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1 Introduction

In 1910 Lord Rayleigh described the phenomenon of the so called whispering-gallery observ-

able in St. Paul’s cathedral in London [Ray10, Ray14]. Hence, conversations held on one side

of the wall below the dome can be heard clearly at the other side. Rayleigh showed that the

physical dimensions make the gallery below the dome a resonator for sound waves traveling

along the wall by continuous reflections. This phenomenon can be transferred into optics where

it happens on a much smaller micrometer scale when considering optical wavelengths in the

visible and near infrared and hence leading to the new class of optical resonators: whispering-

gallery-mode (WGM) microresonators [Vah03]. In such structures the light traveling in the

high index material undergoes repetitive total internal reflections at the interface to the low

index surrounding medium. After one roundtrip light interferes constructively for wavelengths

that are multiples of the effective circumference resulting in distinct resonances. Contrary to,

e.g., Fabry-Perot resonators, ideal single directional pumped WGM resonators are traveling

wave resonators not showing standing wave patterns. Due to the imperfect total internal

reflection at a curved interface a small fraction of the light can escape the resonator by tun-

neling [Sny75, Cul76]. Hence, even in the case of an ideal lossless material and a flat interface

the light in the resonator will decay, resulting in a finite Q-factor or resonance bandwidth.

Nevertheless, as the effect of light tunneling is very weak, the Q-factor can be extremely large,

resulting in a long photon storage time inside the resonator. Another important property is

the small size of the resonators down to several microns. In combination with the structure

of the WGMs the light is strongly confined inside the resonator with only an evanescent tail

in the surrounding medium which is characterized by the mode volume (Vmode). Furthermore,

the potentially small size of the cavity results in a large free spectral range (FSR) which in

combination with the small resonance bandwidth leads to an exceptional high finesse. The

long temporal and strong spatial confinement as well as the spectral isolation of the WGMs

gives rise to strong enhancement of light matter interaction at significantly reduced thresholds

in such systems and make WGM microresonators a versatile platform for fundamental physical

studies in linear and nonlinear optics as well as for potential new applications.

The subject of this thesis “Mode dynamics in coupled disk optical microresonators” deals

with the interaction of optical WGMs in mutually coupled microresonators. However, in

order to understand the emerging effects and to point out the potential of coupled WGM

microresonators a comprehensive knowledge of realizations and characteristics of the single

microresonator is of importance.

3



4 1. INTRODUCTION

Current state of knowledge

The first experimental study on optical WGM microresonators was made with microspheres

[Gar61] and microdroplets under free space illumination, demonstrating WGM lasing [Tze84,

Lin86, Qia86], stimulated Brillouin and Raman scattering [Zha89, Lin94] as well as stimulated

emission enhancement [Cam91]. Later on, lasing in on-chip semiconductor microdisks [McC92]

and the photoluminescence into WGMs of micropillars [Gér96] was realized under free space

illumination. Due to the spatial distribution of the WGMs along the circumference of the

resonator, the efficiency of direct coupling to WGMs by free space illumination is very poor.

One possibility to overcome this problem is an active medium inside the cavity that directly

emits into the WGM when pumped from the outside. Another possibility is the coupling to

the evanescent fields of the WGMs which allows for their direct excitation and passive in-

vestigation. This was first demonstrated by prism coupling to microspheres revealing efficient

excitation of WGMs with Q-factors on the order of 108 [Bra89, Gor94]. In the following several

groups tried to push the Q-factor toward the fundamental limit on the order of 1010 in silica mi-

crospheres at optical wavelengths [Gor96] and identified the thermal nonlinearity as the lowest

threshold nonlinearity in such systems under room temperature conditions leading to thermal

bistability [Bra89, Col93, Gor94]. Under more exotic conditions in a 2 K superfluid helium en-

vironment thermal effects could be suppressed and bistability caused by Kerr nonlinearity was

observed evidencing the extremely low pump power thresholds on the microwatt level [Tre98].

Furthermore, the coupling of counterpropagating WGMs caused by scattering at material im-

perfections of the resonator was shown [Wei95]. Experiments on cavity quantum electrodynam-

ics (CQED) were performed revealing the strong interaction of atoms and photons in high-Q

WGMs [Kim06, Ver98a]. Likewise, the direct coupling to the WGMs allows for the realization

of WGM lasing with threshold pump powers of a few hundred nanowatt [San96]. Although

prism coupling has limited efficiency and restrictions in terms of integration, the robustness

and variety of accessible materials makes this method the method of choice for investigations

of WGMs in high index crystalline microresonators. Utilizing materials like calcium fluoride

[Sav04, Gru06] and lithium niobate [Ilc03] exceeds the Q-factor to the order of 1011 [Sav07] and

allows for low threshold and efficient parametric frequency conversion [Ilc04, Für10, Bec11].

Another ingredient pushing forward the development of the WGM microresonators was the

introduction of tapered optical fibers for external coupling to WGMs [Kni97]. Tapered fibers

allow single mode phase matched excitation of WGMs with a coupling efficiency of almost unity

[Spi03] and provide direct access to the WGMs of on-chip microresonators like disks [Kip03]

and toroids [Arm03]. Due to the effectively reduced dimensionality of the microdisks and

microtoroids, their mode spectrum becomes much cleaner and the mode volume is reduced as

compared to microspheres. This enhances the possibility of direct spectral mode identification,

improves CQED experiments [Spi05] and results in on-chip single mode lasers with lowest

thresholds [Yan03]. Furthermore, it enables the route to new and versatile sensing applications
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for physical quantities or nanoparticles, e.g., viruses and biomolecules [Boy01, Vol02, Gaa06,

Arm07, Zhu09, Li10, Dom11]. Likewise, the efficient tapered fiber coupling allows for the

observation of nonlinear effects like optical parametric oscillations [Kip04b] as well as on-chip

frequency comb generation [Del07] in microtoroids. The extension of the concept for integrated

waveguide coupling makes WGMs accessible in a variety of materials in a fully integrated

manner, e.g., semiconductor materials and in particular silicon that is of importance due to

its compatibility to existing optoelectronic applications. The integration of coupling waveguide

and resonator was first demonstrated for semiconductor microrings and -disks [Raf97] and later

was realized for high-Q silicon WGM microdisks [Sol07b].

Based on the sophisticated fabrication of on-chip microresonators new effects, arising from

the interaction of optical and mechanical degrees of freedom in these structures, were described

in the scope of optomechanics [Kip07, Kip08, Jia09, Ros09]. From the variety of possible

effects of optomechanics discussed in Ref. [Kip07] the radiation pressure induced quantum

ground state cooling of a macroscopic mechanical oscillator might be the most stunning from

a fundamental point of view [Sch09b, Riv11].

Beside the widely used sphere, disk, and toroid microresonators the development of ad-

vanced taper fiber fabrication techniques [War06] allows the experimental realization of an-

other cavity type: WGM bottle microresonators [Sum04, Lou05] providing enhanced tunability

while preserving Q-factors and mode volumes known from microspheres [Mur09, Pöl09].

One may also notice a development to smaller wavelength-scale microresonators [Sha09,

Sol10], the exploration of new materials [Gri08], and further investigations of semiconductor

microresonators [Sri06, Mic07] in order to improve their Q and Vmode characteristics. Variations

in the resonator shape are investigated as an additional degree of freedom, particularly applied

to semiconductor microdisks in order to realize a directional laser output [Lev93, Wie06,

Bor06e, Det08, Dub08]. A promising approach realizing directional emission uses a smoothly

deformed circumference of the cavity resulting in a so called asymmetric resonant cavity

[Nöc97] where the high Q-factors are maintained [Son10, Son11]. Moreover, microresonators

operating in fluidic environment were realized suitable for unlabeled biosensing applications

[Arn03, Arm05, Vos07, Ost09]. Furthermore, surface-plasmon-polariton-WGMs were observed

in an hybrid metal-dielectric microdisk [Min09] allowing for the realization of a plasmonic laser.

To conclude this brief review1 of different fields of investigations of WGM microresonators,

the particular influence of the main parameters Q and Vmode on the crucial characteristics

should be summarized. Depending on the device geometry and the used materials, the Q-

factor typically ranges from 104 to 106 in semiconductor microdisks and up to 109 to 1011

for fused silica spheres and crystalline microresonators. The modal volume Vmode ranges from

hundreds of λ3 in microspheres down to a few λ3 in semiconductor microdisks. A high Q-

factor is mostly preferable, especially since the corresponding narrow resonance bandwidth

1The author raises no claim to completeness of this information. A comprehensive summary of WGM resonator
characteristics and possible applications can be found in Refs. [Mat06, Ilc06].
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determines the limits of WGM resonators as optical filter elements as well as that of narrow

bandwidth photon sources and lasers as the threshold pump power scales with Q−1. The

Q-factor is also the dominating parameter for observation of nonlinear optical effects, e.g.,

optical parametric oscillations, second harmonic generation, or frequency comb generation in

optical microresonators since the threshold pump powers scale according to VmodeQ
−2. The

mode volume related to the size and hence the FSR of the resonator becomes important for

effects depending mainly on the finesse like sensing applications as well as QED effects in the

weak coupling regime, e.g., Purcell enhanced spontaneous emission that scales with QV −1
mode.

The QV −1
mode dependence is also important for the observation of opto-mechanical coupling

effects and typically is accompanied by a reduced form factor of the structure to allow high-Q

mechanical modes and enables a regime of dominant optical forces [Ros09, Kip07].

Coupled microresonators

The particular structure of WGMs allows for the mutual optical coupling of microresonators

that are placed next to each other. The effects observable in coupled microresonators first

were considered theoretically in the framework of electromagnetic plane wave scattering by

aggregates of spherical particles described by rigorous modal expansion [Ful91, Mis02]. Exper-

imentally the modes of such photonic molecules (in analogy to the electron states in molecules)

were investigated in semiconductor micropillars [Bay98], polymer microspheres [Muk99] and

semiconductor microdisks [Nak05, Ish06]. The collective excitations of longer chains of cou-

pled polymer microspheres were investigated in the framework of coupled resonator optical

waveguides (CROW) [Yar99] revealing a photonic bandstructure [Hee04, Har05, Möl06] and

hence typical effects like slow light can be expected. Experimentally this was demonstrated

in coupled microring structures2 [Poo06, Mor07]. Other effects studied in one-dimensional

(1D) chains of coupled microrings are cavity enhanced four wave mixing [Mor11] and the re-

alization of flat top add-drop filters [Pop06]. Furthermore, CROW-based optically tunable

routers and switchers were investigated theoretically [Bor07]. The extension of the coupling of

WGM to two-dimensional (2D) structures allows for even more complex photonic molecules

and gives rise to Q-factor enhancement (at least for low-Q resonators) and increased sensitivity

to changes of the environmental dielectric constant [Bor06a] which is important for sensing

applications. The versatile structure of photonic molecules also allows for engineering highly

directional far field emission patterns or quasi single mode operation of coupled microdisk

lasers predicted by a rigorous theoretical analysis [Bor06c].

The experimental realization of coupled microresonator structures always struggles with

2One should mention that microrings usually are designed as curved single mode waveguides and the modes are
not at all WGMs, especially when considering the inner boundary which is absent in real WGM resonators.
Nevertheless, the observable effects are comparable to WGM resonators since no dramatic change of the
mode characteristics is expected when shifting the inner boundary of the ring towards its center resulting in
a microdisk, except for possible guiding of higher order radial modes and slightly increased Q-factors.
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the uniformity of their single elements. Especially the fabrication of very high-Q reflow struc-

tures like spheres and toroids is less reproducible resulting in significant resonance mismatch

of the individual resonators although strategies for the assembly of preselected resonators were

developed [HZ07]. Hence, first experiments coupled different WGMs of distinct microtoroids

[Gru09]. To this reason, identical coupled microresonators where realized so far from poly-

mer microspheres assembled on a flat or patterned substrate [Ast04, Rak04, Har05, Möl07]

or coupled microrings [Poo06, Mor07] showing moderate Q-factors (103 to 105). Since in

particular the sorting out of size matching polymer microspheres is cumbersome the litho-

graphic fabrication used for microrings seems to be the preferable method for the fabrica-

tion of identical microresonators matching the tolerances determined by the finite Q-factor

or resonance bandwidth. Despite this problem, the coupling of size mismatched microres-

onators is of interest for studies of photon transport and light localization in random media

[Wie97, Ast04, Ast07] as well as for directional output coupling of possible coupled microres-

onator lasers [Bor06c, Nos07].

Aim and structure of this thesis

When the work on this thesis started in 2007 only a few experiments on coupled WGM

microresonators were reported. As mentioned above, their main realizations were based on

polymer microspheres or silicon microring resonators. On the one hand these coupled rings are

only single mode structures not supporting higher order radial WGMs and on the other hand

the WGMs in such coupled polymer spheres were excited unspecifically by means of stimulated

emission of active dopants. This complicates a general and comprehensive experimental study

of WGM characteristics in coupled microresonators.

The goal of this thesis was to establish an experimental platform allowing for fabrication of

arbitrarily arranged two-dimensionally coupled microresonators and a detailed experimental

investigation of the WGM characteristics in such structures. As material system a functional

fused silica layer on top of a silicon substrate was chosen. The advantages of this approach

are manifold: Firstly, the fabrication results in a symmetric refractive index distribution

since the fused silica disks are free standing above the silicon substrate with a large spatial

separation (tens of λ). Secondly, the free standing microdisks are accessible by tapered optical

fiber coupling. Thirdly, in fused silica the thermal nonlinearity has the lowest pump power

threshold and can be investigated separately from other nonlinear effects, e.g., additional free

carrier dispersion in silicon microdisks [Joh06, Bor06d].

The investigations are focused on the linear spectral characteristics of coupled microdisks.

Of particular interest are the reproducibility of the fabrication and the question if the high

Q-factors of single microdisks can be maintained for coupled structures. Additionally, a com-

prehensive analysis of the spectral and spatial distribution of the collective WGM excitations

or eigenmodes of coupled microresonators is done. Furthermore, exploring the nonlinear opti-
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cal power regime, the nonlinear dynamics of the WGMs in coupled microresonators are studied

and the potentials for possible applications are discussed. The experimental data are used to

support the development of theoretical models for the description of optical characteristics in

coupled microresonators. Since there were presented versatile theoretical approaches consid-

ering different aspects of microresonator research in literature another objective of this thesis

is to summarize and extent existing models for a comprehensive theoretical study of coupled

WGM microresonators. Therefore, both analytical as well as numerical methods are used. Due

to the general character of the investigations it is expected that both theoretical and experi-

mental methods as well as the obtained results are applicable to other WGM microresonator

geometries and materials, at least qualitatively.

This thesis is structured as follows: In chapter 2 the theoretical foundations for the de-

scription of coupled WGM microresonators are summarized. It starts with recapitulating the

analytical 2D approximation of WGMs in single microdisks followed by a numerical analysis

using a finite-element-method (FEM) to complement the calculation of basic characteristics

of single microdisks. The analytical 2D approximation results in the formulation of a modal

expansion scattering problem that is extended to allow for the calculation of resonances in ar-

bitrarily coupled microdisks. Additionally, a coupled mode theory (CMT) is described, taking

into account a tapered fiber excitation, thermal nonlinear effects as well as intra- and inter-

disk coupling of WGMs. In chapter 3 the fabrication of coupled microdisks and of tapered

optical fibers for the excitation of WGMs is described. Furthermore, the experimental setup

and methods are introduced and the linear spectral characterisation of coupled microdisks is

presented. In chapter 4 a method for the measurement of the spatial intensity distribution of

the eigenmodes in coupled microdisks is described. It is based on scattering scanning near-field

optical microscopy (SNOM) techniques and is accompanied by a detailed theoretical analysis

using an adapted CMT. In chapter 5 the WGM dynamics in coupled fused silica microdisks are

investigated under the influence of the thermal nonlinearity. With the results from chapter 4

new effects like differential all-optical resonance tuning in coupled microdisks are predicted by

calculations and verified experimentally. Furthermore, the compensation of thermal nonlinear

effects in coupled microdisks is discussed and realized. Finally, in chapter 6 the main results

of this thesis are summarized and an outlook on further research activities is given.

The realization of this thesis benefits from the contributions of different people. The most

important was the fabrication of the coupled microdisk samples, which was done by Dipl.-

Ing. Thomas Käsebier from the Microstructure Technology group at the Institute of Applied

Physics (IAP) at the Friedrich-Schiller-Universität Jena (FSU). The theoretical part was sup-

ported by Prof. Lev Deych from the Physics Department at the Queens College, New York, who

developed the basic parts of the analytical modal expansion of WGMs in coupled microdisks.

Furthermore, rigorous numerical finite difference time domain (FDTD) simulations were per-

formed by Dr. Christoph Etrich from the Institute of Condensed Matter Theory and Solid State

Optics (IFTO) at the FSU in order to test the validity of the applied approximative models.



2 Fundamental theoretical concepts

This chapter provides the theoretical foundation for the description of the optical properties

of coupled WGM microdisks. The optical modes of single microdisks and their characteristics

are calculated by analytical as well as numerical methods. For the description of coupled

microdisks the analytical approach is extended to characterize the collective optical excitations

in dependence of their geometrical arrangement and physical properties. The dynamics of the

modes in coupled microdisks as well as their excitation are analyzed within the scope of a

coupled mode theory.

2.1 Eigenmodes of single microdisks

The electromagnetic fields in optical microresonators can be described by Maxwell’s equations,

which for dielectric media (no free charges and currents) can be written in frequency space as

[Jac99]

∇× E(r, ω) =iωB(r, ω), (2.1)

∇×H(r, ω) =− iωD(r, ω), (2.2)

∇ ·D(r, ω) =0, (2.3)

∇ ·B(r, ω) =0, (2.4)

with the space coordinate vector r, the frequency of the optical field ω, the macroscopic

observable electric field E and magnetic induction B as well as the dielectric displacement D

and magnetic field H. The vector fields F ∈ {E,D,B,H} in frequency space are related to

the corresponding field vectors in the time domain by the Fourier transform, defined as

F(r, t) =

 ∞

−∞
F(r, ω)e−iωtdω and F(r, ω) =

1

2π

 ∞

−∞
F(r, t)eiωtdt. (2.5)

Assuming a nonmagnetic medium and denoting the vacuum permittivity ϵ0 and permeability

µ0 the constitutive relations can be written as

D(r, ω) =ϵ0E(r, ω) + P(r, ω), (2.6)

B(r, ω) =µ0H(r, ω). (2.7)

9
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Fig. 2.1: (a) Schematic of a disk microresonator illustrating the approximations to reduce the complexity of
the 3D problem to a 2D one for (b) the analytical approximation and (c) the finite element simulation.

For a linear and isotropic medium the polarization P can be expressed as P(r, ω) = ϵ0[ϵ(r, ω)−
1]E(r, ω) with the dielectric function ϵ(r, ω). The wave equation for the electric field can be

derived by taking the curl of Eq. (2.1) and eliminating the magnetic field with the help of

Eqs. (2.7) and (2.2). Using also Eq. (2.6) one obtains

∇×∇× E(r, ω)− k2
0ϵ(r, ω)E(r, ω) = 0, (2.8)

with k0 = ω/c and c = 1/
√

µ0ϵ0 the speed of light in vacuum. Further resolving the curl of

the curl and taking the result of substituting Eq. (2.6) into Eq. (2.3) one can write1

∇2E(r, ω) +∇


1

ϵ(r, ω)
E(r, ω) · ∇ϵ(r, ω)


+ k2

0ϵ(r, ω)E(r, ω) = 0. (2.9)

For solving the general wave equation (2.9) one usually makes the approximation of piecewise

homogeneous media, which reduces the equation to the vector wave equation. A full three-

dimensional (3D) analytical solution is possible only for certain geometries, e.g., spherical

microresonators or infinite extended cylinders [Boh83]. One can see from Eq. (2.9) that for

the case of a translational invariance in at least one direction of the system it can be separated,

allowing for the solution of just the transverse electric or the transverse magnetic fields.

In the following, two different approaches for the calculation of the optical modes of a

single microdisk resonator are described: an analytical, effective index approximation (EIM)

and the finite element method (FEM). The approximations, which are done to the structure

are illustrated in Fig. 2.1.

