Atomic Resolution Analytical Transmission Electron Microscope NEOARM 200F

Cold Field Emission Gun

- high current densities for enhanced resolution in STEM imaging and spectroscopy
- narrow energy distribution of emitted electrons (0.3eV at 1µA

EDX Double SDD

 2 SD detectors, total area 200mm² (JEOL Centurio) resulting in a collection angle of 1.3sr and unprecedented count rates and processing of up to 100 000 cts/s

and 0,47eV at 15µA) for outstanding energy resolution using EELS

STEM Aberration Corrector

- imaging with atomic resolution (< 1 Å in STEM HAADF)
- atomic resolution elemental mapping with EELS and EDX

- highest available energy resolution (122eV at Mn Kα)
- spectral imaging for elemental quantification with subnanometer resolution

STEM EDX spectrum image with extracted quantitative line profiles quantitative visualization of the local elemental composition across an oxidized steel surface with sub-nm resolution

EEL spectrometer

- novel Continuum spectrometer (Gatan) with an energy resolution < 0.3eV for quantification of light elements
- high speed EEL spectral imaging (up to 8000 spectra/s)
- dual EELS for simultaneous acquisition of core-loss and low loss spectrum

<u>0.5</u> nm

HRSTEM and corresponding Fast Fourier Transform imaging of Si dumbbells in [110] orientation applying STEM HAADF confirms a resolution of ~0.8 Å

low-loss spectrum

Analysis of cubic BN via multiple linear least squares fitting

Comprehensive set of STEM detectors

- 4 imaging detectors combined with 2 spectrometers and diffraction imaging for comprehensive STEM analysis
- Annular Bright Field (ABF) detector for direct visualization on an atomistic length scale of light chemical elements, Annular Dark Field (ADF) detector for heavy elements
- enhanced light atom contrast by e-ABF (JEOL)

STEM ADF and ABF image

in-situ heating experiments

• *in-situ* observation of phase transformations at temperatures

up to 1300°C

- double tilt heating holder (DensSolutions)
 - tilt range: x ± 25°, y ± 15°
 - heating rates: < 2.10⁶K/s
 - temperature accuracy < 5%

- Additional SE/BSE detectors providing also topographical information e.g. beneficial for imaging of nano particles
- 4D STEM Diffraction Mapping with up to 300fps (Gatan STEM X) for mapping of local strains and crystal orientation
- Spectral imaging with up to 8000 EEL spectra/s and up to 3000 EDX spectra/s for mapping of concentration distributions and phase compositions

visualization of the atomic arrangement at a phase boundary in a Pt-Ti-Al alloy

STEM 4D diffraction map with constructed dark filed image grain boundary triple junction in Cu

single control interface:

acquire, store, and analyze data of different sources (imaging and heating holder) using the same software

• 4k x 4k CMOS camera (Gatan OneView)

- recording of *in-situ* image stacks with 4k x 4k at 25fps and 512 x 512 at 300fps
- LookBack streaming and drift correction function

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Gefördert durch

Forschungsgroßgeräteprogramm Elektronenmikroskope in Materialwissenschaft & Physik Inst 275/391-1

