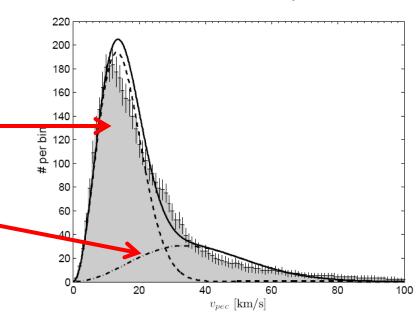
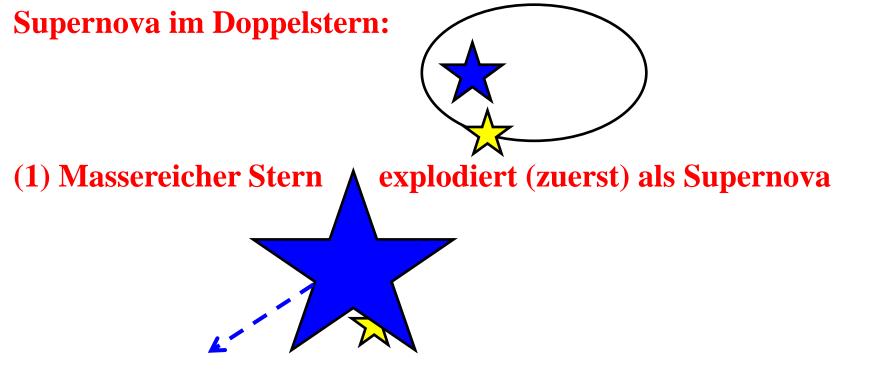

Runaway-Sterne, Neutronensterne und (nahe) Supernovae

Ralph Neuhäuser

Astrophysikalisches Institut und Universitäts-Sternwarte <u>www.astro.uni-jena.de</u> FSU Jena

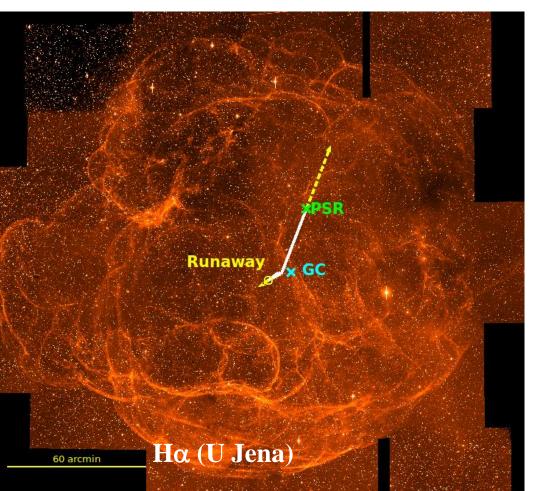


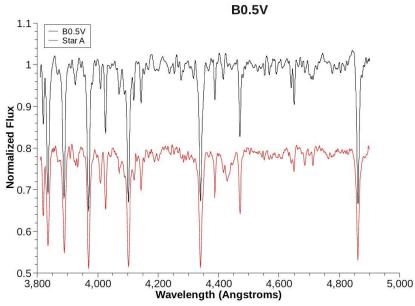
Runaway-Sterne: Ungewöhnlich hohe 3D-Raumgeschwindigkeit


- Begleiter von Sternen, die als Supernova explodieren (Binary Supernova Scenario, Blaauw 1961) or
- aus Sternhaufen herausgeschleudert (Dynamical Ejection Scenario, Poveda et al. 1967)

- normale Population I Sterne (wenige km/s)
- Runaway-Sterne: schneller

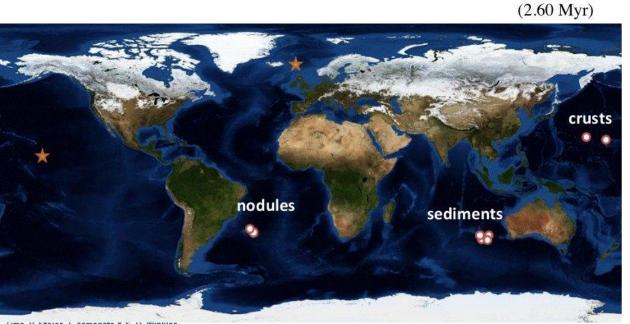
Figure 1. Distribution of the peculiar space velocity v_{pec} . The dashed curve shows the distribution for the low velocity group whereas the dashed-dotted curve is for the high velocity group. The two curves intersect at $v_{pec}=28\,\mathrm{km/s}$. The total distribution as the sum of the two is represented by the full line.