2.1.1 Analytic approximation of single microdisk resonances

As mentioned above, for a piecewise homogeneous medium, Eq. (2.9) can be reduced to the

vector wave equation for the fields F ∈ {E,H}

∇2F(r, ω) + k2
0ϵ(r, ω)F(r, ω) = 0, (2.10)

1A similar equation can be derived for the magnetic field.
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which can be solved separately for the homogeneous parts of the system and the final solution is

determined by the boundary conditions for the fields between these parts. For the investigated

microdisks with a finite extend in z-direction no analytical solution can be found, even if

one takes into account the invariance of the dielectric function along the φ-direction in a

cylindrical coordinate system resulting in ϵ(r) = ϵ(r, φ, z) = ϵ(r, z). An analytical solution

can be approximated by reducing the system to two dimensions (2D), which becomes possible

for disks with a height much smaller than their radius (h ≪ Rres). In this case the vertical

confinement is similar to that of a slab waveguide of thickness h and one can use an effective

index of the slab mode as an approximation for the refractive index of the disk in the 2D

(r, φ)-plane. A consequence of this approximation is the separation of the optical fields into

two main polarization states, which is explained by the polarization dependent nature of

plane-wave reflection at the interfaces of the slab [Sny83]. One can find TE modes with

the electric field in the disk plane and TM modes with the electric field perpendicular to

the disk plane, which allows to solve Eq. (2.10) independently for the transverse fields Fz ∈
{Ez(TM), Hz(TE)}, reducing the problem to a scalar equation. Representing the Laplacian

operator in cylindrical coordinates (∇2 = ∂2/∂r2 + r−1∂/∂r + r−2∂2/∂φ2 + ∂2/∂z2), using the

refractive index n2(r, z) = ϵ(r, z) and the separation of variables Fz(r, φ, z) = Fz,∥ · Fz,⊥ =

X(r, φ)Y (z), Eq. (2.10) can be written as (the frequency dependence of the fields is dropped

to enhance readability)

1

X(r, φ)


∂2X(r, φ)

∂r2
+

1

r

∂X(r, φ)

∂r
+

1

r2

∂2X(r, φ)

∂φ2


+

1

Y (z)

∂2Y (z)

∂z2
+ k2

0n
2(r, z) = 0. (2.11)

This can be separated into two equations by introducing an effective slab mode index neff,z for

r ≤ Rres:
2

∂2X(r, φ)

∂r2
+

1

r

∂X(r, φ)

∂r
+

1

r2

∂2X(r, φ)

∂φ2
+ k2

0n
2
eff,z(r)X(r, φ) =0, (2.12)

∂2Y (z)

∂z2
+ k2

0


n2(z)− n2

eff,z


Y (z) =0. (2.13)

Equation (2.13) is the standard eigenvalue problem of a slab waveguide with the solution found

in many textbooks (e.g., see Ref. [Oka06] or Appendix B.3). The resulting neff,z is used as the

effective disk index in two dimensions (neff,z ≡ nh for r ≤ Rres and neff,z ≡ n0 for r > Rres) in

Eq. (2.12), which can be separated further using X(r, φ) = Xr(r)Xφ(φ):

∂2Xr

∂r2
+

1

r

∂Xr

∂r
+


k2

0n
2
eff,z(r)−

m2

r2


Xr =0, (2.14)

∂2Xφ

∂φ2
+ m2Xφ =0. (2.15)

2Eq. (2.12) is valid also for r > Rres with neff,z = n0 with n0 as the refractive index of the surrounding medium,
whereas Eq. (2.13) makes no sense because no slab waveguide is present for r > Rres.
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The solution of Eq. (2.15) gives a harmonic dependence of the field in the azimuthal direction

Xφ = eimφ with the mode number m ∈ Z and |m| accounting for the number of field maxima

(and minima) along the φ-direction. The opposite sign of m distinguishes the modes traveling

clockwise (cw, −m) and counterclockwise (ccw, +m), which are degenerated in frequency.3

Equation (2.14) is a Bessel type differential equation. With the restriction that the solution

should be finite at the origin as well as zero at infinity one finds a Bessel function Jm(kr) for

r ≤ Rres and a Hankel function of the first kind H
(1)
m (kr) for r > Rres. The solution of the

field in two dimensions can be written as

Fz,∥ = X(r, φ) = XrXφ =

Jm(nhk0r)e
imφ r ≤ Rres, m ∈ Z

H
(1)
m (n0k0r)e

imφ r > Rres, m ∈ Z.
(2.16)

The field profile Fz,⊥ along the z-direction obtained from Eq. (2.13) is described by a cosine

inside and a decaying exponential above and below the disk, considering only the lowest mode

in this direction. In general, it is not useful to calculate the 3D field distribution Fz = Fz,∥Fz,⊥

in this way due to the large inaccuracy, especially at the corner regions of the disk. However,

the 2D solution of Eq. (2.16) can be used to approximate the resonance frequencies with a

sufficient accuracy. To this end, one can either solve the eigenvalue problem by matching the

internal and external tangential field components as described in Ref. [Bor06d], or seek for the

resonances of the scattering problem by introducing an incident field [Boh83]. The latter has

the advantage to solve for complex resonance frequencies, allowing to estimate the radiation

Q-factor, but on the cost of a more complicated root-finding algorithm. The relative difference

in the real parts of the resonance frequencies of both methods and the numerical finite element

method (FEM) is much less than one percent (see Sect. 2.1.2). As it is also the foundation

for the coupled microdisk model (see Sect. 2.2) the resonance approach is described here.

We introduce an incident, a scattered and an internal field (Fz,∥ = Finc,sc,int) and expand

them into the obtained eigen functions [Eq. (2.16)]

Finc(r, φ, ω) =

m

am(ω)eimφJm(n0k0r), (2.17)

Fsc(r, φ, ω) =

m

bm(ω)eimφH(1)
m (n0k0r), (2.18)

Fint(r, φ, ω) =

m

dm(ω)eimφJm(nhk0r), (2.19)

with the mode amplitudes am(ω), bm(ω) and dm(ω), respectively. The resonances can be

found by matching the tangential components of external and internal fields (Hz and Eφ

for TE polarization, Ez and Hφ for TM polarization) applying boundary conditions. The φ-

components can be easily obtained by analyzing Eqs. (2.1) and (2.2) in cylindrical coordinates.

3The relation between ±m and (cw,ccw) depends on the definition of the azimuthal angle. Usually, in a
theoretical context ±m is used, whereas experimentally related work uses the cw,ccw-notation.
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In general, one has

Finc(Rres) + Fsc(Rres) =Fint(Rres), (2.20)

∂

∂r
Finc(r)


r=Rres

+
∂

∂r
Fsc(r)


r=Rres

=n̄2 ∂

∂r
Fint(r)


r=Rres

, (2.21)

where n̄2 = n2
0/n

2
h for TE polarization and n̄2 = 1 for TM polarization. Substitution of

Eqs. (2.17)-(2.19) into Eqs. (2.20) and (2.21) leads to the modal scattering coefficient as the

ratio between scattered and incident mode amplitude

αm(x) =
bm(x)

am(x)
=

n̄2 nh

n0
[Jm(nhx)]′Jm(n0x)− Jm(nhx)[Jm(n0x)]′

Jm(nhx)[H
(1)
m (n0x)]′ − n̄2 nh

n0
H

(1)
m (n0x)[Jm(nhx)]′

. (2.22)

Here, the normalized frequency x = k0Rres = ωRres/c was introduced and the prime denotes

the derivative of the function with respect to the full argument. Similarly, the expansion

coefficients of the internal fields can be related to the ones of the scattered fields by

βm(x) =
dm(x)

bm(x)
=

Jm(n0x)[H
(1)
m (n0x)]′ −H

(1)
m (n0x)[Jm(n0x)]′

n̄2 nh

n0
[Jm(nhx)]′Jm(n0x)− Jm(nhx)[Jm(n0x)]′

. (2.23)

The resonances of the microdisk are determined by the zeros of the denominator of Eq. (2.22)

and the characteristic equation reads as

Gm(x) = Jm(nhx)[H(1)
m (n0x)]′ − n̄2nh

n0

H(1)
m (n0x)[Jm(nhx)]′ = 0. (2.24)

The complex roots of Gm can be calculated by use of the Davidenko’s method [Hej93], which

was successfully applied to the dispersion relation of lossy waveguide structures [Tal85] and

also to solve for the resonances of microspheres [Agh06]. The advantages over the Newton-

Raphson and Müller’s method [Pre92] are in terms of convergence and sensitivity to the initial

guess of the complex root, but can only be used if an analytical expression for the derivative of

the complex function exists [here Gx(x) = ∂Gm(x)/∂x]. In detail it transforms the algebraic

Eq. (2.24) by use of the Jacobian matrix into two first order ordinary differential equations

(ODE) in terms of the real and imaginary parts of the complex variable x = x1 + ix2
4

dx1

dt
= − 1

|Gx(x)|2

ℜ[G(x)]ℜ[Gx(x)] + ℑ[G(x)]ℑ[Gx(x)]


, (2.25)

dx2

dt
=

1

|Gx(x)|2

ℜ[G(x)]ℑ[Gx(x)]−ℑ[G(x)]ℜ[Gx(x)]


. (2.26)

The solution of this system is decaying exponentially in t, and hence x1 and x2 converge to

4The main advantage of the method takes effect in the case of an n-dimensional system of nonlinear equations
with n ≥ 2.
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Fig. 2.2: (a) Dispersion diagram for the resonances in a microdisk with Rres = 20 µm, h = 1 µm, nres = 1.445
surrounded by air (n0 = 1). The discrete guided TE (blue dots) and TM (red dots) modes are bound
between the light lines of the surrounding and bulk resonator material (black straight lines). Additionally, the
propagation constants of the slab modes, according to Eq. (2.13), are plotted [blue(red)-black dashed line for
TE(TM)]. The inset shows the experimentally observable range marked by the shaded area. The microdisk
modes are plotted in a more convenient way for direct comparison with measured spectra in terms of mode
number (b) and radiation Q-factor (c). The radial orders are distinguished from each other by the shaded areas
starting with the first radial order having the largest azimuthal mode number m and largest Q, respectively.

the real and imaginary part of the complex root for t →∞.

For the implementation of Davidenko’s method on the Eq. (2.24) a certain range of nor-

malized frequencies x for a fixed mode number m was considered, looking for intervals with

sign changes of Gm(x). It turned out to be beneficial seeking first for the roots of ℑ(Gm(x))

in the selected intervals using a standard root search and taking them as initial values for

the ODE solver. This significantly reduces the calculation time in comparison to solving the

ODE system directly with an arbitrary value from the selected intervals. In Fig. 2.2(a) the

calculated modes for a typical microdisk (Rres = 20 µm, h = 1 µm, nres = 1.445) are plotted in

a general dispersion diagram [Sak01, Bor06d] allowing for a global view on the characteristics.

The discrete guided modes are bound between the light lines of the surrounding air n0 = 1

and of the bulk resonator material nres. As expected, the first order radial modes are closest

to the bulk light line, whereas with increasing radial order the modes are located closer to the

light line of the surrounding. According to the model the propagation constants of the slab

modes are plotted as well, which as expected are upper bounds for the propagation constants

of the disk modes. For the experimentally observable region [shaded region and magnified

in the inset of Fig. 2.2(a)] second order slab modes are possible but play no significant role

because they are close to cut-off. In general, for the same radial order the TE modes are

stronger confined than TM modes resulting in larger azimuthal mode numbers m, connected

to an effective microdisk mode index neff = m/(k0Rres). For the sake of comparison with

experimental data it is preferable to plot the calculated modes in a more convenient way as

mode number versus wavelength shown in Fig. 2.2(b), which directly can be used to identify
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Fig. 2.3: Dependence of the resonance wavelength (upper graphs) and the radiation Q-factor (lower graphs)
of TE and TM polarized modes of different radial order on the variation of (a) the microdisk thickness h, (b)
the material refractive index nres and (c) the radius Rres. The vertical line in each of the graphs marks the
corresponding value of the parameter used as a constant in the other graphs. These constant values are the
same as in Fig. 2.2. The given numbers are the slopes of the curves obtained from linearization around the
initial parameter values.

the resonances in the measured spectra. The theoretical radiation Q-factors obtained from

the model by Q = x1/(2x2) are plotted in Fig. 2.2(c). A fabricated disk will show significantly

smaller Q-factors because of imperfect boundaries and nonzero material absorption, so the

calculated values here can be seen as fundamental limits. The identification of the resonances

can be done with the help of certain features in the spectrum, which are caused by different

dispersion for different radial order or polarization. An example is the comparison of the first

order radial TM modes (TM1,m) with the second order radial TE modes (TE2,m) in Fig. 2.2(b).

For lower wavelengths the TM1,m modes have larger resonance wavelengths than the TE2,m

modes, whereas for longer wavelengths it is opposite and at λ ≈ 1.565 µm they almost coin-

cide. These characteristics can be observed in the experiments as well and depend strongly on

the microdisk parameters. Hence, the microdisk parameters can be obtained with very high

accuracy (see Sect. 3.4.1).

The dependence of the resonance locations on the variations of Rres, h and nres are shown

in Fig. 2.3. For each of the graphs one of the parameters was varied around its respective

value used in Fig. 2.2, whereas the other two parameters were kept constant at these values.

Increasing the disk thickness h in Fig. 2.3(a) leads to a red shift of the resonances for both

TE and TM polarization. This is caused by the increasing effective slab mode index, which

is used as the effective refractive index of the disk nh in the 2D calculations and results in

a smaller wavelength of the light in the material (∼ λ/nh). For constant Rres and nres as

well as for a constant mode number m this can be compensated only by a larger free space

resonance wavelength. The polarization dependent slab mode dispersion leads to a significant

difference of the slope for TE and TM polarization. Linearized around the initial disk pa-

rameters the slope is ∆λ/∆h = 0.131(0.208) for TE(TM) polarization. For an estimation of
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the relative impact on the resonance position a realistic uncertainty of the disk thickness of

about 10 nm is assumed, which leads to a wavelength uncertainty of the resonance position

of ∆λ = 1.31 nm(2.08 nm) for TE(TM), respectively. The variation of the material refractive

index nres in Fig. 2.3(b) gives qualitatively the same dependence because it also influences

the effective refractive index of the 2D disk in the model. In contrast to the variation in h,

the slope is stronger for the TE polarization: ∆λ/∆nres = 1.000 µm(0.933 µm) for TE(TM).

An uncertainty of ∆nres = 0.001 leads to ∆λ = 1.00 nm(0.93 nm) for TE(TM), respectively.

This uncertainty also covers the refractive index change due to material dispersion of the

fused silica for the investigated wavelength range. According to literature values [Mal65],

∆nmat = ±6 × 10−4 for the central wavelength of λ = 1.55 µm. The material dispersion is

neglected in the calculations but since it is normal (dn/dλ < 0) it would slightly increase the

wavelengths of the low wavelength resonances, whereas it decreases the wavelengths of the

long wavelength resonances. Increasing the radius Rres in Fig. 2.3(c) leads to a red shift of the

resonances as well. This can be understood by the fact that the resonance wavelength in the

resonator material must increase for a mode of a certain azimuthal mode number m, provided

its radial order is kept.5 Due to the constant refractive index, also the free space resonance

wavelength increases. This can be also seen from the relation of Rres and k0 = 2π/λ0 in the

normalized frequency x = k0Rres. The resonance condition [Eq. (2.24)] remains unchanged for

constant x, which means increasing Rres must be compensated by increasing λ0. Also in this

case, the slope is stronger for the TE polarization: ∆λ/∆Rres = 0.071(0.068) for TE(TM).

Again assuming a realistic uncertainty of ∆Rres = 10 nm leads to ∆λ = 0.71 nm(0.68 nm) for

TE(TM), respectively. A comparison shows that changing all three parameters in a realistic

range of values leads to the same order of magnitude of the resonance shift, where the change

of h and nres has a slightly stronger impact than changing Rres.

In the lower row of the graphs in Fig. 2.3 the change of the Q-factors for the first two

radial orders is shown depending on the corresponding parameter variation. For increasing h

and nres the Q-factors increase due to the stronger confinement of the modes. For increasing

Rres the Q-factors decrease, which is not obvious from Eq. (2.24). The explanation must take

into account the calculation of the effective slab mode index (2D disk index nh) in Eq. (2.13),

which depends on the wavelength of the light. An increased λ0 due to a larger Rres leads to

a smaller nh and hence a more weakly confined resonator mode, which results in a smaller

radiation Q-factor.

The advantage of the analytical 2D approximation [in the following referred to as effective

index method (EIM)] is in the fast calculation of resonance wavelengths, which allows for

automatization of the mode identification in measured spectra in dependence of the geometrical

parameters Rres, h and nres. This can be used for the evaluation of the fabrication process, as

well as for design of certain functionality of microdisks, e.g., in terms of the relative distance

5One may imagine a spoke wheel as a pictorial analogue, where the distance between the spokes increases
along the radius of the wheel.
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of certain resonances or adjustable absolute resonance wavelengths. Nevertheless, there is a

lack of information on important characteristics, e.g., the full vectorial field distribution of

different modes, mode volumes, etc., which can be obtained only numerically.

2.1.2 Finite-Element simulation of eigenmodes in a single microdisk

To overcome the limitations of the analytical EIM described above, a Finite-Element-Method

(FEM) was used to calculated numerically the eigenmodes of single microdisks. The basic

principles of the FEM6 are [Jin02]:

• Reformulation of the boundary-value problem of a governing differential equation [e.g.,

Eq. (2.8)] in a variational form using either the Rayleigh-Ritz or the Galerkin method

with the help of a trial function.

• Segmentation of the calculation domain into a finite number of elements at which the trial

function is expanded usually in polynomials.7 The elements are usually line segments in

1D, triangles or quadrilaterals in 2D, and tetrahedra or hexahedra in 3D.

• Substitution of the trial function expansion into the variational form together with the

initial-, boundary-, and element-matching conditions leads to an algebraic system of

equations which can be solved for the unknown expansion coefficients. The number of

unknowns (or degrees of freedom) depends on the number of finite elements, the order of

the expansion, the dimensionality of the calculation domain and the form of the solution,

e.g. scalar or vectorial, and can be in the range of a few hundreds for scalar 1D problems

to hundreds of millions for vectorial 3D problems.

• The found solution for the trial function represents an approximation to the solution of

the differential equation.

To address especially the last three points the FEM software Comsol8 was used with the

scripting interface to Matlab9, which allows for flexible control, e.g., geometry parameter

and mode number scans. The governing equation, which has to be solved, is the vector

wave equation (2.8). If we assume only nonmagnetic materials for numerical reasons it is

advantageous to solve the vector wave equation for the magnetic field H, since it is continuous

across all interfaces. Using the same procedure as described in Sect. 2.1 for Eq. (2.2), one

obtains

∇×

ϵ̂−1∇×H(r, ω)


− k2

0H(r, ω) = 0, (2.27)

where in general ϵ̂−1 = ϵ̂−1(r, ω) is the inverse relative permittivity tensor. The boundary

conditions (assuming a calculation domain terminated by perfect conducting electric walls)

6Here the variational formulation and solution of the boundary value problem in the weak sense are considered.
7Other ansatz functions are possible, too.
8http://www.comsol.com/
9http://www.mathworks.com/
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are

n̂×

ϵ̂−1∇×H(r, ω)


= 0, H(r, ω) · n̂ = 0 on ∂V, (2.28)

Here V is the Volume of the calculation domain, ∂V denotes the surface enclosing V , and n̂

is the outward pointing surface normal. The solutions of Eq. (2.27) using the FEM procedure

described here10 will be contaminated by a lot of spurious solutions [Kon77, Dav82], which do

not fulfill the divergence relation ∇ ·H = 0. As discussed in Ref. [Jin02] they occur due to

the nature of the variational formulation of the vector wave equation. The trial function used

to formulate the variational functional must be twice differentiable. The expansion functions

used in the FEM to approximate the trial function are forced to be continuous, but their

derivatives do not have to be continuous (weak solution). To overcome this problem, the

functional can be modified by explicitly imposing the condition of a divergence free solution

[Kos84] using a penalty method [Lei68, Hop81]. As a result, Eq. (2.27) needs to be modified

by a penalty term (see Appendix B.2.1)

∇×

ϵ̂−1∇×H(r, ω)


− α∇ [∇ ·H(r, ω)]− k2

0H(r, ω) = 0 in V. (2.29)

As discussed in Ref. [Jin02], the penalty term may not eliminate the divergence of the solution

completely, but reduces it substantially. Also the influence on the accuracy of the solution can

be neglected for nonmagnetic materials. The parameter α sets the strength of the divergence

condition and, in general, can be used to find a good balance between suppression of spurious

solutions and accuracy of the solution.

