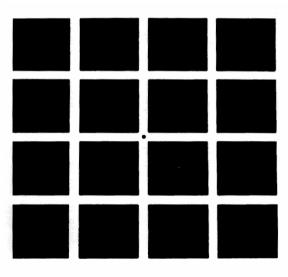
## Optische Parameter des menschlichen Auges


| Brechzahl des Kammerwassers und des Glaskörpers | 1,3365  |        |  |
|-------------------------------------------------|---------|--------|--|
| Brechzahl der Augenlinse                        | 1,358   |        |  |
| Radius der Hornhaut                             | 7,83 mm |        |  |
|                                                 | Ferne   | Nähe   |  |
| Vordere Brennweite des Auges                    | 17,1 mm | 14,2mm |  |
| Hintere Brennweite des Auges                    | 22,8mm  | 18,9mm |  |

| Brechkraft des entspannten Auges      | $n_f = 1.33_{0.0228} = 58 \text{ dpt}$                |
|---------------------------------------|-------------------------------------------------------|
| Brechkraft des "linsenlosen" Auges    | $\binom{(n-1)}{r_H} = 0.34 / 0.0078 = 43 \text{ dpt}$ |
| Brechkraft der entspannten Augenlinse | $D_{LINSE} = D_{AUGE} - D_{HORN} = 16 dpt$            |

Durch Krümmungsänderung der Augenlinse kann die Brechkraft erhöht werden (sog. Akkomodationsbreite), um nahe Dinge zu sehen.

| Alter in Jahren             | 10   | 20   | 30  | 40  | 50  | 60   | 70   | 80   |
|-----------------------------|------|------|-----|-----|-----|------|------|------|
| Nahpunkt in cm              | -7   | -9   | -12 | -21 | -60 | -120 | -120 | -120 |
| Akkommodationsbreite in dpt | 14,3 | 11,1 | 8,3 | 4,8 | 1,7 | 0,8  | 0,8  | 0,8  |


## Zusammenspiel von Auge, Nerven und Gehirn



## Simultankontrast:

In der Wahrnehmung ist die Rate der elektrischen Impulse der Neuronen von Bedeutung. Je höher die Rate, desto intensiver der Eindruck (hier: hohe Intensität verursacht 100 Impulse, niedrige 20). Ein erregtes Neuron hemmt die Rate seiner Nachbarn im Verhältnis zu seiner eigenen Erregung (hier: jeweils 1/10).

An Grenzen zwischen zwei unterschiedlich hellen Flächen kommt es daher zur Verstärkung des hellen Teils und zur Schwächung des dunkleren. Im Quadrat werden die Kreuzungen von weniger schwarzer Fläche umrandet als die Zwischenstücke, daher werden sie nicht so stark aufgehellt.



Beispiel für Simultankontrast: Fixiert man den Punkt in der Mitte, scheinen die Kreuzungen dunkler als die weißen Gebiete dazwischen.