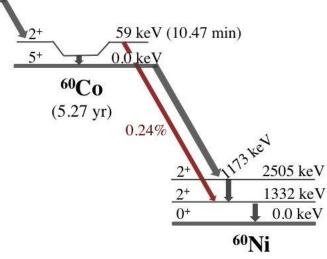

(2) Neutronenstern entsteht und fliegt weg (SN assymetrisch, Neutrino-Kick)


(3) Vorheriger Begleiter hat Zentralstern verloren, kann ihn nicht mehr umkreisen, sondern fliegt mit letzter Orbit-Geschw. geradeaus weiter.

Runaway-Stern und Pulsar im Supernova-Überrest S 147:

Pulsar und B0.5-type Stern gleichzeitig nahe dem geometrischen Zentrum des SN-Überrestes, Supernova vor ca. 30.000 Jahren


→ Bestätigt SN-Szenario für Runaway-Sterne



Dincel, Neuhäuser et al. 2015, MNRAS

⁶⁰Fe in der Erdkruste: von Supernovae

Tims, P. Steier, T. Yamagata & S. R. Winkler

Nature 532, 69-72 (07 April 2016) | doi:10.1038/nature17196

Knie et al. 1999 PRL ... Wallner et al. 2016 Nature

0.0

⁶⁰Fe

Table 3: Summary of 60 Fe deposition at various locations

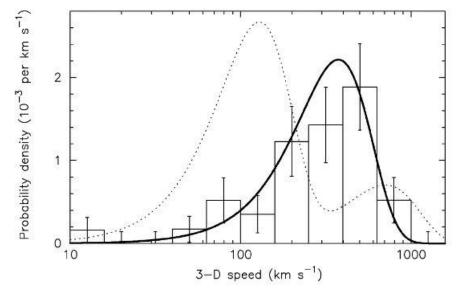
Deep-sea archive	Cores	Location	Time period (Myr)	⁶⁰ Fe detector events	⁶⁰ Fe deposition (10 ⁶ atoms cm ⁻²)
Sediment	4	Indian Ocean	1.71–3.18	288	35.4 ± 2.6
FeMn Crust-1	2	Pacific Ocean	0-4.35	97	5.9 ± 0.8
FeMn Crust-1			6.52-8.70	26	3.5 ± 1.4
FeMn Crust-2			1.2–3.1	94	2.2 ± 0.2
FeMn nodules	2	Atlantic Ocean	1.8–3.3	13	0.6 ± 0.2
			0-3.3	20	1.4 ± 0.5
FeMn Mona Pihoa ¹⁰	1	Pacific Ocean	0-5.9	21	~ 9+11 ‡
FeMn 237KD ¹¹	1	Pacific Ocean	1.74-2.61*	69	1.5 ± 0.4*
Lunar material ²²	4	Moon	Integral	t	~10

For Crust-1 Schnee und auf dem Mond.

Data were obtained in this work and as given in the literature^{10,11,22} (no correction for incorporation efficiency). Uncertainties are 1 σ . For Crust-1 and Crust-2 an incorporation efficiency of 17% and 7%, respectively, has to be taken into account to calculate the ⁶⁰Fe fluence from the deposition values; similarly 2% and 4% for the nodules.

Input:

~ 600 Runaway-Sterne:

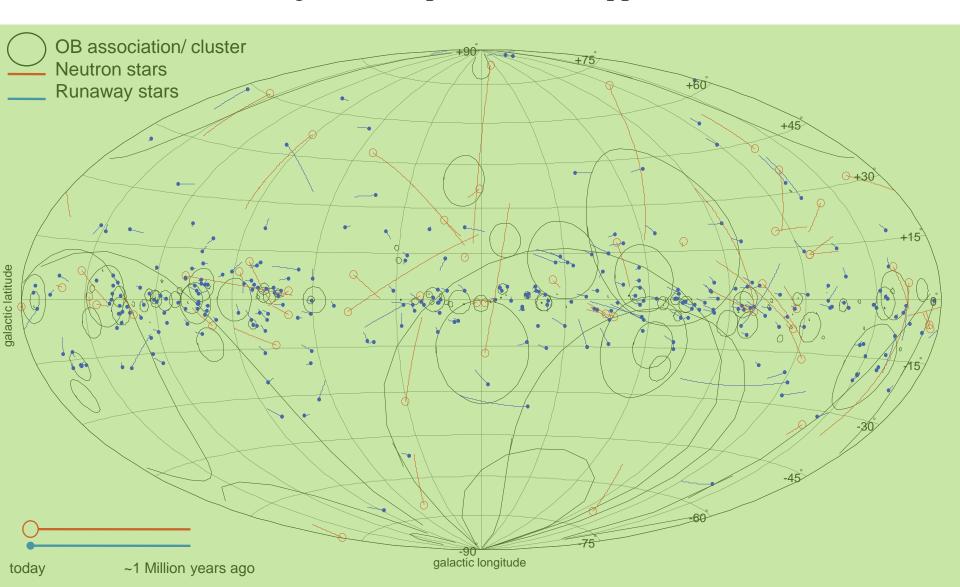

(6D)

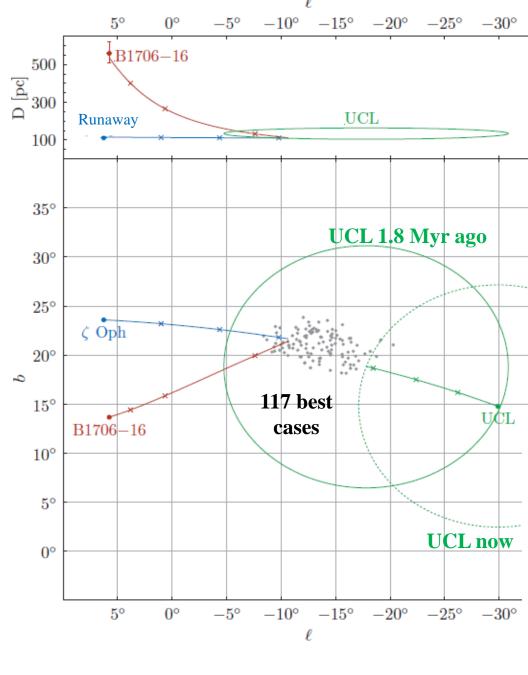
Object Space velocity

Transverse velocity

Proper motion

Position, Parallaxe, Eigenbewegung (2D), und Radial-Geschw. (1D) bekannt




~ 400 Neutronensterne: bis zu ca. 50 Mio J., bis zu einigen kpc

Position, Parallaxe, Eigenbewegung bekannt (5D)

Radial-Geschw. meist unbekannt - RV aus wahrsch. 3D-Verteilung (Maxwellian with rms 265 km/s), dann Monte-Carlo Simulation

Runaway-Sterne und Neutronensterne durch das galaktische Potential zurückverfolgen, um Supernovae in Doppelsternen zu finden

Neuhäuser, Gießler, Hambaryan, 2020, MNRAS

Bisher ein Paar gefunden:

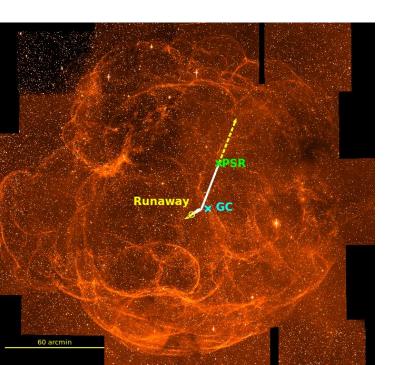
Runaway-Stern ζ Oph

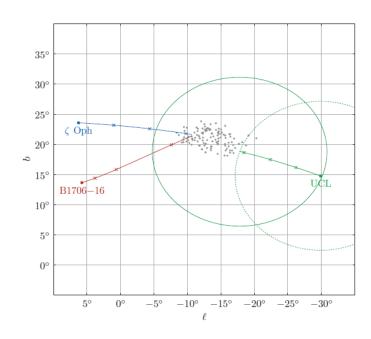
Neutronenstern PSR B1706

Vor ~1.8 Mio J. in UCL

Zur selben Zeit am selben Ort innerhalb 0.5 pc in UCL

(SN im Binary ~110 pc)