The variational functional form of Eq. (2.29) can be obtained by taking the inner product

⟨a,b⟩ =


V

(b∗ · a) dV, (2.30)

of both sides with the test function (or test magnetic field) H̃ [the dependence on (r, ω) is

omitted] and leads to (see Appendix B.2.1)

F (H) =


V


∇× H̃∗ · ϵ̂−1∇×H


+ α


∇ · H̃∗∇ ·H

− k2
0H̃

∗H

dV. (2.31)

It should be noted here, that the solution of Eq. (2.29) corresponds to the minimum of the

functional (2.31) [∂F (H) = 0 and ∂(∂F (H)) > 0] only for real ϵ (lossless media) and homo-

geneous boundary conditions. A general formulation of the variational principle applicable

to lossy and/or anisotropic media is based on an adjusted definition of the inner product

10Only scalar basis functions (node-based elements) for the expansion were used, although Comsol allows for
the use of vector basis functions (edge-based element), which are better suited for representation of electric
and magnetic fields and inherently avoid the mentioned spurious solutions [Jin02]. Nevertheless, the results
using the described approach are satisfactory.
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[Eq. (2.30)] and can be found in Ref. [Jin02]. However, the obtained system will be identical

to Eq. (2.31). The terms in the integrand of Eq. (2.31) are the three weak terms required

for definition of the corresponding FEM model in Comsol (or any other partial differential

equation solver allowing a weak form representation) [Oxb07].

In considering only axisymmetric resonators (this involves the most common microresonator

shapes like disks, spheres, toroids), the weak terms can be given explicitly. The system is

reduced to a 2D problem in the (r, z)-plane [see Fig. 2.1], where the relative permittivity tensor

reduces to the diagonal entries ϵ̂ = diag(ϵr, ϵφ, ϵz).
11 The magnetic field can be expressed as

H(r) =

Hr(r, z), iHφ(r, z), Hz(r, z)


eimφ. (2.32)

The imaginary unit has been introduced to the azimuthal component to allow all following

expressions to be real valued containing the real amplitudes (Hr, Hφ, Hz), which have a com-

mon phase dependence of eimφ. A detailed derivation can be found in Ref. [Oxb07] or see

Appendix B.2.2.

The particular geometry of WGM microresonators always leads to electromagnetic waves

radiated from the microresonator and hence a finite radiation Q-factor. The perfect conducting

walls used to truncate the calculation domain therefore will always cause reflections that

influence the accuracy of the solution, especially if one is interested in the calculation of the

radiation Q-factor. To solve this shortcoming, one can insert a perfectly matched layer (PML)

[Ber94] between the outer layer and the boundary of the calculation domain. The PMLs allow

for absorption of an incident plane wave without reflection for all frequencies, polarizations

and angles of incidence due to the introduction of additional degrees of freedom to Maxwell’s

equations. In a simple picture its function can be described by an impedance matched inner

boundary to avoid reflection of an incident wave and an increasing absorption towards the outer

boundary of the calculation domain to decrease the amplitude of the wave significantly before

hitting the perfect conducting outer boundary. An interpretation of the PML is a coordinate

stretching in the frequency domain [Che94] with independent stretch factors in each coordinate

direction as the additional degrees of freedom. From a different point of view the PML can

be also interpreted as anisotropic absorber [Sac95] as a kind of special material with modified

permittivity and permeability tensors. Following this approach, in cylindrical coordinates

one can write for the axisymmetric restriction [Gre99] (the corresponding expression for the

permeability can be obtained by replacing ϵ̂ with µ̂)

ˆ̃ϵ = ϵ̂Λ̂ =

ϵr
r̃
r

sz

sr
0 0

0 ϵφ
r
r̃
szsr 0

0 0 ϵz
r̃
r

sr

sz

 , (2.33)

11Due to the axial symmetry ϵr = ϵφ must apply, but with respect to the formulation of perfectly matched
layers (PMLs) below, the different notations are preserved.
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with the modified radius

r̃ =

r 0 ≤ r ≤ r1,

r − iδPML
(r−r1)3

3h2
PML

r > r1,
(2.34)

and the additional stretching parameters

sr =

1 0 ≤ r ≤ r1,

1− iδPML


r−r1

hPML

2

r > r1,
(2.35)

sz =


1− iδPML


z1−z
hPML

2

z < z1,

1 z1 ≤ z ≤ z2,

1− iδPML


z−z2

hPML

2

z > z2.

(2.36)

Here r1, z1 and z2 denote the locations of the air to PML interfaces and hPML is the thickness

of the PML layer12 [see Fig. 2.4(a)]. The real parameter δPML is the growth factor of the

attenuation towards the outer boundary. In continuous space the interface to the PML is

reflectionless, whereas the discretization of the spatial domain leads to spurious reflections

depending on δPML. Therefore, this parameter has to be optimized for low reflection (small

δPML) but strong enough attenuation (large δPML) in the PML, depending on the discretization

and PML thickness. Although, only nonmagnetic materials are considered, the implementation

of the PML requires modifications of the penalty term α[∇·(ˆ̃µH̃∗)][∇·(ˆ̃µH)] and the temporal

weak term k2
0
ˆ̃µH̃∗H in Eq. (2.31) to take into account the variation of µ̂.

In Fig. 2.4(a) the geometry with definition of all subdomains and the refractive index

distribution is shown for the disk parameters from Sect. 2.1.1. The upper half of the plot

shows the real part of the refractive index profile, whereas the lower part shows the imaginary

part of the refractive index.13 One can see a continuous increase of the imaginary part in

the PML region, which is responsible for the absorption of the traveling waves towards the

outer boundary. In Fig. 2.4(b) two typical mesh cases (low resolution in the upper half; high

resolution in the lower half) are shown. To allow a proper resolution of the disk geometry a

mesh refinement area was defined, covering the main part of the disk as well as the air in close

vicinity. The mesh element size for the coarse (fine) mesh is usually 0.6λ (λ/6) in the PML

region and λ/10 (λ/30) in the refined disk region. Figs. 2.4(c,d) show the intensity distribution

of a fundamental TE and TM mode. Again, the pictures are split showing the distribution

on a normal scale in the upper half and on a log-scale [log(I/Imax)] in the lower half. One

12In general, the thickness hPML in each of the Eqs. (2.34) to (2.36) can be different, where in the considered
case only a single value was used.

13For the case of disks with vertical sidewalls the problem shows a mirror symmetry along z = 0 that can be
used to truncate the calculation domain and reduce the computational effort. Here the redundancy was used
to present additional information in a more compact form.
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Fig. 2.4: (a) FEM geometry for an axisymmetric microdisk (Rres = 20µm, hres = 1µm, nres = 1.445) showing
the refractive index distribution of the real part (upper half) and imaginary part (lower half). (b) Two mesh
cases used for FEM calculations. The coarse mesh (upper half) has an element size of 0.6λ (λ/10) in the PML
region (refined disk region). The fine mesh (lower half) has an element size of λ/6 (λ/30) in the PML region
(refined disk region) and is not resolved in the picture. In (c) and (d) the intensity profile of a TE and a
TM mode is shown on a normal scale (upper half) and on a log-scale (lower half). When hitting the outer
boundary the intensity is dropped by more than 22 orders of magnitude, which avoids reflections back to the
calculation domain.

can see that the intensity decreases more than 22 orders of magnitude before hitting the outer

boundary, which efficiently reduces reflections back to the calculation domain.

The convergence of the solution was investigated in terms of resonance wavelength and Q-

factor by optimization of the thickness of the PML layer hPML, the PML growth factor δPML,

the penalty term strength α, the mesh resolution as well as the extension of the air domain

between disk and PML (determined by hair and Rair). The optimal values for the given disk

parameters can be summarized to hair = 12 µm, Rair = 26 µm, δPML = 2.5, hPML = 5 µm,

α = 5 and a not too coarse mesh (≥ 105 elements). A detailed discussion of the influences of

each of the parameters can be found in the Appendix B.2.3.

In Fig. 2.5 the resonances calculated with the FEM are compared to the results of the

analytical EIM for the first three radial mode orders. The resonances from the analytical EIM

calculation are always at slightly larger wavelengths, which is caused by the overestimation

of the effective refractive index of the slab mode in comparison to the real mode profile.14

This discrepancy gets stronger for higher order radial modes as the mode profile deviates

significantly from a fundamental slab mode (see Fig. 2.6). By reducing nres in the EIM

the calculated resonances can be shifted towards the resonances obtained by the FEM. The

maximum deviation of about ∆λ = 3.8 nm can be compensated by ∆nres = 0.0047 which

corresponds to 0.3 % for both parameters. The radiation Q-factor obtained from the FEM

calculations is five times larger than the value from the EIM for all resonances. Nevertheless,

the analytical EIM provides a fast method to get an estimate of the correct order of magnitude

for the Q-factor and the resonance wavelengths of the microdisks.

14As mentioned in Sect. 2.1.1, the found resonance frequencies from the analytical real eigenvalue problem
(not shown here) coincide almost perfectly with the FEM results but no information about the radiation
Q-factor can be obtained.
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Fig. 2.5: Characteristics of microdisk resonances calculated by FEM with the disk parameters Rres = 20µm,
hres = 1 µm, and nres = 1.445. In (a) the resonance wavelengths and Q-factors are compared to analytical
EIM calculations. The deviation in the resonance wavelengths increases with increasing radial order according
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signs from left to right in each group correspond to nres = 1.4413, 1.4431, 1.445). From the FEM one can
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microdisk resonances.

From the calculated field distributions further information on the microdisk modes can be

obtained, which are the mode volume (according to [Sri06])

Vmode =


V

ϵ̂(r)|E(r)|2dV

max

ϵ̂(r)|E(r)|2

 , (2.37)

with the integration over the modes bright spot (corresponding to the refined mesh region in

Fig. 2.4) and the electromagnetic energy

U =
1

2


V


ϵ0|E(r)|2 +

1

µ0

|B(r)|2

dV, (2.38)

stored in the resonator. In Fig. 2.5(b) Vmode and the energy confinement ratio Ures/Uall (Ures

is the energy in the disk, Uall is the energy in the disk and the air layer) is plotted. The mode

volume is smallest for the fundamental radial mode orders and increase with the resonance

wavelength (for fixed disk parameters). The TE modes show a slightly smaller mode volume

than the TM modes for the same radial order. Normalization to the cubic wavelength inside the

material results in Vmode = 85 to 100 (λ/n)3 for the first radial order. A significant difference

between TE and TM modes can be seen in the stored energy inside the disk indicating a

stronger confinement of the TE modes.

A comparison of the field and intensity distribution for the first two radial orders of TE

and TM modes is shown in Fig. 2.6. For the TE modes the intensity shows a discontinuity

across the disk sidewall corresponding to the main field component in radial direction. For the

TM modes the discontinuity is across the top and bottom surfaces according to the main field

component in axial (z) direction. In contrast to the assumptions in the analytical EIM the
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Fig. 2.6: Intensity and field distributions of the microdisk modes (a) TE1,101, (b) TE2,95, (c) TM1,99 and (d)
TM2,92 obtained from FEM calculation. The disk parameters are Rres = 20 µm, hres = 1 µm, and nres = 1.445.
The main field component of each of the modes is highlighted by the red frame. The other field components
are approximately one order of magnitude smaller but, in contrast to the assumptions of the analytical EIM
in Sec. 2.1.1, not zero. Whereas, the TE modes have a strong radial field component making them sensitive to
imperfections of the sidewall of the disk, the TM modes have a strong axial component giving rise to enhanced
sensitivity to roughness along the top and bottom surface of the disk.

field components Eφ and Ez for TE and Er and Eφ for TM are nonzero but approximately one

order of magnitude smaller than the main component. For arbitrarily shaped cross sections the

strength of these field components might be even larger, therefore the general classification of

different mode polarizations is determined by the main field component according to Er > Ez

for TE and Ez > Er for TM. One can also see that for TM modes all but the strongest field

component shows odd symmetry along the z-direction, whereas for the TE mode only the Ez

component has odd symmetry. The comparison of first and second order radial modes shows

a decrease of the maximum intensity for the higher order due to the weaker confinement of

the mode. As pointed out in Ref. [Bor06d] the strong field at the sidewall of the disk for the

TE modes makes them more sensitive to sidewall roughness than the TM modes, whereas the

TM modes with a strong field at the top and bottom interface are sensitive to imperfections

along these interfaces.

2.2 Resonant modes of coupled microdisks

The rigorous theoretical description of the electromagnetic fields and spectral response of

coupled microdisks has been studied by a variety of methods based on the numerical solution

of integral equations [Bor06a, Bor04, Nos07] that allow for an arbitrary shape of the microdisks’

boundary. All the approaches make use of the reduction of the problem to a 2D one with the

help of the effective refractive index method as described in Sect. 2.1.1 for single disks. Caused
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by the almost ideal circular shape and relatively large radius of the microdisks used in this

thesis a simpler approach based on modal expansion can be used. As mentioned in Ref. [CS5],

this approach is similar to multisphere Mie scattering analysis [Mis02] and its application to

the case of high-Q WGMs in coupled spherical microresonators [Miy00, Dey06, CS6, CS7]. In

the limit of high-Q WGMs a single mode approximation further simplifies the problem giving

reliable results for the spectral positions of the resonances, whereas for the fields to appear

correctly the contribution of non-resonant modes needs to be taken into account.

A general formulation of the model and the discussion of both the spectrum and the aspects

of field calculation will be given in the following.

2.2.1 Semi-analytical model for arbitrarily coupled circular disks

The scattering problem of an ensemble of microdisks with adjacent disks close enough to

exchange optical energy due to the overlap of their evanescent fields can be solved in extension

to the single disk case described in Sect. 2.1.1. Introducing an incident, scattered and internal

field in analogy to Eqs. (2.17) - (2.19) one can write for the pth disk of the ensemble

F
(p)
inc (r, rp, ω) =


m

a(p)
m (ω)eimφpJm


n0k0|r− rp|


+


q ̸=p


m

b(q)
m (ω)eimφqH(1)

m


n0k0|r− rq|


,

(2.39)

F (p)
sc (r, rp, ω) =


m

b(p)
m (ω)eimφpH(1)

m


n0k0|r− rp|


, (2.40)

F
(p)
int (r, rp, ω) =


m

d(p)
m (ω)eimφpJm


nhk0|r− rp|


. (2.41)

Again, F denotes the z-component of either the electric (TM) or the magnetic (TE) field

and a
(p)
m (ω), b

(p)
m (ω) and d

(p)
m (ω) are the corresponding field expansion coefficients or modal

amplitudes. The coordinates r and rp are the point of observation and the center of the pth

disk in the global coordinate system, respectively. The angular coordinate φp is measured in

the individual coordinate system of the pth disk centered at rp and has the same orientation for

all disks in the structure (see Fig. 2.7). The main difference to the single disk problem is the

additional term in the expansion of the incident field, which accounts for the scattered fields of

all but the pth disk as contributions to the incident field on the pth disk. In order to apply the

boundary conditions [Eqs. (2.20), (2.21)] at the rim of the pth disk, it is necessary to rewrite

the scattered field in its local coordinate system (xp, yp). To achieve this, the translational

properties of Hankel functions can be used [Bor06a, Abr72]

eimφqH(1)
m


n0k0|r− rp|


=

+∞
n=−∞

H
(1)
n−m


n0k0Rq,p


ei(m−n)θq,pJn


n0k0|r− rp|


einφq , (2.42)
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where Rq,p and θq,p are the radial and azimuthal coordinates of the pth disk in the local

coordinate system of the qth disk. Substituting Eq. (2.42) in Eq. (2.39) the incident field on

the pth disk can be expressed as

F
(p)
inc (r, rp, ω) =


m


a(p)

m (ω) +

q ̸=p


n

b(q)
n (ω)H

(1)
m−n


n0k0Rq,p


ei(n−m)θq,p


× eimφpJm


n0k0|r− rp|


.

(2.43)

Matching the fields of Eqs. (2.40), (2.41), and (2.43) according to Eqs. (2.20) and (2.21), the

relation between the expansion coefficients of the scattered and incident fields can be obtained

b(p)
m (ω) = α(p)

m (ω)

a(p)

m (ω) +

q ̸=p


n

b(q)
n (ω)H

(1)
m−n


n0k0Rq,p


ei(n−m)θq,p


, (2.44)

where α
(p)
m (ω) is the single disk scattering amplitude already introduced in Eq. (2.22). Equa-

tion (2.43) describes a system of linear coupled equations with the unknown mode amplitudes

of the scattered fields b
(p)
m of p = 1, . . . , N coupled disks, which has to be solved for certain

structural parameters (Rp, nh,p, n0, Rq,p, and θq,p) and excitation amplitudes a
(p)
m .

From the characteristics of the Hankel function one can estimate the contribution of different

modes of adjacent disks to the scattering amplitude. The asymptotic form [Abr72] of H
(1)
m (x) ∼

2/πxei(x−mπ/2−π/4) for fixed order m and large arguments |x| → ∞ reveals a decreasing

absolute value |H(1)
m (n0k0Rq,p)| ∼


1/Rq,p with increasing distance of the coupled disks for a

fixed wavelength. To the first approximation this allows to take into account nearest neighbor

coupling only. The asymptotic form for a fixed argument but large order m → ∞ reads as

[Abr72] H
(1)
m (x) ∼ −i


2/πm(ex/(2m))−m, which results in a heavily growing absolute value
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|H(1)
m (n0k0Rq,p)| ∼ (m/e)m for increasing mode orders. This gives the second approximation

of resonant mode coupling, since the order of the Hankel function in Eq. (2.44) is maximized

for the coupling of mode m in one disk to the counterpropagating mode of the same order

n = −m in the other disk. The coupling to nearby mode orders that also give large orders of

the coupling Hankel function can be usually neglected because they do not spectrally overlap

with the resonance at the investigated wavelength [see Fig. 2.2(b)].

Further approximations can be made with the restriction to one-dimensional linear chains

of identical, equidistant coupled microdisks, which fixes Rq,p = 2R + dgap = D and θq,p = π

or θq,p = 0 depending on whether the coupling is to the right or left neighbor in the chain.

An analytical solution can be found by applying a discrete sine Fourier transform, as shown

in Ref. [CS5], resulting in a dispersion relation of15

Gl
m(ω) = [αm(ω)]−1 ± 2H

(1)
2m


n0k0D


cos

 πl

N + 1


= 0. (2.45)

Here, the index l = 1, . . . , N indicates the splitting of the single disk resonance into different

super-modes of the structure according to the number of disks N in the chain. From Eq. (2.45)

one can see that the coupling does not remove the double degeneracy of cw and ccw modes

existing in a single microdisk.

2.2.2 General spectral analysis using resonant mode approximation

For a more general analysis of the spectral behavior of arbitrary coupled disks Eq. (2.44) was

used in the limit of single disk excitation, which means that a
(p)
m = 1 for the excited disk

and a
(q ̸=p)
m = 0 for all others. Furthermore, the resonant mode approximation fixes m to the

mode number of the resonance under consideration. The coupling of all disks in the ensemble

to each other was taken into account. In Fig. 2.8 the calculated spectra for an increasing

number of disks and different arrangements is shown. The disks are assumed to be identical

with the parameters as in Fig. 2.2 (Rp = R = 20 µm, nres,p = nres = 1.445, hp = h = 1 µm)

and a gap size dgap = 300 nm. The calculations are done for the TE1,101 mode with the single

disk resonance at λ = 1.5559 µm. The shown spectral lines correspond to the total scattering

intensities of each disk I
(p)
m = (|b(p)

m |2 + |b(p)
−m|2)/|am|2 with am = a

(p)
m = 1, which for all graphs

in Fig 2.2 are plotted in the same units to allow for comparison among each other. Next to

each of the resonance peaks the corresponding intensity distribution along the coupled disk

structure is plotted on a gray scale (white to black means low to high intensity).