Table 1: Predicted Supernova position:


for best case approac	en within 0.5 pc	inside UCL:
	1.58 Myr ago	present day
Galactic longitude l	-10.7°	-18.9°
Galactic latitude b	21.55°	13.4°
Distance from Earth	111.2 pc	107.9 pc
(for pulsar radial vel	ocity 265.5 km/s)

 $\begin{array}{ccc} 1.78 \pm 0.21 \text{ Myr ago} & \text{present day} \\ \hline & 1.78 \pm 0.21 \text{ Myr ago} & \text{present day} \\ \hline \text{Galactic longitude l} & -13 \pm 3^{\circ} & -16 \pm 4^{\circ} \\ \hline \text{Galactic latitude b} & 21 \pm 2^{\circ} & 15 \pm 3^{\circ} \\ \hline \text{Distance from Earth} & 107 \pm 4 \text{ pc} & 109 \pm 5 \text{ pc} \\ \hline \end{array}$

(for pulsar radial velocity $260 \pm 43 \text{ km/s}$)

- (1) Vergleich verschiedener Entfernungsbestimmungs-Methoden bei Neutronensternen
- (2) Alter von Supernova-Überresten mit Neutronensternen darin bestimmen
- (3) Entfernung von Supernova-Überresten bestimmen
- (4) Lichtkurven von verschiedenen Supernova-Typen

5.25

3 vb21

-2.55

vb21

Vergleich verschiedener <u>Entfernungsbestimmungs-Methoden</u> bei Neutronensternen

ATNF Pulsar Catalogue

Catalogue Version: 2.5.1

#	NAME		PMRA (mas/yr)		PMDEC (mas/yr)			P0 (s)		P1			DIST (kpc)	DIST_DM (kpc)		DM*sin(b) (cm^-3 pc)	ASSOC
1	J0002+6216	<u>cwp+17</u>	32.5	6 <u>bst+23</u>	-13.7		ost+23	0.1153635682680	14 <u>cwp+17</u>	5.96703E-15		<u>сwp+17</u>	6.357	6.357	<u>ymw17</u>	-0.28	GRS:4FGL_J0002.8+
2	J0006+1834	cnt96	*	0 *	*	0 *		0.693748	0 <u>dmo+24</u>	2.097E-15		<u>cn95</u>	0.860	0.860	ymw17	-7.78	*
3	J0007+7303	<u>aaa+09c</u>	*	0 *	*	0 *		0.3158731909	3 <u>awd+12</u>	3.6039E-13		awd+12	1.400	*	*	*	GRS:4FGL_J0007.0+
4	J0011+08	<u>dsm+16</u>	*	0 *	*	0 *		2.55287	0 <u>dsm+16</u>	*	U	*	5.399	5.399	ymw17	-19.99	*
5	J0012+5431	<u>dcm+23</u>	*	0 *	*	0 *	*	3.02530070997	19 <u>dcm+23</u>	1.28e-16	0	<u>dcm+23</u>	5.427	5.427	ymw17	-18.07	*
6	B0011+47	dth78	19.3	18 <u>bfg+03</u>	-19.7	15 <u>b</u>	ofg+03	1.240699038946	11 <u>hlk+04</u>	5.6446E-16	14	h1k+04	1.776	1.776	ymw17	-7.68	*
7	J0021-0909	clh+20	*	0 *	*	0 *	*	2.31413082909	17 <u>clh+20</u>	1.039E-15	17	clh+20	25.000	25.000	ymw17	-23.79	*
8	J0023+0923	hrm+11	-11.00	7 <u>bbc+24</u>	-8.80		bbc+24	0.003050203104754390	4 <u>aab+21a</u>	1.142345E-20	14	<u>aab+21a</u>	1.818	1.248	<u>ymw17</u>	-11.42	GRS:4FGL_J0023.4
9	B0021-72C	mld+90	5.25	3 <u>vb21</u>	-2.55		<u>vb21</u>	0.00575677999551635	14 <u>frk+17</u>	-4.98503E-20		<u>frk+17</u>	4.520	2.593	ymw17	-17.36	GC:47Tuc(NGC104),
10	B0021-72D	<u>mlr+91</u>	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	<u>vb21</u>	0.00535757328486573	9 <u>frk+17</u>	-3.4220E-21	9	<u>frk+17</u>	4.520	2.630	<u>ymw17</u>	-17.46	GC:47Tuc(NGC104),
11	B0021-72E	mlr+91	5.25	3 vb21	-2.55	3 v	vb21	0.00353632915276244	4 frk+17	9.85103E-20	6	frk+17	4.520	2.510	ymw17	-17.10	GC:47Tuc(NGC104),
12	B0021-72F	mlr+91	5.25	3 vb21	-2.55	3 v	vb21	0.00262357935251262	4 frk+17	6.45029E-20	7	frk+17	4.520	2.544	ymw17	-17.21	GC:47Tuc(NGC104),
13	B0021-72G	rlm+95	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	vb21	0.00404037914356515	14 <u>frk+17</u>	-4.21584E-20	17	frk+17	4.520	2.556	ymw17	-17.25	GC:47Tuc(NGC104),
14	B0021-72H	mlr+91	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	vb21	0.00321034070935032	11 <u>frk+17</u>	-1.8294E-21	11	frk+17	4.520	2.543	ymw17	-17.21	GC:47Tuc(NGC104),
15	B0021-72I	<u>mlr+91</u>	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	<u>vb21</u>	0.00348499206166289	13 <u>frk+17</u>	-4.5874E-20	3	<u>frk+17</u>	4.520	2.555	ymw17	-17.24	GC:47Tuc(NGC104),
16	B0021-72J	mlr+91	5.25	3 vb21	-2.55	3 v	vb21	0.00210063354535246	5 frk+17	-9.7917E-21	9	frk+17	4.520	2.594	ymw17	-17.36	GC:47Tuc(NGC104),
17	B0021-72L	rlm+95	5.25	3 vb21	-2.55	3 v	vb21	0.0043461679994616	4 frk+17	-1.22045E-19	4	frk+17	4.520	2.547	ymw17	-17.22	GC:47Tuc(NGC104),
18	B0021-72M	mlr+91	5.25	3 vb21	-2.55	3 v	vb21	0.0036766432176002	3 frk+17	-3.8419E-20	6	frk+17	4.520	2.552	ymw17	-17.23	GC:47Tuc(NGC104),
19	B0021-72N	rlm+95	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	vb21	0.00305395434626085	10 frk+17	-2.18570E-20	19	frk+17	4.520	2.585	ymw17	-17.33	GC:47Tuc(NGC104),
20	J0024-72040	clf+00	5.25	3 <u>vb21</u>	-2.55	3 <u>v</u>	vb21	0.00264334329724357	5 <u>frk+17</u>	3.03493E-20	6	frk+17	4.520	2.537	ymw17	-17.19	GC:47Tuc(NGC104),
21	J0024-7204P	clf+00	5.25	3 vb21	-2.55	3 v	vb21	0.0036430207	3 rft+16	6.6E-19	40	rft+16	4.520	2.523	vmw17	-17.15	GC:47Tuc(NGC104)
22	J0024-72040	clf+00	5.25	3 vb21	-2.55		vb21	0.00403318118457258	15 frk+17	3.4008E-20		frk+17	4.520	2.520	vmw17	-17.14	GC:47Tuc(NGC104),
23	J0024-7204R	clf+00	5.25	3 vb21	-2.55		vb21	0.00348046270749329	13 frk+17	1.48352E-19		frk+17	4.520	2.538	ymw17	-17.19	GC:47Tuc(NGC104),
24	J0024-7204S	clf+00	5.25	3 vb21	-2.55		vb21	0.00283040595787912	8 frk+17	-1.205413E-19		frk+17	4.520	2.543	ymw17	-17.21	GC:47Tuc(NGC104),
25	J0024-7204T	clf+00	5.25	3 <u>vb21</u>	-2.55		vb21	0.0075884798073671	12 <u>frk+17</u>	2.93805E-19		frk+17	4.520	2.553	ymw17	-17.24	GC:47Tuc(NGC104),
26	J0024-7204U	clf+00	5.25	3 vb21	-2.55	3 v	vb21	0.00434282669639233	12 frk+17	9.52279E-20	17	frk+17	4.520	2.535	vmw17	-17.18	GC:47Tuc(NGC104),
	3332. 72040							0.00.5.202005055255		J.J.L., JL 20		*******			,27	27.10	GC GC (NGC104)).