For the line arrangement always the leftmost disk was excited (p = 1) and for an increasing

number of disks in the line an increasing number of peaks appears according to the number

of disks. Only for an odd number of disks (excited at an odd numbered disk) a resonance

15The resulting dispersion relation is similar to the one obtained from a Bloch-mode approach for linear chains
of microresonators [Ste98, Yar99, Möl07].
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Fig. 2.8: Calculated spectral splitting and intensity distributions of the TE1,101 mode for the coupling of an
increasing number of disks [(a) N = 1 to (i) N = 9] in different configurations (1. row: line arrangement,
2. row: square lattice, 3. row: hexagonal lattice, 4. row: ring arrangement) with a gap size of 300 nm. The
spectral lines correspond to the total intensity in a certain disk according to the legend. The intensity scale
(horizontal axis) is in arbitrary units but the same for all plots, so the graphs can be compared relative to each
other. The wavelength (vertical axis) is plotted relative to an arbitrary chosen value, the peak for the single
disk [1. row in (a)] corresponds to the resonance wavelength of the TE1,101 mode at λ = 1.5559 µm. Close
to each of the resonance peaks the corresponding intensity distribution along the coupled disk structure is
plotted on a gray scale (white to black means low to high intensity). In general, the intensity distributions for
the corresponding resonance peaks below and above the single disk resonance are equal [see line arrangement
(b)-(i)], except that the lower wavelengths are the antisymmetric and the larger wavelengths are the symmetric
super-modes. The difference can be recognized from presence or absence of the intensity in the gaps between
the disks [see magnification (b1) and (b2)]. Therefore, the intensity distributions for the square, hexagonal
and ring arrangement are only plotted for half of the peaks. Depending on the symmetry of the structure
standing (e1) or traveling (f1) wave mode patterns appear. In all calculations the TE1,+101 mode in the lowest
leftmost disk was excited (except for the ring arrangement of N=5 disks, where the leftmost lowest disk was
excited).
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peak at the single disk resonance can be observed.16 The intensity distribution of correspond-

ing resonance peaks below and above the single disk resonance are quite similar and differ

only in the intensity in the gaps between the disks. The shorter wavelengths are the anti-

symmetric combinations of the single disk modes showing destructive interference in the gap

[Fig. 2.2(b1)], whereas the longer wavelengths are the symmetric combinations resulting in

constructive interference in the gap [Fig. 2.2(b1)].17 The total splitting of the resonance peaks

(distance between peaks with lowest and longest wavelength) also increases with increasing

number of disks but converges to the finite value for an infinitely long chain. The explicit

value ∆λb = λmax − λmin can be found from Eq. (2.45) with N → ∞ from the two solutions

of [αm(λmax,min)]
−1 = ±2H

(1)
2m(n0k0D). For the used resonance and disk parameters this gives

∆λb = 1.3 nm which corresponds to a frequency bandwidth of ∆νb = 161.1 GHz. One can see

that this value is already reached for the line arrangement of 9 disks [Fig. 2.8(i)] and a further

increase of the number of disks would only increase the number of resonance peaks within this

bandwidth and reduces their mutual distance. If the distance becomes smaller than the single

peak resonance bandwidth the band appears as a continuous one, which rigorously speaking

is true only for N →∞.

An extension of the coupling to two dimensions increases the complexity of the spectra

depending on the symmetry of the structure as well as on the excited disk of this structure.

For the three disk case [Fig. 2.8(c)] in the square arrangement there is no difference to the

spectra of the line structure indicating a negligible diagonal coupling of the disks due to

the large distance.18 In comparison to the 4 coupled disks [Fig. 2.8(d)], the additional one

in the 5 disk arrangement [Fig. 2.8(e)] shows only a weak influence for the given excitation

condition. Both structures have three main resonance peaks showing almost the same intensity

distribution. For the 5 disks another very small peak appears with a significant intensity

located in the additional disk. This small peak would, of course be much stronger, if the

additional disk would be excited. Another example of the influence of the combination of

excitation and symmetry of the structure on the observable resonances are the 7 and 8 disks

cases [Fig. 2.8(g,h)]. The nonsymmetric excitation of the nonsymmetric structure (N=7)

shows more resonance peaks than the symmetric excitation of the more symmetric structure

(N=8). As in the case of the line arrangement the increasing number of disk leads to a stronger

splitting. The total bandwidth is expected to be twice the bandwidth of the line structure

16This effect limits somehow the combinations of spectra for different excitation scenarios that can be shown
within the limited extent of this thesis. Especially, for larger structures the possible number of combinations,
and hence different spectra, increases significantly.

17In Fig. 2.2 the gaps are not resolved well. See Chap. 4 for more details on the difference of symmetric and
antisymmetric super-modes.

18The continuous change of the position of the third disk along the rim of the second disk from the line to
the square arrangement shows a periodic phase change of the scattering field coefficient of the third disk.
Nevertheless, no alteration of the resonance wavelength can be observed. For the coupling of very small
disks a more rigorous model indeed shows an influence of the resonance wavelength and also the Q-factor on
the angle of a kink in a line arrangement [Pis07].
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due to the two orthogonal coupling directions.19

For the coupling of disks on a hexagonal lattice the number of adjacent coupled disks

increases, which drastically increases the number of resonances appearing in the spectra. This

can be seen, e.g., for the cases of 4 disks [Fig. 2.8(d)] and 9 disks [Fig. 2.8(i)] when comparing

to the square arrangement. But also here the symmetry of the structure and of the excitation

has strong influence on the degeneracy of resonances and hence the number of peaks in the

spectra [see symmetric configurations in Fig. 2.8(f) and (g)]. In general, the number of modes

appearing in the spectra of the coupled disks in a square or hexagonal arrangement can be

predicted and classified according to the symmetry of the structure and the excitation with

the methods of group theory applied to photonic crystals [Sak01].

Another interesting configuration for coupled disks is the ring arrangement shown in the

last row of Fig. 2.8. It corresponds to an infinitely long chain of coupled disks with even or odd

periodicity depending on the number of disks. For N = 3 the ring arrangement is identical

with the hexagonal arrangement and for N = 4 this is the case for the square arrangement.

Due to the periodic boundary conditions all the peaks except the ones at the band edge show

the same intensity (expansion coefficient for the excited disk) and the bandwidth already

reaches the N → ∞ limit. The number of visible resonance peaks follows the rules N/2 + 1

for even N and N + 1 for odd N , in agreement with the results in Ref. [Chr07] studying ring

arrangements of disks in detail. The total number of modes which the structures support, will,

in general, be larger due to degeneracy as discussed in Refs. [Chr07, Yan07, Bor06b]. Related

to this, ring arrangements show different characteristics of the mode distributions depending

on whether the number of disks is even or odd. For even N the modes are traveling waves

resulting in a constant intensity along the azimuthal direction in a single disk [see Fig. 2.2(f1)].

Starting with a cw traveling wave in the excited disk it will be coupled to the ccw mode in the

adjacent disk and due to the even number of disks after one round trip along the whole ring it

will be coupled again in the cw direction of the excited disk. In contrast, for odd N the initial

cw mode will be coupled to the ccw mode of the same disk after one round trip along the ring

resulting in a standing wave pattern due to interference of counter propagating modes [see

Fig. 2.2(e1)]. With the same argumentation a constant intensity can be found in the disks

of the line and square arrangements, whereas standing wave patterns can be found for the

hexagonal arrangement [except for certain modes of highly symmetric structures, e.g., N = 7

in Fig. 2.8(g)]. The standing wave and traveling wave mode patterns can be distinguished in

Fig. 2.8 by the contrast of the intensity rings to the white background. The high intensity

values of the traveling waves appear much darker than high intensity values of the standing

waves.

Figure 2.8 gives an overview of a variety of possible configurations and their expected

spectral characteristics as well as mode distributions. They are calculated for identical disks

19This was tested by calculating the spectra for a large number of disks in different structures of up to 9× 9
arrays.
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Fig. 2.9: Dependence of the resonance splitting on the variation of the radius of the second disk (∆R2) for
(a) two coupled disks and (b) three coupled disks (here R2 is the radius of the middle disk). The other disk
parameters are the same as in Fig. 2.8. For each disk the normalized real part of the dominant expansion
coefficient b

(p)
m is plotted from which the mode symmetry at a certain wavelength can be identified by comparing

their sign, respectively. For a radius mismatch ∆R2 = −20 nm (solid cyan line) and ∆R2 = 20 nm (dashed
cyan line) the intensity distributions of the appearing resonances are plotted. It shows that the characteristics
of the intensity distribution are exchanged between symmetric and antisymmetric modes upon an increasing
∆R2.

which might not be the case in the experiment. The model based on Eq. (2.44) can be used

to predict effects of a distorted geometry on the spectrum and mode characteristics since it

depends directly on the geometrical parameters.

According to the results of the parameter tuning in a single disk (Sect. 2.1.1), the variations

of h, nres and Rres show the same effect on the resonance wavelengths, whereas the disk radius is

expected to show the strongest variation along a coupled disk structure due to the fabrication

process (see Sect. 3.1). Therefore, the influence of a varying radius of one of the disks in a two

and three disks structure on the coupling between them was investigated and shown in Fig. 2.9.

Plotting the real part of the dominant expansion coefficient b
(p)
m in each disk, one can infer the

symmetry of the super-modes of the structure. For the two disk case [Fig. 2.9(a)] the ℜ(b(1))

and ℜ(b(2)) of the low wavelength resonance have opposite sign, indicating a phase difference

of π and hence a anti-symmetric mode, whereas for the long wavelength resonance ℜ(b(1)) and

ℜ(b(2)) have equal sign (no phase difference) indicating a symmetric mode. One can also see

that for nonzero radius mismatch the splitting of the resonances is nonsymmetric around the

single disk resonance wavelength. For a mismatch of ∆R2 = −20 nm and ∆R2 = 20 nm the

intensity distribution for the corresponding resonances is shown. Comparing them, one can

see an exchange of the characteristics of the intensity distribution (high or low intensity in a

certain disk) between the symmetric and antisymmetric resonance, whereas the spectral lines

show an anti-crossing. This effect is typical for coupled resonant systems.20

For the case of three coupled disks [Fig. 2.9(a)] similar effects can be observed. Again,

the radius of the second disk was varied, which corresponds to the disk in the center of

20Besides the intensity distribution also other characteristics, e.g., resonance bandwidth exchange between the
two resonance peaks.
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the structure. Comparing the sign of the plotted coefficients ℜ(b(1)), ℜ(b(2)) and ℜ(b(3)) the

symmetry of the appearing modes can be identified also in this case. For the low wavelength

resonance they show altering sign between adjacent disks, corresponding to a phase difference

of π for the antisymmetric mode. For the central resonance the phase difference is π/2 between

adjacent disks, leading to a vanishing field expansion coefficient ℜ(b(2)) for the second disk

at this wavelength. At the long wavelength resonance all coefficients have the same sign,

indicating a symmetric mode. As for the two disks, the splitting between the resonances

is not equidistant except for identical disks. In the three disk case the central resonance is

expected to be at the same wavelength as the single disk resonance. Additionally, the different

spectral distance of symmetric and antisymmetric mode to the central resonance can be used

to identify a radius mismatch (or more generally a resonance mismatch) independent of the

gap size, which is not possible for the two coupled disks.

As seen from the plotted intensity distributions for ∆R2 = −20 nm and ∆R2 = 20 nm the

distribution characteristics are exchanged between symmetric and antisymmetric mode by

changing ∆R2, whereas the distribution of the central resonance remains unchanged.

Besides the resonance mismatch of the individual disks in a coupled structure, the distance

between them is the other important parameter influencing the observable coupling. Due to

the exchange of optical energy via the evanescent fields of the WGMs it is expected that the

coupling will be stronger for a smaller gap distance dgap between the disks. In Fig. 2.10 the

resonance splitting for two coupled disk (parameters as above) as a function of dgap is shown

separately for the normalized intensity of the first (excited) disk [Fig. 2.10(a)] and the second

disk [Fig. 2.10(b)]. For dgap ≥ 2 µm the coupling is negligible and almost all optical energy is

located inside the first disk as can be seen in the additional plot (cyan line and right y-axis)

in Fig. 2.10(a). Decreasing the gap to dgap = 1.3 µm increases the energy in disk two slightly,

but due to the finite line width of the resonances no splitting can be observed, as seen from

the additional line width plot in Fig. 2.10(b).21 Decreasing dgap further leads to a resonance

splitting observable in the intensities of both disks and a homogeneous distribution of the

energy (in both disks half of the energy is located). The resonance splitting measured from

the total intensity of both disks [cyan line in Fig. 2.10(b)] increases exponentially to ∆λ =

1.63 nm for dgap = 0. This corresponds to a maximum splitting of the TE1,101 mode of about

∆ν = 202 GHz.

In Fig. 2.10(c) the wavelength dependence of the coupling of two coupled disks is shown

for the single disk modes investigated so far in Fig. 2.2 and Fig. 2.5. The gap size was fixed

to dgap = 300 nm. Generally, the splitting increases with increasing wavelength according to

the asymptotic behavior of the coupling Hankel term discussed above. Counterintuitively, the

slow decrease of the Hankel function for increasing argument relative to the rapid increase for

increasing mode order (the mode number m increases for modes with shorter wavelength) is

21For comparison of the calculations to the experimental results, the imaginary part of the refractive index of
the disks was adjusted to mimic the observable Q-factor or resonance line width.
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Fig. 2.10: Splitting of the TE1,101 mode for two coupled disks observable in the intensity of the (a) first, excited
and (b) second disk. When the gap size decreases the splitting in the intensity spectrum of each disk increases
and the normalized amount of energy in each of the disks equalizes [as seen from the additional plot with the
right y-axis in (a)]. In (b) the additional plot shows the splitting in the spectrum measured from the combined
intensity of both disks. The dependence of the splitting on the wavelength and mode polarization is shown
in (c) for the first three radial mode orders. The gap was fixed to dgap = 300 nm and the other parameters
are the same as used above (Rres = 20 µm, hres = 1 µm, nres = 1.445). The splitting was measured from
the spectrum of the total intensity of both disks. For the third radial order the splitting obtained from the
individual disk spectra is plotted, too, showing the differences when the splitting and the resonance bandwidth
are comparable.

dominating. To understand this, the asymptotic behavior of the modal scattering coefficient

αm [Eq. (2.22)] has to be considered, especially the nominator, since it is multiplied with the

Hankel term in Eq. (2.45) to solve for the roots of Gl
m. Whereas the dependence of |Jm(x)| for

|x| → ∞ and fixed m is the same as for the |H(1)
m (x)|, their behavior is opposite for fixed argu-

ment x but increasing order m →∞, which therefore cancel upon multiplication. Physically,

one may argue that the decreasing confinement for an increasing resonance wavelength of the

modes inside the disk [see Fig. 2.5(b)] increases the overlapping amount of energy and there-

fore the splitting of the resonances. The same argumentation holds for the different behavior

of TE and TM polarized modes. For the first and second radial mode order the TM modes

show stronger splitting than the TE modes, since they are weaker confined. For higher radial

orders the decreasing Q-factor comes into play, resulting in a saturation or even decrease of

the splitting, in particular for the TM modes [see line for the TM3 mode in Fig. 2.10(c)]. In

this case we are in a regime, where the resonance line width reaches the splitting value, which

compared to Fig. 2.10(a, b) is the region of dgap ≈ 1.2 µm. Here it is of importance how

the splitting is measured, since the intensity in the first disk already shows splitting in two

resonances [Fig. 2.10(a)], whereas for the intensity in the second disk the splitting can not be

resolved [Fig. 2.10(b)]. This difference can also be seen in Fig. 2.10(c) where the separately

measured splitting for the intensities in each disk for the third order radial modes is shown.

Deviations to the measured splitting from the total intensity of both disks are significant only

for the third order modes and very strong for the TM polarization.

Another difference between the TE and TM modes is the amount of increase of the splitting

when increasing the radial mode order. For the TM modes the change of the splitting is very
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small or even zero whereas for the TE modes the splitting increases significantly for higher

radial mode order. This can be explained by the different orientations of the main field

component. The strongest field component for the TE modes is in radial direction (Fig. 2.6),

resulting in a strong dependence of the splitting on the radial mode order due to the decreasing

confinement in the direction of the gap. The decreasing confinement of the main z-component

of the TM modes for increasing radial order does not feel the gap that strongly.

The splitting in the investigated wavelength range for the first radial order is in the range

of ∆λ ≈ 0.6 nm to 0.75 nm (∆ν ≈ 80 GHz to 90 GHz) for TE modes and ∆λ ≈ 0.9 nm to

1.15 nm (∆ν ≈ 125 GHz to 135 GHz) for TM modes (for a fixed gap of dgap = 300 nm).

2.2.3 Accurate field calculations using multiple mode orders22

The above used resonant mode approximation, taking into account only one WGM with a

single mode number m at a certain resonance wavelength and neglecting the coupling to other

(higher or lower order) modes is well-suited for the description of the spectral response of

coupled microdisks [CS5]. However, in this approximation the calculated fields show discon-

tinuities at the disk boundaries also for physically continuous fields (e.g., Bz for TE modes).

This leads to an incorrect representation of the fields in the gap region. For the exact field

calculation it is necessary to take into account all mode numbers m = −mmax, . . . ,mmax, with

mmax, chosen such that convergence of the fields is guaranteed, which usually depends on the

symmetry of the incident field. The incident field has to be reconsidered when dealing with

the coupling of all mode numbers m, because the singular excitation of one WGM (a(p) = 1

and a(q ̸=p) = 0) as used in the resonant mode approximation will fail. In order to match the

experimental conditions of a tapered fiber waveguide excitation (see Sect. 3.2) in a simplest

approximation, a one-dimensional Gaussian distribution with a plane phase perpendicular to

the propagation direction was used. With the center of the Gaussian distribution r0 = (x0, y0)

and the width w (corresponding to the width of the mode of the tapered fiber with the effective

mode index neff), the global exciting field can be written as

F glob
inc = Aeineffk[(x−x0)cosδ−(y−y0)sinδ]e−[(x−x0)sinδ+(y−y0)cosδ]2/w2

. (2.46)

Here A is the amplitude (without loss of generality A = 1 is set) and δ is the angle between

the tapered fiber axis and the x axis of the global coordinate system (for geometrical relations

see Fig. 2.7). The nonzero expansion coefficients of the incident field a
(p)
m used in Eq. (2.44)

can be obtained from the expansion of the global incident field in terms of the local incident

field at the boundary Ω(p) of the pth disk

F glob
inc


Ω(p) =


m

a(p)
m eimφJm


n0k0Rp


= F

(p)
inc


Ω(p) . (2.47)

22The main results of this section can be found in Ref. [CS2].
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By multiplication of Eq. (2.47) with the complex conjugate e−imφpJ∗m(n0k0Rp) and integration

along the φ-coordinate, the a
(p)
m can be calculated to

a(p)
m =

1

2π|Jm(n0kRp)|2

 2π

0

F glob
inc J∗m(n0kRp)e

−imφdφ. (2.48)

For the particular case of the Gaussian distribution [Eq. (2.46)] Eq. (2.48) gives

a(p)
m =

J∗m(n0kRp)

2π|Jm(n0kRp)|2

 2π

0


e−imφeineffk[(x

(p)
gl −x0)cosδ−(y

(p)
gl −y0)sinδ]

×e−[(x
(p)
gl −x0)sinδ+(y

(p)
gl −y0)cosδ]2/w2


dφ,

(2.49)

with the points of the boundary of the pth disk in the global coordinate system (depending

on the integration variable φ)


x

(p)
gl , y

(p)
gl


=


xp + Rp cos φ, yp + Rp sin φ


. (2.50)

The integral is solved numerically and the accuracy was checked by the convergence of the

local incident field calculated from the obtained a
(p)
m coefficients to the global incident field.

Depending on the orientation of the Gaussian distribution it is preferable to take into account

the directly excited disk(s) only, since the distance to the other disks is usually so large that

the approximation a
(p)
m ≈ 0 holds. The total field distribution of the coupled disk structure

can then be calculated with the obtained expansion coefficients by solving Eq. (2.44) and their

substitution into the field expansions [Eqs. (2.39) - (2.41)].

To test the approach the spectrum and intensity distribution of the TE1,35 mode for a tri-

angular arrangement of three coupled disks [compare to hexagonal arrangement in Fig. 2.8(c)]

with R = 7.5 µm, nres = 1.445, h = 1 µm and dgap = 400 nm was calculated.23 For compar-

ison, a full 3D finite difference time domain (FDTD) calculation of the same structure was

performed, but including a tapered fiber as exciting waveguide.24 In the FDTD the spectral

response was obtained by a short pulse excitation of the structure spectrally covering the

wavelength range of interest. The temporal evolution of the electromagnetic field at a point

close to the boundary inside a disk was recorded until almost all energy was lost due to the

finite radiation Q-factor. A Fourier transformation then gives the spectral response of the

structure. For the field calculations a continuous wave excitation through the tapered fiber

was performed at a resonant wavelength found from the spectra. Due to the dimensions of the

calculation domain for this particular structure of 35 µm×35 µm×2 µm and a high resolution

of about 30 nm to resolve the narrow gaps, the FDTD simulations are very time consum-

23The small radius was chosen to allow for the investigation of the resulting structure by rigorous numerical
methods.

24The FDTD calculations were done by Dr. Christoph Etrich from the Institute of Condensed Matter Theory
and Solid State Optics at the Friedrich-Schiller-Universität Jena.
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ing, which allows to compare only a few cases. As in the FEM calculations (Sect. 2.1.2) the

calculation domain was enclosed by PMLs to avoid back reflections of outgoing waves.

In Fig. 2.11(a) the spectra calculated with the analytical model in the resonant approxima-

tion, the full model and from the FDTD are compared. In the resonant approximation four

peaks are observed, which are symmetric to the single disk resonance (as discussed above).

Since the b35 coefficient of the first disk is excited, it differs from the ones in the second and

third disk. In this configuration the excitation is symmetric with respect to the positions of

disk 2 and disk 3, so their coefficients coincide. Using the full model25 and the excitation

through the Gaussian distribution the symmetry is broken, hence the spectra of the b35 coeffi-

cients for all disks can be distinguished. In comparison the resonances are slightly redshifted

and no longer symmetric with respect to the single disk resonance. Nevertheless, also four

resonance peaks can be identified. The spectrum obtained from the FDTD is shifted slightly

to lower wavelengths and shows less splitting. Since field monitors were placed in disk 1 and

disk 2 only, two spectral lines are plotted. Also here four peaks can be identified. For the

first resonance (marked by the two black arrows) the intensity distribution was plotted in

Fig. 2.11(b) for the modal expansion and in Fig. 2.11(c) for the FDTD (snapshot of a continu-

ous wave excitation), which shows good agreement. To point out the importance of using the

full modal expansion model for the correct calculation of the fields, the normalized magnetic

field across the boundaries between the first and second disk [marked by the dashed line in

Fig. 2.11(b)] was plotted in Fig. 2.11(d) for the resonant approximation and the full model.

The resonant approximation results in unphysical discontinuities across the boundaries of the

disks, whereas the field calculated with the full model shows a smooth transition. Here, one

has to note that the calculated fields from the modal expansion sometimes show spurious dis-

tributions of very high order radial modes. This happens because the model does not take into

account additional losses present in the real system, which mainly affect these higher order

modes (e.g., stronger influence of surface inhomogeneities due to less confinement). Usually,

this is not a problem, since the effect occurs only if the higher order mode spectrally overlaps

with the mode under investigation.

One also should point out that the described model of modal expansion is a good compro-

mise between reasonable field distributions of also large coupled disk ensembles and relatively

fast and flexible calculations, compared to rigorous FDTD or also FEM calculations. Al-

though, the incident field distribution is well described by the artificial approximation of the

excitation with a Gaussian distribution, it does not take into account any influences of the

real exciting tapered fiber. Therefore, it is not possible to extract any transmission and re-

flection signals comparable to the experimental situation (see Chap. 3). A consideration of

the tapered fiber as a waveguide (with boundaries) in the calculation domain would solve this

issue, but would lead to additional expansion of the waveguide field and boundary conditions

25mmax = 45 was used; the relative error of the incident field expansion at the boundary of disk 1 is 10−7.
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Fig. 2.11: Comparison of the spectral and field characteristics of the TE1,35 mode of three coupled disks
in a triangular arrangement obtained from different methods. The single disk parameters are R = 7.5 µm,
nres = 1.445, h = 1µm and the gap between the disks is dgap = 400 nm. In (a) from top to bottom the
spectra are shown for the modal expansion in resonant approximation, using the full model with mmax = 45,
and from a rigorous 3D FDTD simulation. Although the spectra differ, the expected four peaks are observed
in each graph. For the first resonance peak [black arrows in (a)] the intensity distribution is plotted for (b)
the full modal expansion and (c) the FDTD, which show good agreement. In (d) the field Bz across the gap
between disk 1 and disk 2 [dashed line in (b)] is plotted. The unphysical discontinuities from the resonant
approximation are avoided in the full model.

(overlap integrals). This would make the calculation much more complex. For comparison, a

more rigorous model for smaller ring resonators including waveguide excitation is presented

in Ref. [Ham10].

2.3 Coupled mode theory for an arbitrary number of disks

Taking into account the experimental situation of pumping and collecting of light through a

waveguide coupled to one of the microdisks of a whole ensemble, a coupled mode theory (CMT)

approach [Hau84] can be used. The approach uses a modal expansion of the electric field to

obtain the temporal dynamics of the mode amplitudes and is widely used for the description

of the characteristics of optical microresonators.26 A derivation for particular cases, e.g.,

nonlinear effects in single resonators or Rayleigh scattering can be found in Refs. [Gor00,

Joh06, Joh09], whereas the basic concept is more general and can be adapted from other

discrete coupled systems, like optical waveguide arrays [Per03].

The key point is to take into account additional polarization terms

P(r, ω) = ϵ0[ϵ(r, ω)− 1]E(r, ω) + ∆P(r, ω), (2.51)

26See references given in the introduction (Chap. 1).
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which results in a modified wave equation (2.9) (with the assumption of a piecewise homoge-

neous medium)

∇2E(r, ω) +
ω2

c2
ϵ(r, ω)E(r, ω) = −µ0ω

2∆P(r, ω). (2.52)

Assuming that ∆P(r, ω) is small compared to the linear polarization, the problem can be

solved using perturbation theory. Therefore, the electric field can be expanded into the eigen-

modes of the unperturbed system

E(r, ω) =

m

dm(ω)Em(r, ωm), (2.53)

with the modal amplitudes dm(ω).27 Substitution of Eq. (2.53) into Eq. (2.52) gives


m

dm(ω)
ω2

m

c2
ϵ(r, ωm)


− ω2

c2
ϵ(r, ω)


m

dm(ω)Em(r, ωm) = −µ0ω
2∆P(r, ω), (2.54)

where we used that the eigenfunctions Em(r, ωm) are solutions of the homogeneous wave

equation. Using the orthogonality of eigenmodes [Joa95] one can find an expression for the

mode amplitude dm(ω) by multiplying Eq. (2.54) with the complex conjugate E∗
m(r, ωm) and

integration over the entire volume

− (ω2
m + ω2)dm(ω) = −µ0ω

2c2

 
E∗

m(r, ωm)∆P(r, ω)

dr 

ϵ(r, ωm)
Em(r, ωm)

2dr . (2.55)

Here we also assumed a spectrally narrow excitation28 ω = ω0 + ∆ω with ω0 ≫ ∆ω and a

weakly dispersive material, so that ϵ(r, ω) ≈ ϵ(r, ωm) for the second term in Eq. (2.54). Upon

back transformation to the time domain [according to Eq. (2.5)] one obtains

d2

dt2
[dm(t)] + ω2

mdm(t) = −
d2

dt2

 
E∗

m(r, ωm)∆P(r, t)

dr

ϵ0

 
ϵ(r, ωm)

Em(r, ωm)
2dr . (2.56)

Using the slowly varying amplitude approximation by separating the fast phase term of the

carrier frequency ω0 according to dm(t) = d̄m(t)e−iω0t [and analog for ∆P (r, t)], one can

evaluate the second order time derivative and keeping only first order terms to obtain

d

dt


d̄m(t)


=

i

2ω0


ω2

0 − ω2
m


d̄m(t) +

ω2
0

 
E∗

m(r, ωm)∆P̄(r, t)

dr

ϵ0

 
ϵ(r, ωm)

Em(r, ωm)
2dr


. (2.57)

Since ω0 ≈ ωm according to the assumption of a spectrally narrow excitation, Eq. (2.57) can

27The naming of the mode amplitude is chosen to underline the parallels to the above described 2D model for
the calculation of the resonances of the structure (Sect. 2.1.1). In a 2D approximation the eigenmodes may
have the form as in Eq. (2.19).

28In the experiment only continuous wave laser radiation was used, so this assumption is valid.
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be simplified further using ω2
0 − ω2

m ≈ 2ω0(ω0 − ωm), resulting in the final equation

d

dt


d̄m(t)


= i(ω0 − ωm)d̄m(t) +

iω0

 
E∗

m(r, ωm)∆P̄(r, t)

dr

2ϵ0

 
ϵ(r, ωm)

Em(r, ωm)
2dr . (2.58)

In the following several effects are taken into account by specification of the perturbative

polarization term. One can distinguish between local perturbations describing effects of a single

microresonator (e.g., intrinsic losses ∆P̄loss and scattering induced modal coupling ∆P̄mc) and

remote influences (e.g., due to external coupling for excitation ∆P̄ext or coupling of several

microresonators ∆P̄
(p)
m ).

2.3.1 Single mode traveling wave resonator

To obtain the coupled mode equation for a single microresonator considering only a single

mode and the excitation from an external waveguide we introduce two polarization terms, one

of which is

∆P̄loss(r, t) = ϵ0[i∆ϵ′′(ωm)]d̄m(t)Em(r, ωm), (2.59)

to take into account the intrinsic losses with ∆ϵ′′(ωm) being the nonzero imaginary part of a

refractive index perturbation ∆ϵ(r, ωm) = ∆ϵ′(r, ωm) + i∆ϵ′′(ωm), usually not depending on

the spatial coordinate. The other polarization term for the external coupling reads as

∆P̄ext(r, t) = ϵ0[ϵ̂(r, ω0)−∆ϵ̂m(r, ω0)]āin(t)Ein(r, ω0). (2.60)

Here ϵ̂(r, ω0) is the dielectric function of the whole structure (microresonator + excitation

waveguide) and ∆ϵ̂(r, ω0) is the change the microresonator introduces to the dielectric constant

compared to its absence. Here we also assume that the exciting field can be expanded into

eigenmodes Ein(r, ω0) and is described by a single, slowly varying mode amplitude āin(t). This

can be done by considering a basis for the expansion of the electric field including resonator

and waveguide modes as discussed in Ref. [Joh09]. An example for the particular case of

a tapered optical fiber coupled to a spherical microresonator can be found in Ref. [Lit99].

Substitution of Eqs. (2.59) and (2.60) into Eq. (2.58) leads to

d

dt


d̄m(t)


=


i(ω0 − ωm)− γ0

2


d̄m(t) + iκāin(t), (2.61)

with

γ0 = ω0

 
∆ϵ′′(ωm)

Em(r, ωm)
2dr 

ϵ(r, ωm)
Em(r, ωm)

2dr , (2.62)

κ =
ω0

2

 
[ϵ̂(r, ω0)−∆ϵ̂m(r, ω0)]E

∗
m(r, ωm)Ein(r, ω0)


dr 

ϵ(r, ωm)
Em(r, ωm)

2dr . (2.63)
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Since the exciting waveguide offers an additional loss channel for the field in the resonator,

one has to introduce an energy loss rate γext in analogy to the intrinsic loss. From energy

conservation and time reversal symmetry one can find the relation κ =
√

γext [Hau84]. If we

substitute Γ0 = γ0/2, Γext = γext/2 and ∆ωm = ω0 − ωm in Eq. (2.61) we get

d

dt


d̄m(t)


=


i∆ωm − (Γ0 + Γext)


d̄m(t) + i


2Γextāin(t). (2.64)

This is the standard single resonator mode equation widely used in literature [Hau84, Bor05,

Kip02, Lin08, Gor99]. The field normalization is usually chosen such that |d̄m|2 describes the

energy stored in the mth mode of the resonator, whereas |āin|2 is the input power carried by

the exciting waveguide. Due to the continuous wave excitation, we are mainly interested in

the steady state response of the microresonator obtained by setting the time derivative to zero

d̄m =
−i
√

2Γextāin

i∆ωm − (Γ0 + Γext)
. (2.65)

The transmitted amplitude through the coupling waveguide can be written as ātrans(t) =

āin(t) + i
√

2Γextd̄m(t), which for steady state gives the transmissivity

T (∆ωm) =

 ātrans

āin

2 =

1 +
i
√

2Γextd̄m

āin

2 =
(∆ωm)2 + (Γext − Γ0)

2

(∆ωm)2 + (Γext + Γ0)2
, (2.66)

which describes a Lorentzian dip at ∆ωm = 0 with the full-width at half-maximum (FWHM)

of 2(Γ0 + Γext).

2.3.2 Modal coupling due to Rayleigh scattering

As already mentioned above, due to the rotational symmetry of an ideal WGR there exist

two counterpropagating modes, degenerated in frequency. The direction of light propagation

in the coupling waveguide determines which mode gets excited. Since the early days of mi-

croresonator studies [Wei95] a splitting of the resonances was observed due to coupling of the

counterpropagating modes, which can be attributed to Rayleigh scattering induced by bulk

and surface inhomogeneities of the resonator material. According to Refs. [Gor00, Joh09], this

effect can be taken into account in the CMT by an additional polarization term

∆P̄mc(r, t) = ϵ0δϵ(r, ωm)

d̄+m(t)Em(r, ωm) + d̄−m(t)E−m(r, ωm)


, (2.67)

where the two counterpropagating modes d̄±m are considered. To underline the meaning of

the opposite sign they are also denoted as d̄cw, ccw for clockwise (cw) and counterclockwise

(ccw) propagation. The inhomogeneities are described by variations of the dielectric function

δϵ(r, ωm). Substituting Eq. (2.67) into Eq. (2.58) (two equations for the +m and -m mode)
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one obtains two possible contributions of the form

γ±m,±m = ω0

 
δϵ(ωm)

E±m(r, ωm)
2dr 

ϵ(r, ωm)
Em(r, ωm)

2dr (2.68)

γ±m,∓m = ω0

 
δϵ(ωm)E∗

±m(r, ωm)E∓m(r, ωm)

dr 

ϵ(r, ωm)
Em(r, ωm)

2dr , (2.69)

related to the four coupling combinations ±m → ±m or ±m → ∓m. In most cases the main

contribution to δϵ comes in the form of surface roughness, which to the first approximation is

zero on average along the surface. Therefore, the coefficients γ±m,±m in Eq. (2.68) vanish on

average with the physical meaning that the coherent forward scattering does not influence the

mode amplitudes, e.g., induces no additional shift of the resonances. With the assumption that

the induced modal coupling in both directions is equal and by substitution of Γmc = γ±m,∓m/2

the mode dynamics reads as

d

dt


d̄+m(t)


=


i∆ωm − (Γ0 + Γext)


d̄+m(t) + iΓmcd̄−m(t) + i


2Γextāin(t), (2.70)

d

dt


d̄−m(t)


=


i∆ωm − (Γ0 + Γext)


d̄−m(t) + iΓmcd̄+m(t). (2.71)

Here we also assume that only the +m mode is excited. The steady state solutions can be

found in the form of

d̄+m =
−i
√

2Γextāin


i∆ωm − (Γ0 + Γext)


i∆ωm − (Γ0 + Γext)

2
+ Γ2

mc

, (2.72)

d̄−m =
−Γmc

√
2Γextāin

i∆ωm − (Γ0 + Γext)
2

+ Γ2
mc

. (2.73)

The transmissivity and reflectivity can be found to be

T (∆ωm) =

 (i∆ωm − Γ0)
2 − Γ2

ext + Γ2
mc

i(∆ωm + Γmc)− (Γ0 + Γext)


i(∆ωm − Γmc)− (Γ0 + Γext)


2

, (2.74)

R(∆ωm) =

 −i2ΓextΓmc
i(∆ωm + Γmc)− (Γ0 + Γext)


i(∆ωm − Γmc)− (Γ0 + Γext)


2

, (2.75)

which obviously is a resonance doublet with dips at ∆ωm = ±Γmc. The reflectivity is defined

in analogy as the ratio between the out-coupled amplitude from the resonator in backward

direction and the incoming amplitude

R(∆ωm) =

 ārefl

āin

2 =

i√2Γextd̄−m

āin

2 . (2.76)
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The resonance splitting is only observable if the splitting Γmc is larger than the single resonance

bandwidth determined again by 2(Γ0 + Γext).

2.3.3 Modes in coupled resonator structures

The coupling of modes of different microresonators can be introduced into the CMT in analogy

to the coupling to an external waveguide for excitation. The perturbative polarization term

induced in the pth microresonator for an ensemble of N coupled cavities reads as

∆P̄(p)
m (r, t) = ϵ0

N
q=1,p ̸=q

[ϵ̂(r, ωm)−∆ϵ̂(p)(r, ωm)]d̄
(q)
−m(t)E

(q)
−m(r, ωm). (2.77)

where ϵ̂(r, ωm) is the dielectric function of the whole coupled resonator structure and ∆ϵ̂(p)(r, ωm)

is the change the pth cavity introduces to the dielectric constant compared to its absence. If

we again assume that the coupling is uni-directional, which is justified if the coupling regions

do not introduce additional scattering, we obtain for the cw and ccw mode in each resonator

d

dt


d̄

(p)
+m(t)


= ∆Ω(p)d̄

(p)
+m(t) + iΓmcd̄

(p)
−m(t) + i

N
q=1,p ̸=q

Γqpd̄
(q)
−m(t) + i


2Γ

(p)
extāin(t), (2.78)

d

dt


d̄

(p)
−m(t)


= ∆Ω(p)d̄

(p)
−m(t) + iΓmcd̄

(p)
+m(t) + i

N
q=1,p ̸=q

Γqpd̄
(q)
+m(t), (2.79)

with the abbreviation ∆Ω(p) = i∆ω
(p)
m − (Γ0 +Γ

(p)
ext) and the inter-resonator coupling coefficient

(equal for cw → ccw and vice versa)

Γqp =
γqp

2
=

ω0

2

 
[ϵ̂(r, ωm)−∆ϵ̂(p)(r, ωm)]E

∗(p)
m (r, ωm)E

(q)
−m(r, ωm)


dr 

ϵ(r, ωm)
E(p)

m (r, ωm)
2dr . (2.80)

Here we allow that each of the coupled microresonator modes has its unique resonance fre-

quency and hence a slightly different mismatch ∆ω
(p)
m . Also the external coupling rate may be

different for each resonator, since usually only one of them is excited. The intrinsic loss rate

Γ0 and the intra-resonator coupling Γmc are assumed to be equal for the investigated samples,

since material properties as well as fabrication induced inhomogeneities should not differ much

between the resonators of one sample.

The steady state transmissivity and reflectivity through the exciting waveguide can be

calculated in analogy to the relations in the two last sections by solving the linear system

of equations (2.78) and (2.79) for the mode amplitudes d̄
(p)
±m of the excited resonator. To

point out the influence of the inter-resonator coupling the system was solved for two coupled

identical resonators with one of them externally excited. The transmissivity can be found to
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Fig. 2.12: Illustration of the influence of the different coupling and loss rates on the resonance spectrum. (a)
Schematic of the coupled disk sample with excitation waveguide. (b) Transmissivity according to Eq. (2.81) for
variable Γext as a function of detuning ∆ωm. The other parameters are Γ0 = 0.01, Γmc = 0.05, and Γ12 = 0.5.

be

T =

1 +
2Γext


(i∆ωm − Γ0)


(i∆ωm − Γ0)

2 + Γ2
mc + Γ2

12


− Γext


(i∆ωm − Γ0)

2 + Γ2
mc


i(∆ωm ± Γmc)− Γ0


i(∆ωm ± Γmc)− (Γ0 + Γext)


− Γ2

12

 
2

,

(2.81)

where the denominator has to be understood as product of the term in braces with + sign

and with − sign replacing the ± sign, respectively. As expected from the previous sections a

splitting in four resonance peaks can be observed with the resonance frequencies

ω±,± =
1

2


−i(2Γ0 + Γext)± 2Γmc ±


4Γ2

12 − Γ2
ext


, (2.82)

where each of the four combinations ++, +−, −+ and −− gives a different resonance. Usually,

Γ12 > Γmc and for weak excitation Γext ≪ Γ12, Γmc the resonances can be found at ℜ(ω±,±) ≈
±Γ12 ± Γmc. In Fig. 2.12, Eq. (2.81) was solved for normalized parameters Γ0 = 0.01, Γmc =

0.05, Γ12 = 0.5 and variable Γext as a function of the detuning ∆ωm to illustrate the influence

of the different coupling and loss rates.