GC:47Tuc(NGC104)

-17.01

Alter von Supernova-Überresten mit Neutronensternen darin bestimmen

ATNF Pulsar Catalogue Alter $< P_0 / P_1$ Catalogue Version: 2.5.1 DIST DM*sin(b) ASSOC (mas/yr) (s) (kpc) (kpc) (cm^-3 pc) 6 257 J0002+6216 cwp+17 J0006+1834 cnt96 0 Galactic SNRs: Summary Data J0007+7303 aaa+09c J0011+08 dsm+16 2024 October version J0012+5431 dcm+23Vergleich mit Katalog der D. A. Green B0011+47 dth78 18 bfg+03 15 J0021-0909 c1h+20 0 Cavendish Laboratory J0023+0923 hrm+11 -11.00 bbc+24 -8.80 10 bbc+24 19 J. J. Thomson Avenue Supernova-Überreste B0021-72C mld+90 5.25 <u>vb21</u> -2.55 3 <u>vb21</u> Cambridge CB3 0HE B0021-72D mlr+91 vb21 United Kingdom B0021-72E mlr+91 5.25 3 vb21 -2.55 3 <u>vb21</u> 11 e also see the documentation for notes on the entries for each SNR in the catalogue, and for details of many possible and probable mlr+91 5.25 vb21 -2.55 vb21 12 B0021-72F SNRs. B0021-72G rlm+95 5.25 3 vb21 -2.55 3 vb21 13 14 B0021-72H mlr+91 5.25 3 vb21 -2.55 3 vb21 vb21 15 B0021-72T mlr+91 R0021-727 5.25 3 vb21 -2.55 3 1-GHz 16 mlr+91 vb21 (32000.0) flux index 17 B0021-721 rlm+95 5.25 vb21 -2.55 vb21 18 B0021-72M mlr+91 5.25 vb21 -2.55 3 vb21 vb21 19 B0021-72N rlm+95 5.25 3 -2.55 3 vb21 100? 0.8? 20 J0024-72040 clf+00 17 46 15 22 varies J0024-7204P clf+00 5.25 vb21 -2.55 3 vb21 21 22 J0024-72040 clf+00 5.25 <u>vb21</u> -2.55 vb21 17 49 39 -27 46 10 -27 10 23 J0024-7204R clf+00 5.25 <u>vb21</u> -2.55 <u>vb21</u> 17 55 30 52x28 clf+00 5.25 3 vb21 -2.55 vb21 J0024-7204S 25 clf+00 J0024-7204T 17 52 55 -25 28 32 0.6 -27 03 3.2? 0.6? 5.25 -2.55 26 J0024-7204U clf+00 3 vb21 3 vb21 -21 29 19 Kepler, SN1604, 3C358 0.64

-25 45

-23 25

-22 54

-23 48

-21 03

-20 35

-20 14

18 07 22

18 05 08

18

35

18x12

15

12

26

45

24

12

0.6?

0.7

0.3?

0.4?

0.5?

0.6

0.3

0.6

1814-24

(W30)

varies

2.6?

5.5

4.5 0.9

4.0?

1.3?

2.5?

4.4

310

Welche Neutronensterne sind in Supernova-Überresten?

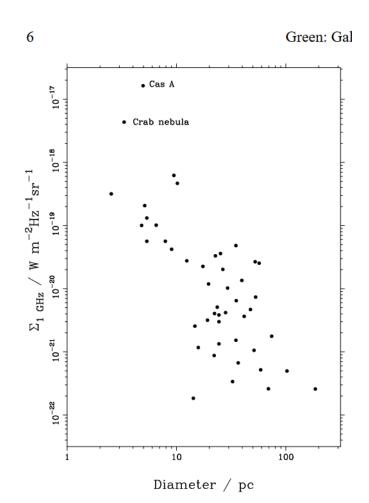
27

J0024-7204V

Alter der SN-Überreste bestimmen

Entfernung von Supernova-Überresten mit Neutronensternen bestimmen

Mit der Stichprobe der Neutronensterne in Supernova-Überresten Σ – D Relation aufstellen :


Σ Oberflächenhelligkeit (Radiohelligkeit und Winkeldurchmesser)