Chapter summary

In this chapter different theoretical models for the calculation of optical characteristics of disk

microresonators were presented. For single microdisks a 2D analytical modal expansion model

[or effective index method (EIM)] can be used to obtain the resonance frequencies as well as

the radiation Q-factor. The approach uses the (r, φ)-plane parallel to the disk’s top and bot-

tom surface with an effective refractive index approximation, since the radius is much larger

than the thickness. In this plane the model is able to predict also the electromagnetic field

distribution. The extension to a 2D scattering problem of an arbitrary number of coupled

circular microdisks is straight forward. The advantages of the model are the flexibility and
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relatively fast calculation, which allows for parameter scans as well as fitting against experi-

mental data to estimate geometrical parameters of the investigated samples. The results were

briefly compared to 3D FDTD calculations which shows good agreement.

To gain more insight into the modal characteristics a finite-element-method (FEM) was

used. For a circular symmetric structure the FEM also can be reduced to a 2D calculation,

but now in the (r, z)-plane perpendicular to the disk, and therefore allows the consideration

of single disks only. Nevertheless, it is capable of calculating the ’exact’ field distribution29

of a mode in this plane, which can be easily extruded to the full 3D distribution. The main

advantage of the FEM is the possibility to handle axisymmetric resonators with arbitrary

profiles as well as multilayered structures with high accuracy. The important parameters

obtained from a FEM are the mode volume, energy or intensity ratios of light guided inside

and outside of the disk material as well as more accurate resonance frequencies and radiation

Q-factors.

In order to get a better description of the experimental situation, where the sample is excited

by an external waveguide, a more general and comprehensive coupled mode theory can be used.

As an advantage, various effects can be taken into account as long as they can be treated

perturbatively, e.g., intrinsic losses, modal coupling due to Rayleigh scattering and inter-disk

coupling. Also nonlinear interactions can be described as shown in Refs. [Spi04, Lin08, Joh09].

Here we will take into account an optically induced thermal nonlinear response described in

Chap. 5. Since for microdisks the modal field distribution cannot be calculated analytically

all the coupling term integrals have to be solved numerically, which is a drawback of the

rigorous approach. This is also an issue for a 2D approximation of such systems but there

additional assumptions for the coupling coefficients can be made, which reduces the numerical

effort significantly [Hir05, Ham10]. In the experiments it is useful to extract the coefficients,

whenever possible, from corresponding independent experimental data as shown below.

To summarize the limits of applicability, the above described models are justified for thin

disks30 and weak material dispersion. The CMT, in particular, is valid only for weak pertur-

bations of the linear polarization (so that the unperturbed eigenfunctions properly describe

the fields also in the perturbed case) as well as for excitations consistent with the slowly

varying amplitude approximation. Throughout this thesis all requirements are fulfilled. In its

entirety the described models allow a comprehensive understanding of experimentally observ-

able effects and will provide a valuable tool for designing coupled microdisk structures with

particular characteristics.

29In a sense of an arbitrarily good approximation to the exact solution.
30Compared to the disk radius.



3 Experimental realization and basic

characterization

The theoretical analysis of Chap. 2 defines the requirements for the experimental realization of

optically coupled microdisks. The key aspect is the resonance mismatch between the individual

microdisks in the coupled structures, which is mainly determined by their radius difference.

This requires a highly reproducible and controllable fabrication of single resonators with an

accuracy of the radius of at least 20 nm (see Fig. 2.9). Another point is that the various possible

arrangements should be investigated under the same conditions for quantitative statements.

This calls for a flexible, standardized sample platform and also defines the conditions for the

experimental setup as well as the excitation of the samples. To account for all the requirements

we used an electron beam lithography (EBL) with subsequent physical and chemical etching

to fabricate on-chip microdisk samples, which are excited by tapered optical fiber coupling

in an automated measurement setup. The following sections describe the capabilities and

limitations of the used experimental methods and techniques as well as basic characterizations

of the fabricated single and coupled microdisks, in order to determine key parameters (e.g.,

Q-factors, mode numbers, coupling rates, etc.), which are of importance for further studies.

In particular this involves thermal nonlinear effects investigated in Chap. 5.

3.1 Fabrication of coupled microdisks

The fabrication of the coupled fused silica disk microresonators investigated throughout this

thesis is shown schematically in Fig. 3.1. It starts with a silicon wafer covered with a thermally

oxidized fused silica layer of approximately 1 µm thickness. A chromium layer and electron

beam resist (FEP) are deposited on top. The sample layout pattern is then transferred into

the resist by direct electron beam writing. After the development process the remaining resist

is used as an etching mask for the chromium layer. The chromium layer of 80 nm thickness

is structured by inductively coupled plasma etching (ICP) and acts as a resistant etch mask

for all following processes. Using only the resist without the chromium layer as mask would

not allow for deep structures and at the same time high lateral resolution. The fused silica

layer is then anisotropically etched by ICP using fluoroform (CHF3). To functionalize the

silica layer as a waveguiding structure it has to be released from the high refractive index

44
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Fig. 3.1: Schematic view of the fabrication process: (a) electron beam writing of the disk pattern into the
resist; (b) resist development and chromium mask etching; (c) anisotropic etching of the fused silica layer;
(d) isotropic etching of the silicon substrate either by inductively coupled plasma (ICP) etching (top) or by
wet-chemical etching (KOH) (bottom); (e) chromium mask removal. The difference between both etching
methods is shown for a large array of coupled disks (f). For the ICP etch the inner region of the array is not
sufficiently under-etched, whereas for the KOH etch a homogeneous under-etching throughout the whole array
is obtained.

substrate, which is done by isotropic etching of the silicon, resulting in free standing fused

silica disks supported by silicon pedestals at the center of each disk. For the isotropic silicon

etching two approaches can be used, either an ICP etching with sulfur hexafluoride (SF6) or a

wet-chemical etching with potassium hydroxide (KOH). The difference between both processes

becomes important for the fabrication of large 2D arrays of coupled microdisks. In this case

ICP etching is strongly selective with respect to the inner and outer region of the array. The

inner disks are insufficiently under-etched, which can be explained by a shielding of the reactive

plasma due to the disks. In contrast, a very homogeneous under-etching is obtained from the

wet-chemical etch process. In Fig. 3.1(f) scanning electron microscope (SEM) images illustrate

this effect for an array of 48 hexagonally coupled microdisks. Finally, after the silicon etching

the chromium mask is removed.

Typical samples investigated in this thesis (see Fig. 3.2) have a single disk diameter of D =

30 µm to 40 µm, a thickness of about h = 0.9 µm to 1.2 µm and a material refractive index of

nres = 1.4451. The gap between two coupled disks ranges from dgap = 200 nm to 500 nm.

Depending on the process parameters in the mask and silica etching steps the sidewall

angle of the disks can be tuned from vertical to wedge shape [two examples are shown in

Fig. 3.2(d, e)]. Although it was shown that a wedge shaped sidewall can increase the Q-factor

of the resonator due to a reduction of the mode overlap with the rough sidewall [Kip03], for

the coupling of disks it is preferable to have vertical sidewalls or only small angles. Due to

1The exact values of h and nres are obtained by fitting of broad range resonance spectra. Estimation of h from
SEM images fixes the correct combination of h and nres. For details see Sect. 3.4.
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Fig. 3.2: Scanning electron microscope (SEM) images of typical samples investigated in this thesis - (a) single
disk, (b) two coupled disks and (c) three coupled disks in a triangular arrangement. Depending on the process
parameters the sidewall angle can be tuned from (d) large to (e) small values, where for optical coupling a
small angle is preferred. (f) A magnified section of the disk rim which is used for sidewall roughness analysis.

the wedge, the effective distance between the disks increases, which leads to a reduction of

the optical coupling strength. From the SEM images one can also see that there is a certain

roughness present on the sidewalls. It results from a finite electron beam position accuracy

and the graininess of the resist and chromium layers, which transfers into the fused silica.

Using a method of resist reflow [Bor05] for reducing the sidewall roughness cannot be applied

here, because it will inhibit the formation of the very narrow gaps between the disks, which

are essential for the optical coupling. Two main effects related to the surface roughness can

be expected: first, the limitations of the Q-factor2 due to induced surface scattering losses and

second, the coupling to counterpropagating waves inside the resonator (see Sects. 2.3 and 3.4).

3.2 Tapered fiber coupling

Tapered optical fiber coupling [Kni97] is a highly efficient method to couple light in and out of

an optical microresonator. The idea is to adiabatically thin down a standard telecom optical

fiber with a cladding diameter of 125 µm to a diameter of about 1 µm. As illustrated in Fig. 3.3

the initial single core guided mode is transferred to a cladding guided mode with a significant

amount of optical power in the air surrounding the fiber taper. This can be used to couple to

the evanescent field of the microresonator. Beside the mode overlap, simultaneous matching

of the resonator and fiber mode in time and space is essential for effective coupling. The first

is simply provided by tuning the frequency of an exciting laser to a resonance frequency of the

2A discussion of different contributions to the total loss is given in Sect. 3.4.2.
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Fig. 3.3: Schematic of a tapered optical fiber and its coupling to a microdisk resonator. (a) Initial single mode
standard telecom fiber profile with a core guided mode. (b) Transition region of reduced cladding and core
diameter. The initial mode becomes cladding guided. Higher order cladding guided modes are not excited
for an adiabatically transition but might have to be considered in the experiments. (c) Tapered optical fiber
with a final diameter of about 1 µm and a single cladding guided mode. The initial core region disappears.
(d) Illustration of the coupling of the tapered fiber mode to the WGM by overlapping of the evanescent fields.
The illustrations are merely included as a visualization aid and are not true to scale.

resonator. The second depends on the propagation constants of the tapered fiber mode and

the resonator mode and is referred to as phase matching.

For the calculation of the taper modes and their respective propagation constants one can

use the fact that the thinnest taper section is very long compared to the wavelength and can

be assumed as constant in diameter. Therefore, the taper modes are that of a step-index

fiber, but due to the large refractive index contrast between cladding material and air a full

vectorial description of the fiber modes has to be used, based on the solution of the Helmholtz

equation in cylindrical coordinates [Sny83, Yar97]. The required diameter of the tapered fiber

dtf to obtain phase matching between a taper mode and a mode of a microresonator can be

calculated from the characteristic equation for the propagation constant βtf of the taper modes
J

′

l (U)

UJl(U)
+

K
′

l (W )

WKl(W )

 
J

′

l (U)

UJl(U)
+

n2
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n2
cl

K
′

l (W )

WKl(W )


=


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k0ncl

2 
V

UW

4

, (3.1)

with the Bessel function of the first kind Jl, the modified Bessel function of the second kind

Kl, the mode order l, the vacuum wave number k0 and the numerical refractive index of the

mode guiding cladding ncl and the surrounding air nair, respectively. The parameters U , W ,

and V are defined as

U =
dtf

2


k2

0n
2
cl − β2

tf, (3.2)
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W =
dtf

2


β2

tf − k2
0n

2
air, (3.3)

V =
√

U2 + W 2. (3.4)

The coupling between a tapered fiber mode and a fundamental mode of a microdisk res-

onator can be approximated by the coupling of a straight and a curved waveguide using cou-

pled mode theory3 [Mat75, Row93]. By projecting the curved waveguide onto the propagation

direction of the straight waveguide the coupled mode equations can formally be written as

for two straight waveguides with effective propagation constants. For the case of two parallel

waveguides the coupling efficiency varies proportional to sinc(∆β) [Sal91], where ∆β = β1−β2

is the difference between the propagation constants of the two waveguides. For phase matching

(∆β = 0) the maximum coupling efficiency is obtained. In general, the coupling coefficient

can be calculated by [Sny83]4

κij =
k0

4


ϵ0

µ0

 1
2


A


n2(r)− n2

i


Ê⊥

i Ê⊥
j dA. (3.5)

The Ê⊥
i,j represent the unperturbed normalized electric fields of the taper and resonator mode

perpendicular to the propagation direction, ni is the refractive index of waveguide i, and n(r)

describes the refractive index profile of the structure [n(r) = ni in waveguide i, n(r) = nj

in waveguide j, and n(r) = nair in air]. The same relation can be used to calculate the

coupling coefficient for the coupled straight and bend waveguides for the point of minimum

separation, with (i, j) being replaced by the domain of the resonator (res) or the tapered fiber

(tf), respectively.

An analytical solution to Eq. (3.5) can be given only for analytically available mode profiles,

e.g., for the coupling of a tapered fiber to a microsphere [Lit99]. Since the contribution of the

transverse field overlap to the coupling strength is mainly determined by the distance between

taper and resonator, the optimal coupling can be found experimentally by recording the taper

transmission for varying taper-resonator gap. According to the transmissivity of a tapered fiber

coupled to a single mode microresonator [Eq. (2.67)] and recalling the relation κ =
√

2Γext,

three regimes of coupling can be distinguished, comparing external (Γext) and intrinsic loss

rates (Γ0). These are the under-coupled regime with the optical energy decay determined by

the intrinsic losses (Γext < Γ0), the over-coupled regime with the coupling losses dominating

(Γext > Γ0) and the critical coupling (Γext = Γ0), for which the transmissivity5 reaches a

minimum (or zero for ∆ωm = 0). The critical coupling condition depends on the loss channels

of the microresonator, hence taking into account intra-disk modal coupling Γmc and inter-disk

coupling Γqp (according to Sect. 2.3) will shift the point of zero transmissivity. For two coupled

3Under the assumption of weak coupling between tapered fiber and microresonator.
4In analogy to Eq. (2.64).
5The transmissivity is defined as the transmitted optical power through the taper normalized to the input
power. See also Sect. 2.3.
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microdisks the critical coupling condition on resonance [T (∆ωm = Γ12) = 0 from Eq. (2.81)]

reads as

Γext = ℜ




(2Γ12 + iΓ0)2 − Γ2
mc


Γ2

0 + Γ2
mc


(Γ12 + iΓ0)2 − Γ2

mc

 . (3.6)

To spectrally observe additional effects, the coefficients Γ12 and Γmc have to be larger than

Γ0 and hence the critical coupling shifts towards the over-coupled regime (as compared to a

single mode resonator; see also Fig. 2.12). For Γ12 = 0 Eq. (3.6) reduces to the well known

relation for the critical coupling of a single disk with modal coupling [Kip02].

The phase matching is determined by the oscillatory components of the fields parallel to

the propagation direction (y-direction)

Etf(r) = E⊥
tfe

iβtfy, (3.7)

Eres(r) = E⊥
rese

imφ = E⊥
rese

i m
Rres

Rresφ ≈ E⊥
rese

iβresy. (3.8)

The projection of the azimuthal propagation of the resonator mode onto the propagation

direction of the tapered fiber mode in Eq. (3.8) leads to the simple phase matching condition

∆β = βtf − βres = 0 ⇒ βtf = βres = m/Rres. (3.9)

The last relation gives an approximation of the required diameter of the tapered fiber, but

overestimates it due to the finite diameter of the taper and the fact that the maximum of the

resonator mode is located inside the resonator (rmax < Rres). A better approximation of the

matched propagation constant can be written as βeff
res = βres(1 − dsep/2Rres) = 0, taking into

account the separation dsep = dtf/2+dext +∆Rres of the mode maxima in the tapered fiber and

the resonator [Row93]. Nevertheless, the distance of the mode maximum from the rim of the

resonator ∆Rres requires the knowledge of the field distribution which can be calculated only

numerically (see Sect. 2.1.2). Assuming typical values, the deviation between Eq. (3.9) and the

more exact relation is approximately 3 %. Figure 3.4(a) shows the calculated effective mode

index neff = β/k0 of the tapered fiber modes [Eq. (3.1)] and of typical TE and TM modes of

a microdisk resonator used in this thesis [Eq. (2.24)]. According to Eq. (3.9), phase matching

can be assumed for an effective taper mode index of 1.25 (1.22) for the first order disk modes of

TE (TM) polarization. In Fig. 3.4(b) the optimal taper radius rtf for the excitation of certain

disk modes is calculated for a wavelength range of λ =1.5 µm to λ = 1.6 µm and a disk radius

of Rres = 15 µm to Rres = 25 µm. Matching of a first order radial disk mode (TE) requires a

radius rtf = 0.6 µm (dtf = 1.2 µm)6. This radius will not be the optimum for excitation of a

first order TM mode or a higher order radial mode. Usually, one taper is used for testing of

different modes and samples which results in non-optimal phase matching. Nevertheless, also

6The value deviates by ± 7 % for the range of tested samples according to the shaded region for the first order
TE mode in Fig. 3.4(b)
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Fig. 3.4: (a) The effective refractive mode indices for a disk resonator with typical dimensions used in this
thesis and of a step-index fiber using Eq. (3.1) indicate phase matching around neff = 1.25 (1.22) for a first
order TE (TM) resonator mode. (b) The phase matching taper radius rtf for the first three radial orders of
disk modes. The neff for the fiber taper modes are shown as black solid lines (e.g., aHE11 with ’a’ indicating
λ = 1.5 µm) and gray dashed lines (e.g., bHE11 with ’b’ indicating λ = 1.6 µm). The disk modes are calculated
close to this wavelengths for Rres = 15µm (e.g., R15,TE1 for the first order radial mode of TE polarization)
and Rres = 25 µm resulting in four intersections with the taper mode lines ’a’ and ’b’, which define the color
shaded areas (blue - first radial order TE modes; light blue - first radial order TM modes, etc.). Since one
taper is used for excitation of different samples the optimal taper radius range is determined by the projection
of the shaded areas on the x-axis, e.g., matching of the first order radial disk TE modes requires a radius rtf =
0.6 µm (dtf = 1.2 µm). The thickness of the disks was h = 1µm for all calculations (see Sect. 2.1 for influences
on the disk modes).

a deviation of a few percent in the effective mode index allows significant coupling, even when

the power transfer at critical coupling is not maximized.

For the obtained rtf the tapered fiber is not single mode [as seen in Fig. 3.4(b)]. The energy

coupled from the resonator to the taper can also couple to the higher order modes of the taper

and will be lost due to the adiabatic transition to the standard single mode optical fiber. The

parameter describing this parasitic loss mechanism at the taper-resonator-junction is called

ideality and is discussed in detail in [Spi03]. If the taper is thin enough, close to cut-off

of the higher order taper modes, the ideality is almost unity. If the taper becomes thicker

the coupling to higher order modes is significant, especially in the over-coupled regime. For

the used tapered fibers and microdisk resonators the coupling to higher order modes can be

neglected because the phase mismatch is relatively large also for higher order resonator modes

and the distance is usually set to be close to the critical or under-coupled regime.

Fabrication of tapered optical fibers

For the fabrication of tapered optical fibers a flame-brushing technique was used as shown in

Fig. 3.5. With the help of a hydrogen microflame torch (Model 120, Bryzel Inc.) temperatures
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Fig. 3.5: (a) Taper fabrication setup with ignited hydrogen torch and optical fiber before pulling. After
fabrication the taper was bend on a special holder (d-f, taper is visible due to scattering of launched red laser
light). The transmission through the fiber during the pulling (b) shows interference of cladding modes, which
disappear close to the correct taper radius. (c) The measured taper diameter dtf for one of the taper transitions.
The total length is twice the displayed pull length lpull of one motorized stage. Fitting with Eq. (3.10) gives
a heat zone length L0 = (2.1± 0.1) mm in agreement with the set value for the flame oscillation.

of up to 1200 ◦C are provided7 to locally heat the silica fiber above its melting temperature.

The fiber is fixed on two motorized stages, which pull it in opposite directions. This leads to

a diameter reduction in the heated zone. The torch is also mounted on a translation stage

to allow an extension of the region of constant taper diameter by moving the torch along the

fiber during the pulling. A variation of the length of the heating zone during the tapering

process allows arbitrary longitudinal diameter profiles of the taper [Bir92]. Using a constant

length of the heating zone L0, as well as a constant velocity of the pulling stages, leads to an

exponential shape described by

dtf(z) = d0e
−z/L0 , (3.10)

with the initial fiber diameter d0 and the pulling in z-direction. If the velocity is chosen

slow enough, an almost adiabatic energy transfer from the initial fiber mode to the taper

mode can be achieved.8 The shape of a typically fabricated taper is shown in Fig. 3.5(c)

together with a fit using Eq. (3.10) and L0 as a fit parameter. The obtained value L0 =

(2.1± 0.1) mm matches the experimentally set value of the flame oscillation range of 2 mm.

The larger measured value can be explained by the finite size of the flame. Figure 3.5(b)

shows the measured taper transmission during the tapering process. At a pull distance of

2 mm oscillations start, indicating interference of the initial fiber mode with higher orders

of the cladding guided taper modes. The oscillation period decreases with increasing taper

7Generation of hydrogen on demand and using acetone as buffer gas.
8The optimal profile for adiabatic transition of the single fiber mode to the fundamental taper mode requires
a nontrivial flame movement [Bir92].
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length and at a pull distance of 8.5 mm the oscillations disappear. This suggests a single mode

operation of the taper but experimental observation shows that the taper diameter at this

point is still too large for single mode operation as well as for phase matching to the WGMs.

In [Din10b] a detailed analysis of the transmission oscillation was presented, using a short-time

Fourier transform (or Gabor transform) emphasizing the non-single mode operation also for a

flat transmission signal. An additional pull distance of about 1 mm was applied to obtain the

required taper diameter around 1.2 µm. The transmission drop of about 9 % is attributed to

the relatively short taper length needed for comfortable handling after fabrication and is not

critical for the experiments in this thesis.

After finishing the pulling process the taper can be placed on different types of holders

to keep it straight or to form an u-turn shaped bend taper [see Fig. 3.5(d)-(f)], required for

excitation of samples on the fabricated dense packed chips.9

3.3 Experimental setup

For characterization the microdisk samples are placed on a two axis translation stage for

positioning in the horizontal plane and a rotation stage in order to change their orientation

relative to the position of the tapered optical fiber used for excitation. To control and stabilize

the temperature of the samples a Peltier element and a temperature controller (TED 4015,

Thorlabs) are used. At the left and right side of the sample stage tapered fibers can be

placed on two three-axis positioning stages (Nanomax 301, Thorlabs) with stepper motors for

coarse alignment and closed loop piezo actuators for high precision adjustment of the coupling

between microdisk and taper. The two tapers make the setup highly flexible for investigation

of different configurations, which are, e.g., add-drop filters, pump and probe experiments,

excitation of different disks in one sample at the same time, etc. In addition, these stages can

be used to carry micromanipulators or detectors, offering a set of possibilities for investigation

of coupled microdisk (or even other micro-fabricated) samples. Behind the sample stage a

SNOM head (MV4000, Nanonics Imaging) can be installed,10 which is used for manipulation

of the samples on the nano scale as well as for the mode mapping of WGMs in coupled

microdisks (see Chap. 4). The sample and the coupling to the tapered fibers are visualized by

a microscope setup (x100 NIR, Mitotoyo) with a CCD camera for the visible spectrum range

(Pike F145, Allied Vision Technologies) and another one for the infrared (SU128, Sensors

Unlimited), which is used to collect the out-of-plane scattered light of excited WGMs. The

whole setup is placed on an active vibration isolation (Vario 60, Accurion) and the load of all

9Also a fiber-rotation holder on one of the pulling stages was implemented for twisting the fabricated taper
to create fiber taper loops providing a smaller radius of curvature than the u-turn shaped tapers, e.g., for
a point-like excitation of photonic crystal resonators and waveguides as well as microresonators of different
(high-index) material.

10Also this access to the sample is not restricted to the SNOM head and can be used for different purpose.
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Fig. 3.6: (a) Schematic of the setup (f.l.t.r): TLS - tunable laser source, VOA - variable optical attenuator for
pump power control, FPC - fiber polarization controller, TEC - temperature controller for Peltier element under
the sample, VR - active vibration isolation, Circ - fiber optic circulator to capture the reflection signal (R),
T - transmission signal fiber, N2 - nitrogen purged enclosure, VIS - CCD camera for visible light (observation
of alignment), SNOM - scanning near-field optical microscope (red arrow represents SNOM-tip), IR - infrared
camera, NMax - 3-axis translation stages with motorized actuators and piezos, ST - sample stage (2 linear
translation stages, 1 rotation stage, Peltier element, sample chip in green), TF1/2 - left and right tapered fiber
for excitation, VOA - variable optical attenuator to fix working point of photo receiver (PR) for high pump
power operation, Osci - Oscilloscope (triggered by TLS), SNOM-control - SNOM controller, Motor control -
driver for all motorized actuators, PC - computer for setup control and data capturing. (b) Picture from the
lab showing the main parts of the setup. (c) Picture of the sample stage with sample chip, microscope and
holder of tapered fiber and micromanipulator.

stages, as well as the SNOM head, are housed in a nitrogen purged box to prevent them from

external vibration, air flow and water contamination. The tapered fiber coupling described

above allows for an all fiber based setup being beneficial in terms of stability and alignment

complexity. For optical excitation of the samples two different fiber coupled tunable laser

sources (TLS) are used (81640A and 81980A, Agilent) for high wavelength accuracy and

also high power operation of up to 10 mW.11 The used wavelengths range from 1510 nm

to 1580 nm. In combination with two variable optical attenuators (VOA, 81577A Agilent,

mVOA-A2 JDSU) power scans as well as fixed working point operation of the detectors are

possible. The polarization of the input light is set by fiber polarization controllers. Using a

11A few hundreds of µW are enough to observe thermal nonlinear effects for the investigated samples.
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circulator in front of the tapered fiber enables to collect back-reflected light from the resonator.

The transmission and reflection signals are detected by InGaAs photoreceivers (TIA-525I,

Terahertz Technology) and displayed on an oscilloscope (DSO6104A, Agilent). The whole

setup is computer controlled, using the Labview environment (National Instruments12) to

allow automatic measurements on parameter scans with minimal external perturbation.

Three channels of optical information have been used to characterize the system of coupled

microresonators, which are optical spectrum analysis, far-field scattered light and optical near-

field characterization. The near-field characterization method is described in detail in Chap. 4

as a main part of this thesis. The far-field scattered light is collected by the IR camera,

which was used to obtain information about the intensity distribution across the coupled

microdisk sample. The most general information about the sample’s optical characteristics are

obtained from optical spectrum measurement. For this, the TLS is scanned continuously over

a certain wavelength range and triggers the oscilloscope displaying the measured transmission

and reflection signal when starting the scan. If the wavelength of the excitation is off-resonant

the transmission signal is high (light is not coupled to the resonator). If the excitation is

on-resonant light is coupled to a disk mode. The light from the disk, which is π phase-shifted,

couples back to the taper and interferes destructively with the light transmitted in the taper.

This leads to a transmission signal drop on the oscilloscope. Due to the continuous scan of

the excitation wavelength, the mode spectrum can be observed as a time dependent signal

on the oscilloscope and with the trigger from the TLS the time axis can be transformed to a

wavelength axis, giving the resonance wavelengths of the resonator modes.

3.4 General sample characterization

3.4.1 Resonance spectrum characteristics

Figure 3.7(a) shows a typical transmission spectrum recorded for both TE and TM polarization

for a single microdisk with a diameter Dres = 40 µm. Due to the different dispersion, the

relative distance between the modes for both polarizations changes (as discussed in Sect. 2.1.1).

In this particular case the TE mode has a lower (at λ = 1522 nm), almost the same (at λ =

1535 nm) or a larger (at λ > 1545 nm) resonance wavelength than the TM mode. This can

be used to unambiguously identify the resonances from the fitting with the analytical EIM

or FEM (see Chap. 2) if the thickness is approximately known from SEM images. Keeping

the disk radius fixed (design value), the free parameters for the fitting are the disk thickness

h and the material refractive index of the disk nres. For the fit in Fig. 3.7(a) the obtained

values from the EIM (FEM) are h = 911 nm (915 nm) and nres = 1.451 (1.453). The obtained

thickness is close to the measured value of hSEM = (920± 40) nm and the refractive index is in

12http://www.ni.com/labview/
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Fig. 3.7: (a) Measured transmission signal shows the resonance spectrum for a single disk with a diameter Dres

= 40µm. The fitting of the resonance positions using the EIM (FEM) gives the thickness h =911 nm (915 nm)
and the refractive index nres = 1.451 (1.453). The obtained thickness is in agreement with measurements
from SEM images hSEM = (920± 40) nm. (b) Extracting the FSR from measurements and simulation for
first (TE1/TM1) and second radial (TE2/TM2) order modes and using Eq. (3.13) for fitting (shown for
experimental data only, solid/dashed line - first/second radial order) gives the group index ng = 1.44 ± 0.01
(1.47± 0.01) for TE1 (TM1) and ng = 1.41± 0.01 (1.44± 0.01) for TE2 (TM2).

agreement with reported values for fused silica in the investigated spectral range [Mal65]. The

correct identification of the measured resonances requires additional knowledge of the sample,

e.g., the disk thickness measured from SEM images. If one would use another set of “wrong”

parameters with significantly larger thickness than measured by SEM (h = 1067 nm, nres =

1.443) one could obtain comparable agreement of the measured resonance wavelengths with

all azimuthal mode numbers m increased by one.

The measured dispersion is shown in Fig. 3.7(b) in terms of variation in the FSR (δλFSR)

for subsequent resonances. According to Ref. [Bor06d], δλFSR can be related to the group

velocity vg of a light pulse inside the resonator by

vg =
∂w

∂β
= −2πc

λ2

∂λ

∂β
= −2πc

λ2

δλFSR

m+1
Rres

− m
Rres

= −2πcRres

λ2
δλFSR. (3.11)

Introducing a group index ng = c/vg, the absolute value of the FSR can be written as

δλFSR =
λ2

2πngRres

. (3.12)

Equation (3.12) was used for fitting of δλFSR [Fig. 3.7(c)] obtained from the measured and

calculated resonances [Fig. 3.7(a)], which results in group indices for different radial order and

polarization of ng = 1.441± 0.007 (ng = 1.407± 0.011) for TE1 (TE2) and ng = 1.474± 0.006

(ng = 1.440± 0.013) for TM1 (TM2). To infer the effect of modal and waveguide dispersion,

a comparison to the material dispersion of a bulk material can be made. The group index

[Mal65] calculated from ng,bulk(λ) = n(λ)−λ(dn/dλ) giving ng,bulk ≈ nres +0.02 = 1.47 for the

investigated spectral range. Generally, the TM modes show a smaller FSR and hence a larger

ng than the TE modes of the same radial order. Higher radial order modes have larger FSR
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uncertainty of the gap size measurement from SEM images and the radius mismatch of the disks induced by
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or smaller ng. This also reflects the weaker confinement of the TM modes with the intensity

maxima closer to the disk rim as well as the position of the intensity maxima of higher radial

orders closer to the center of the disk, as can be seen from calculated mode profiles (Fig. 2.6).

The found properties are of importance for the spectral response of microdisks under pulsed

excitation spectrally covering multiple modes [Ger04, Dri07, CS1].

Increasing the number of coupled disks results in a splitting of the modes, forming closely

spaced mode families as shown in Fig. 3.8(a). The number of modes as well as their relative

position differs slightly from the calculations in Sect. 2.2.2, especially for the three disk case.

This is due to a resonance mismatch of the single disks in the structure induced by fabrication

tolerances. A detailed investigation of the different modes in one mode family can be found

in Chap. 4. The dependence of the induced splitting on the gap size between the disks was

measured for different samples of two coupled disks and shown in Fig. 3.8(b). Agreement was

obtained within the uncertainty of the measured gap size from SEM images and the uncertainty

of the disk radius induced by fabrication tolerances [see Fig. 2.9(a)]. An additional detuning

of the two disks due to the stronger influence of the tapered fiber on the directly excited disk

is significant only for very strong coupling and was avoided in these measurements.

From Fig. 2.9 we know that a mismatch of the coupled disks leads to an increased splitting

and different excitation strengths of the resonances, whereas an increased coupling strength

(e.g., Fig. 2.10) changes only the splitting as long as the coupling is strong enough. This fact

can be used to distinguish both influences and determine the coupling rate Γ12 and the res-

onance mismatch ∆λ12 needed for appropriate calculations with the CMT (see Sect. 2.3).

Therefore, a measurement of the resonance spectrum for increasing excitation strength (de-

creasing taper-disk-gap dext) was recorded for two coupled disks and compared to CMT cal-

culations in Fig. 3.9. The low input power of the exciting laser (in the following referred to as

pump power) was Ppump = 100 µW to avoid nonlinear effects. The optimal agreement of ex-
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periment and simulation gives ∆λ12 = 0.2 nm and Γ12 = 136 GHz. The scale of the Γext-axis in

Fig. 3.9(b) underlines the exponential dependence of the coupling rate on the distance between

taper and disk. Using the parameters Γ0 = 1.6 GHz and Γmc = 2.9 GHz, which are obtained

independently from Q-factor measurements described in Sect. 3.4.2, one can estimate the crit-

ical coupling condition using Eq. (3.6). The obtained value of Γext,crit = 6.6 GHz [dashed line

in Fig. 3.9(b)] coincides with the zero transmissivity, at least for one of the resonances.

3.4.2 Q-factor, optical losses and finesse

The Q-factor of a resonator is generally defined as [Jac99]

Q ≡ ω0
Ustored

Ploss

= 2π
Ustored

Uloss/cycle

, (3.13)

with the angular frequency ω0, the stored energy inside the cavity Ustored, the lost power Ploss

and the energy loss per cycle Uloss/cycle. Using energy conservation, Eq. (3.13) implies an

exponential decay for the time dependence of the energy stored in the resonator

Ustored(t) = U0,storede
−ω0t/Q = U0,storede

−t/τ0 , (3.14)

where in the last term the decay time τ0 ≡ Q/w0 is introduced as the time required for a decay

to the 1/e-value of the initial stored energy. Considering the electric field inside the cavity,

the time dependence is given by

E(t) = E0e
−ω0t/2Qe−iω0t, (3.15)
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and with Fourier transformation the energy distribution in the frequency domain is

|E(ω)|2 ∼ [(ω − ω0)
2 + (ω0/2Q)2]−1, (3.16)

with the full width at half maximum (FWHM) bandwidth δω0 = ω0/Q. This can be transferred

into the wavelength domain to δλ0 = λ0/Q. By definition the Q-factor can be related to the

energy loss rate γ0 = 2Γ0 = τ−1
0 = ω0/Q.

The energy dissipation in dielectric microresonators is caused by various processes leading

to a total Q-factor

1/Q = 1/Qint + 1/Qext = 1/Qmat + 1/Qsurf + 1/Qrad + 1/Qext, (3.17)

which can be separated into intrinsic losses 1/Qint and external losses 1/Qext, e.g., due to the

coupling to the tapered fiber for excitation. The intrinsic losses can be divided into different

components inversely proportional to the respective Q-factors. Qrad takes into account the

“quasi-mode” nature of the whispering-gallery resonances due to the incomplete total internal

reflection at the curved resonator interface. This leads to energy leakage also for perfect

materials and surfaces and depends only on the size of the resonator. The values on the order

of Qrad ≈ 1011 calculated in Sect. 2.1.1 for the microdisks under investigation do not limit the

observable Q-factors, as expected. Qmat, representing the material loss due to absorption and

Rayleigh scattering at bulk inhomogeneities, can be found to be on the order of Qmat ≈ 109

to 1010 [Col93, Ver98b] and hence also is not the limiting factor. Absorption and Rayleigh

scattering at surface inhomogeneities, described by Qsurf, are caused by adsorption of water

and contaminations from the etchants as well as roughness of the surface induced by the

etching process. For the chemically inert silica the adsorption of water limits the Q-factor on

the order of 109 [Kip04a], whereas the surface roughness will limit the observable Q-factors

for the microresonators investigated in this thesis.

To quantify the surface scattering loss, the so-called volume current method [Kuz83] can

be used. At the index perturbations δϵ on the surface the unperturbed field of the mode E0

induces polarization currents J = −iωδϵE0 acting as source term in the wave equation [e.g.,

Eq. (2.8)]. A solution to this radiation problem can be given by the vector potential

Arad(r) =
µ0

4π


e−ikr

r

 
V

J(r′)e−ikr̂r′
dr′, (3.18)

where k is the wave vector in the surrounding medium and r̂ is the unit vector in radial

direction. The solution of Eq. (3.18) for the case of low-loss microdisks is developed in detail

in [Bor06d] using two assumptions briefly summarized here. First, a one-dimensional refractive
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index perturbation is assumed

δϵ = ϵ0δn
2h∆R(φ)δ(r −R)δ(z), (3.19)

where δn2 = n2
res−n2

0 and ∆R(φ) is the radius variation relative to the unperturbed disk radius

R and r, φ, and z are polar coordinates centered at the disk. The disk thickness h, as well

as the refractive indices of disk and surrounding medium nres and n0, are defined in Fig. 2.1.

This assumption is valid because the vertically directed anisotropic silica etching results in a

nearly invariant disk radius along the disk height compared to the azimuthal variation [see

Fig. 3.2(e)]. Together with E0 = Em(r, z) exp(imφ) (see Sect. 2.1.1) this simplifies the volume

integral in Eq. (3.18) to an integral along the azimuthal direction. Secondly, the surface

roughness is assumed to be much smaller than the wavelength in the disk. Therefore, surface

perturbations can be treated statistically independent if their distance is much larger than

a characteristic correlation length Lc, which allows for a statistical solution of the remaining

integral. The total radiated power can be obtained by

Prad =


(S · r̂)r2dΩ, (3.20)

with the averaged Poynting vector given by ⟨S⟩ = r̂ωk0⟨|r̂×Arad|2⟩/(2µ0) using the ensemble

average of Eq. (3.18). With the definition of the Q-factor (3.13) and the stored energy in the

ideal resonator Ustored = 1/2


ϵ(r)|E|2dr, the surface scattering Q-factor can be written as

Qsurf =
λ3

0

π7/2n0(δn2)2V 2
s


η̂ ūsurf(η̂)G(η̂)

, (3.21)

with the effective volume of a scatterer Vs =
√

RLchσR determined by the correlation length

Lc and the standard deviation σR of the surface roughness. The summation in Eq. (3.21)

is carried out over all polarization components of the normalized, spatially averaged electric

field energy density at the disk edge ūsurf, weighted by a polarization dependent geometrical

radiation factor G(η̂). For TM polarization an analytical approximation of ūsurf can be given

as [Bor06d]

ūsurf(ẑ) ≈
2n2

eff

Vdn2
res(n

2
eff − n2

0)
, (3.22)

with the disk volume Vd. Therefore, Eq. (3.21) can be simplified to

Qsurf =
3λ3

0

8π7/2

n2
res(n

2
eff − n2

0)

n0n2
eff(δn

2)2

Vd

V 2
s

. (3.23)

Lc and σR of the surface roughness can be estimated from SEM images of the microdisk

edge like in Fig. 3.2(f). A typical radius variation along the rim of a disk is shown in

Fig. 3.10(a). Calculation of the autocorrelation and fitting assuming a gaussian distribution
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Fig. 3.10: (a) Variation of the disk radius ∆R along the rim of the disk extracted from SEM images. (b)
Calculation of the autocorrelation and fitting with a gaussian distribution gives the correlation length Lc and
the standard deviation σR used for calculation of the effective volume Vs of a typical scatterer.

leads to Lc = (57.7± 4.1) nm and σR = (10.1± 0.4) nm [Fig. 3.10(b)]. Plugging these values

into Eq. (3.23) results in a surface scattering limited Q-factor of Qsurf = (1.9±0.4)×105. Equa-

tion (3.23) also shows the potential of Q-factor enhancement by reducing the surface roughness

due to the quadratic dependence in the effective volume of the scatterer, e.g., reducing σR by

a factor of 10 to approximately 1 nm will increase Qsurf by two orders of magnitude.