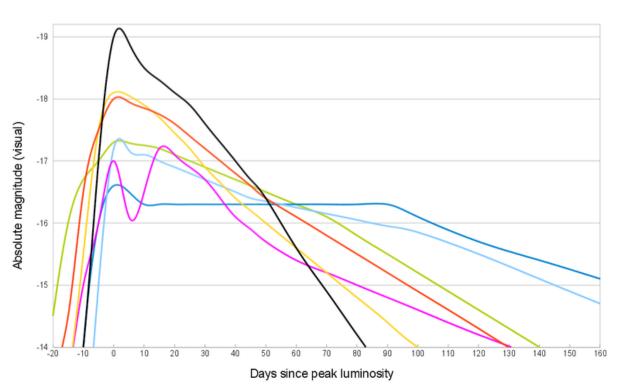
D Durchmesser (Winkeldurchmesser und Entfernung)

Also:

aus Radio-Helligkeit, Winkeldurchmesser und SN-Überresten mit anderweitig bekannten Entfernungen Σ – D Relation aufstellen

und dann damit Entfernungen anderer SN-Überreste bestimmen.

Versch. SN-Typen zeigen versch. Lichtkurven:

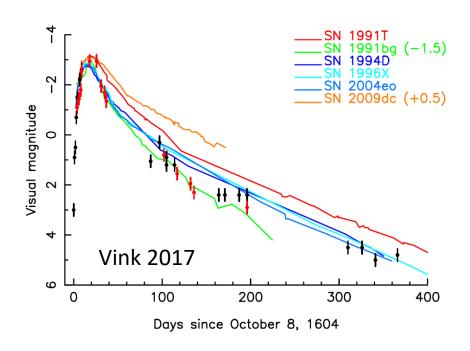

— Type Ia — Type Ib — Type Ic — Type IIb — Type II-L — Type II-P — Type IIn

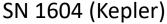
Absolute Magnituden:

$$M = -19.5$$
 (SN Ia),

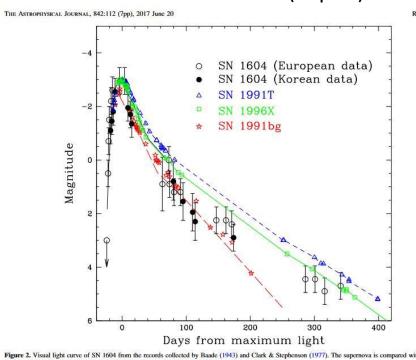
$$M = -20.3$$
 (SN Ibc),

$$M = -17 \text{ mag (SN II-P)}$$


Absolute Magnitude M ist scheinbare Magnitude m in 10 pc:

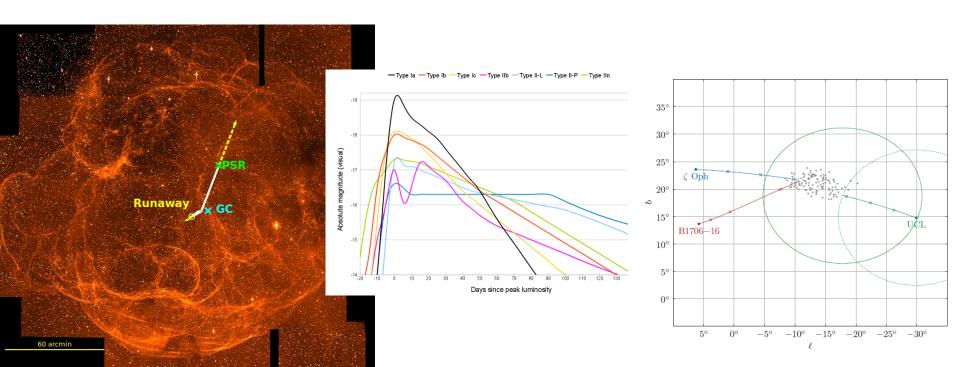

$$M = m - 5 \log (r / 10 pc) - A$$

oder $M = m - 5 \log (r / pc) + 5 - A$


Entf. r in pc und Absorption A in mag, meist A_V

Lichtkurven von verschiedenen Supernova-Typen

SN 1572 (Tycho Brahe)



supernova SN 1996X, as well as with the overluminous SN 1991T and the subluminous SN 1991bs

Aufgabe: aus Tausenden extra-galaktischer Supernovae für die verschiedenen Untertypen die typischen Lichtkurven und Farbentwicklungen bestimmen

- (1) Vergleich verschiedener Entfernungsbestimmungs-Methoden bei Neutronensternen
- (2) Alter von Supernova-Überresten mit Neutronensternen darin bestimmen
- (3) Entfernung von Supernova-Überresten bestimmen
- (4) Lichtkurven von verschiedenen Supernova-Typen