In a similar manner the coupling Q-factor between cw and ccw modes due to surface

roughness can be estimated to [Bor06d]

Qmc =
1√

2π3/4

n2
res(n

2
eff − n2

0)

n2
effδn

2

Vd

Vs

, (3.24)

resulting in Qmc = (2.6 ± 0.5) × 104, which according to Qmc = λ0/∆λmc leads to a splitting

of the resonances of ∆λmc = (60± 11) pm.

Equations (3.14) and (3.16) indicate two possibilities of measuring the quality factor. In

the time domain a “ring down”-measurement can be performed if the pump which loads

the resonator can be switched off much faster than τ0. Using an electro-optic modulator,

switching times of a few ns can be achieved, making this method suitable for microresonators

with Q ≥ 107 [Arm03]. For the microdisks under investigation typical quality factors of 105 to

106 are expected, which give decay times below 1 ns. Therefore, a second method estimating

the Q-factor from the spectral bandwidth of the measured resonances was used. For reliable

measurements it is important to work in the under-coupled regime, where the resonator mode

is only very weakly excited. A typical measurement is shown in Fig. 3.11(a). To extract the

Q-factor, a simplified coupled mode model taking into account a single disk with coupling of

cw (−m) and ccw (+m) modes [derived from Eqs. (2.70) and (2.71)] was used [Gor00, Bor05]

˙̄d+m(ω) = (i∆ω − Γ0 − Γext)d̄+m + iΓmcd̄−m + i


2Γextāin, (3.25)

˙̄d−m(ω) = (i∆ω − Γ0 − Γext)d̄−m + iΓmcd̄+m. (3.26)
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Fig. 3.11: (a) Q-factor characterization for a typical single disk resonance showing a doublet of symmetric (λs

- light-colored symbols, dashed lines) and antisymmetric (λa - white-colored symbols, solid lines) combinations
of cw and ccw propagating modes. The red line shows a fit of the resonance using a single disk coupled mode
model. (c) The Q-factors for all resonances in the observed spectral range are shown for both polarizations
(TE blue, TM red) with the different radial mode orders highlighted by the shaded areas. The notation
of symmetric and antisymmetric modes is the same as in (a) with the color according to the polarization.
Analogue data for three coupled disks in a line are shown in (b, d) with the splitting in three resonances due
to the coupling of the disks (λ1 - white-colored symbols, solid lines; λ2 - dark-colored symbols, dotted lines;
λ3 - light-colored symbols, dashed lines). Each of the dips was fitted individually with the same model as in
(a) - see inset in (b) - but for the graph in (d) the mean of the Q-factors of λa and λs was used. Only minor
decrease of the Q-factor is observed when coupling the disks to each other.

Changing the basis to symmetric (s) and antisymmetric (a) combinations of d̄+m and d̄−m,

according to d̄s,a = (d̄+m± d̄−m)/
√

2, decouples Eqs. (3.25) and (3.26) and leads to the solution

d̄s,a(ω) =
−i
√

Γextāin

i(∆ω ± Γmc)− (Γ0s,0a + Γext)
, (3.27)

which is generalized to allow different loss rates for the symmetric and antisymmetric modes

due to their relative phase difference and hence different overlap with surface inhomogeneities.

The transmissivity of the tapered fiber can then be written as

T (ω) =

1 +
−i
√

Γext


d̄s(ω) + d̄a(ω)


āin


2

, (3.28)

and was used to fit the measured resonances [red lines in Fig. 3.11(a,b)]. From this fit the

FWHM bandwidth of the symmetric and antisymmetric mode can be obtained as well as the

coupling ratio between them. Figure 3.11(c) shows the obtained Q-factors for all measured
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resonances in the wavelength range of 1510 nm to 1570 nm for both polarizations (TE blue,

TM red). The different radial orders show different Q-factors highlighted by the shaded

areas. As expected the highest Q-factors around Q = 1.7 × 105 are observed for first radial

order modes. For the second radial order Q = 0.9 × 105 and for the third radial order

Q = 0.3 × 105 were found. The measured values for the first order modes agree very well

with the limit of the surface scattering Q-factor estimated above [Eq. (3.23)]. Although it

is expected that TM polarized modes (main field component Ez) are less affected by the

particular structure of the vertical sidewall imperfections than the TE modes, the investigated

sample here shows no significant difference in the Q-factor for both polarizations. This might

be due to non-perfectly smooth top and bottom disk surfaces affecting mainly the TM modes

and reducing their Q-factor. Spot-checking another chip of samples (used in Chap. 5) shows

indeed higher Q-factors for the TM polarized modes of up to Q = 4.5 × 105 in comparison

to Q = 2.5× 105 for TE modes. Looking at the difference between symmetric [white-colored

symbols, solid lines in Fig. 3.11(c)] and antisymmetric modes [light-colored symbols, dashed

lines in Fig. 3.11(c)] a slightly larger Q-factor for the antisymmetric mode can be observed

for most of the measured resonances, especially for first and second radial order. This can be

understood by the fact that the field of the antisymmetric mode is distributed to minimize

the overlap with the refractive index perturbations along the surface. Consequently, the field

of the symmetric mode maximizes the overlap [Bor06d, Zhu09]. A coupling induced splitting

of the resonances of ∆λmc ≈ 30 pm was measured, which is on the order of magnitude of the

theoretical approximation using Eq. (3.24).

Coupling of three disks in a line arrangement leads to a splitting into three resonances

shown in Fig. 3.11(b) with the coupling induced splitting (∆λ12 = 178 pm, ∆λ23 = 477 pm)

much larger than due to the backscattering into the counterpropagating mode (∆λmc = 8 pm).

Therefore, each of the resonances can be fitted individually using Eq. (3.28) [see inset in

Fig. 3.11(b)]. As the difference of the symmetric and antisymmetric Q-factor of each resonance

is small, the mean value was plotted in Fig. 3.11(d), where the white-colored symbols with

solid lines denote the short wavelength resonance, the light-colored symbols with dashed lines

belong to the long wavelength resonance and the dark-colored with dotted line symbols mark

the central resonance. In comparison to the single disk case the Q-factors of the first order

radial modes tend to be slightly decreased. A stronger variance can be observed, which is

indicated by the extended shaded area in Fig. 3.11(d). It is possible to find resonances with

equal or even slightly larger Q than for the single disk. For the second order radial modes

the Q-factor significantly reduces by approximately a factor of two which is due to the weaker

confinement of the fields and hence a stronger perturbation of the modes due to the coupling

of the disks (see Sect. 2.1.2). Also a difference between TE and TM polarized modes can be

observed in this case due to the generally weaker confinement for the TM modes.

The observed Q-factors and resonance splittings for single and coupled microdisks corre-

spond to intrinsic loss rates of Γ0 ≈ 1.5 GHz to 4.3 GHz and intra-disk modal coupling rates
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of Γmc ≈ 2.5 GHz to 10 GHz.

With the Q-factor and the FSR at hand, the finesse of the resonant system can be calculated

by [Sal91]

F ≡ δωFSR

δω0

≡ δλFSR

δλ0

=
Q

m
=

2πτ0

τrt

. (3.29)

The first two relations are the definitions of the finesse as the ratio of FSR and resonance

bandwidth. In the last relation τrt is the round trip time of a photon in the resonator. As the

Q-factor is a measure of how many times the field oscillates until it is decayed, the finesse can

be seen as the number of round trips of a photon before it is lost. Using the obtained values

from above, a finesse of about F ≈ 2×103 can be found for the investigated microdisks. With

the results from Sect 2.3.1 the above relations can be used to estimate the circulating optical

power inside the disk

Pcirc =
|d̄m|2

τrt

=
2

π

Γext(Γ0 + Γext)

(Γ0 + Γext)2 + ∆ω2
FPpump. (3.30)

On resonance and for critical coupling this relation reduces to Pcirc = (F/π)Ppump for a

given coupled pump power Ppump. According to the used pump powers of 0.1 mW to 4 mW

circulating powers of 60 mW to 2.4 W can be achieved. These values might be reduced by

up to a factor of two, if the modal coupling between cw and ccw modes becomes significant

[Kip02].

Chapter summary

This chapter provided the framework needed for a detailed experimental investigation of cou-

pled disk microresonators. Two possible fabrication processes were described that give similar

high quality coupled microdisk samples. Nevertheless, for larger two-dimensional arrays it

turned out that the wet-chemical KOH process is preferable. The fabrication of tapered opti-

cal fibers with the required diameter for efficient coupling and phase matching to the modes

of the microresonators was realized according to a theoretical analysis. Furthermore, the

utilized experimental setup was described and a general characterization of the coupled mi-

crodisk samples was presented. The obtained spectral characteristics are in agreement with

theoretical predictions using the models described in Sects. 2.1 and 2.2. A theoretical analysis

of the Q-factor taking into account the sidewall roughness of the fabricated samples shows

good agreement with the measured Q-factors. As a main result, the advantageous properties

of single microresonators do not change dramatically when they are coupled to each other.

Additionally, the performed experiments can be used to obtain the characteristic loss and

coupling rates of the investigated samples. These coefficients are necessary for the application

of the CMT in the following chapters.



4 Mapping of eigenstates in coupled

microdisks1

The spectrum analysis of microresonators described in Sect. 3.4 is a standard method to obtain

information about their performance and characteristics. Bandwidths, coupling efficiencies,

circulating powers, etc. can be obtained, and with the help of theoretical models the distribu-

tion of light in such systems can be calculated. Nevertheless, there is a lack of experimental

evidence about the light distribution in coupled microresonators.2 For coupled microdisks

such information can be obtained in the far-field by collecting the out-of-plane scattered light

[CS5]. These measurements show a difference of the light intensity distribution for different

excited resonances but usually with a very low spatial resolution. This limited resolution and

the incoherence of the scattering process neither provides insight into the difference of the in-

tensity distribution of excited modes of different radial and azimuthal mode order, nor resolves

the different mode symmetry. An increase of the spatial resolution can be achieved by using

erbium doped microresonators [Car08], which allow to observe scattered signals in the visible3

due to a three photon up-conversion process in the investigated spectral range. Nevertheless,

no near-field information on different mode symmetries can be obtained. To address these

issues a high resolution scanning near-field optical microscopy (SNOM) method [Hec00] was

implemented. SNOM measurements of the WGM in single microdisks were already done by

direct collection of the near-field through an aperture tip [Bal99] and by collecting the scat-

tered light from the SNOM tip placed in the near-field of the WGM [Bla10]. The latter method

succeeds in resolving the difference of the distribution of symmetric and antisymmetric modes

formed due to scattering at surface imperfections (see Sect. 3.4.2).4

Here we follow a different approach that also makes use of a sharp scattering SNOM tip,

but instead of measuring a very weak scattering signal from the tip, the change of the spectral

response of the taper-disk-system in the presence of the SNOM tip was recorded [CS2]. Due

to the significant amount of evanescent field outside of the resonator and the high Q-factor,

1The main results of this chapter can be found in Ref. [CS2].
2For coupled microspheres doped with semiconductor nanocrystals, far-field scattering measurements of the
intensity distribution were described in Refs. [Möl06, Möl07].

3The advantages are the higher resolution due to the decreased wavelength, the suppression of speckles due
to the incoherence of the up-conversion process as well as the possible use of standard high resolution CCD
cameras for the visible instead of very expensive low resolution InGaAs-CCD cameras for the infrared.

4The scattering SNOM technique was also successfully used for WGM mappings in single microspheres [Göt01].

64



4. MAPPING OF EIGENSTATES IN COUPLED MICRODISKS 65

the spectral response depends strongly on changes of the surrounding. This results in a higher

signal-to-noise ratio at the same spatial resolution as compared to the far-field scattering

SNOM method [Bla10]. The measurement principle is adapted from waveguide mode mapping

[Rob06] as well as from investigations of eigenmodes in photonic crystal cavities [Hop06].

In the following, the method is described in detail and is compared to a theoretical analysis

based on the combination of CMT and analytical field calculations of microdisks (Sects. 2.3

and 2.2.3). The method was then used to measure the intensity distributions of modes in two

and three coupled microdisks.

4.1 Mode mapping method

The mode mapping principle makes use of a gold coated fiber tip (SNOM tip) with a tip

radius between 50 nm and 100 nm, which is scanned above the microdisk sample [Fig. 4.1(a)].

When the pump laser wavelength is fixed to one of the resonances a certain transmissivity

and reflectivity at both tapered fiber ends is measured. Placed in the near field of the excited

mode, the polarizability of the tip changes the effective refractive index of the environment,

which has two effects on the system. First, this influences the resonance condition and leads

to a shift of the resonance wavelength. Second, the tip acts as a scatterer coupling photons of

the excited WGM to either radiative modes or to other WGMs that spectrally and spatially

overlap with the excited WGM. The only WGM that matches the latter conditions for the

microresonators under investigation is the mode counterpropagating to the excited WGM.

This contributes to the splitting of the resonances due to coupling of cw and ccw modes

induced by surface roughness (Sect. 3.4.2). The scattering of photons into radiative modes

is an additional loss channel that leads to spectral broadening of the resonances. Therefore,

both effects have influences on the measured transmission and reflection signals depending on

the strength of the interaction of the WGM with the SNOM tip. The signal changes can be

correlated to the position of the tip, resulting in an intensity map of the mode, because the

interaction strength depends on the field intensity at the position of the tip.

An intensity map obtained for a scan of the SNOM tip across the gap of two coupled disks

is shown in Fig. 4.1(b). From the overlay with the topography the two flat disk surfaces as

well as the gap between them can be clearly identified. The strongest signals are recorded

when the tip is placed in the vicinity of the rim of the disks, indicating the excitation of a

first order radial mode. For more details the transmissivity (T) and reflectivity (R) mode

maps are plotted separately in Fig. 4.1(b) to point out the characteristics and limitations of

the method. Generally, the signal contrast in reflection is better than in transmission. Both

signals remain unperturbed when the tip is positioned above the disk but outside of the near

field of the mode or above the substrate. In contrast, a signal modulation can be observed

when the tip is perturbing the near field of the mode. This modulation involves smaller and
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Fig. 4.1: (a) Microdisk mode mapping principle. The presence of the SNOM tip in the near-field of the WGM
leads to additional coupling between cw and ccw modes as well as coupling to reservoir modes bj resulting
in additional losses. The mode maps are obtained as variations of the reflection and transmission signal
through the tapered fiber depending on the position of the SNOM tip. (b) Typical mode map signals for
two coupled disks (numbered as 1 and 2) showing topography information as well. The reflection signal (R)
shows better contrast than the transmission signal (T). The green dashed rectangles highlight measurement
artifacts explained by the characteristics of the SNOM tip movement in (c). Scanning from disk 1 the tip drops
smoothly down to the lowest z position. When approaching disk 2 the tip first retracts not fast enough and
touches the disk rim, and then overshoots which leads to the disturbed signals. (d) A comparison to the direct
collection (DC) of the optical near-field with an aperture SNOM tip shows that the maximum signal measured
in the reflection mode maps is related to a maximum in the near-field intensity, and hence an antinode of the
standing wave pattern, whereas the minimum corresponds to a node.

larger signal levels compared to the background, which is surprising because the method is

sensitive to the mode intensity only. When the tip is placed at an intensity node of the mode

distribution, it should not have any influence on the measured transmission and reflection

signals. To exclude systematic measurement errors, a comparison of the method to the direct

collection of the near field of the mode was done with an aperture SNOM tip and the results

are shown in Fig. 4.1(d). The diameter of the aperture SNOM tip is significantly larger than

that of the scattering SNOM tip. Nevertheless, it can also be used to measure transmissivity

and reflectivity mode maps in parallel, although with a lower resolution. As expected, the

optical collection signal is always larger than the background even when the tip is in a node

of the disk mode. Because of the larger tip size, the transmission signal gets blurred out and

the mode structure in the azimuthal direction can hardly be resolved. The reflection signal

is almost the same as for the scattering SNOM tip, underlining the high sensitivity of the

method. In comparison to the direct collection, the reflection signal shows a stronger (weaker)

signal than the background for the tip in an antinode (node) of the disk mode.

The free standing disk geometry in combination with the used tapping mode of the SNOM5

leads to artifacts in the measured mode maps, which appear as a stripe of unperturbed signal

5The tip oscillates vertically above the sample to get feedback from the sample about the topography as the
oscillation frequency shifts due to the interaction with the surface.
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at the rim of disk 2 marked in Fig. 4.1(b). This is a result of the particular movement of the

SNOM tip across the sample and is illustrated in Fig. 4.1(c). Usually, the starting point of a

scan is chosen above a disk (here disk 1), and the fast scan axis is almost normal to the rim of

the disk or gap between two disks. When the tip senses the rim of the disk, it starts to drop

down smoothly toward the substrate. If the gap size is sufficiently large, the tip reaches its

minimum vertical position a few hundred nm below the disk surface. When the tip recognizes

the other disk, it retracts much faster (indicated by the steeper transition) and the tip touches

the sidewall of the disk.6 This leads to a very strong interaction and hence a strong signal.

Due to the fast retraction, the tip overshoots when reaching the top surface level of the disk,

leading to a weaker interaction and signal. The effect is more pronounced when the separation

between the disks becomes larger because of the delayed response of the vertical movement of

the tip when it rests at the minimum z level. No significant influence on the measured data

is observed in the region where the disks are closest to each other.

The interaction of a SNOM tip with the WGMs of microdisk resonators as well as the signal

collection through a tapered fiber have strong impact on the measured signals. However, we are

only interested in the mode distribution of the coupled microdisks and not in the response of

the whole system. A link from the measured signals to the intensity distribution of the modes

in the coupled microdisks becomes possible when combining the calculations of the intensity

distribution (Sect. 2.2.3) and the CMT (Sect. 2.3) by taking into account the scattering SNOM

tip.

4.2 Coupled mode theory including the scattering SNOM

tip

The CMT from Sect. 2.3.3 describes the experimental situation of an array of microdisks

coupled to a tapered fiber for excitation. It includes scattering losses and coupling processes

between modes accounted for by appropriate coefficients. In order to take into account the

interaction with a SNOM tip, its two main effects on the system need to be analyzed, which

are the additional coupling of modes and additional scattering losses. This can be done using

dipole approximation [Jac99] by modeling the tip as a single subwavelength Rayleigh scatterer.

The electric field of the resonator mode induces a dipole moment p = ϵ0αEmode in the scatterer,

which is approximated as a spherical particle of radius Rtip and effective relative permittivity

ϵtip. With the relative permittivity of the surrounding medium ϵmed the polarizability α of the

scatterer can be written as

α = 4πR3
tip

ϵtip − ϵmed

ϵtip + 2ϵmed

. (4.1)

6As illustrated in Fig. 4.1(c) at this position the sidewall of the tip recognizes the disk first, which leads to a
strong feedback on the tip movement.
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In Ref. [Maz07a] a semi-quantum optical description of the coherent coupling of cw and ccw

propagating WGMs (d+m, d−m) and resonator losses due to such a dipole interaction is pre-

sented.7 The description of the resonator losses is based on the interaction of cw and ccw

WGMs with a reservoir of harmonic oscillators [Kli99, Dun01]. Under the assumptions of

elastic scattering, negligible cross-polarization coupling and a point-like scatterer, the cou-

pling of cw to ccw modes and vice versa due to the scatterer can be expressed by a single

coupling coefficient [Maz07a]

g = −α[f(rtip)]
2ω0

2Vmode

. (4.2)

Here ω0 denotes the resonance frequency, Vmode is the mode volume of the resonator mode

and f(rtip) describes the normalized field strength f of the microdisk mode at the position of

the SNOM tip rtip. Equation (4.2) exibits the connection between the CMT (Sect. 2.3) and

the field calculations in Sect. 2.2.3. In the same way the coupling of cw and ccw WGMs to

reservoir modes bj can be described by a single coefficient [Maz07a]

g′ = −α[f(rtip)]
2ω0

2


VmodeVj

(n̂mode · n̂j), (4.3)

with the quantization volume of the reservoir mode Vj and the respective field unit vectors

n̂mode,j. While the scattering of a photon into a disk mode leads to an additional splitting

of the observable resonances, the coupling to the reservoir modes act as an additional loss

channel. Using a Weisskopf-Wigner approximation [Maz07b], the explicit coupling to the

reservoir modes can be eliminated by the derivation of a damping rate

γrs =
α2f 2(rtip)ω

4
0

6πc3Vmode

. (4.4)

Here c is the speed of light in vacuum. With g from Eq. (4.2) and Γrs = γrs/2, the coupled

equations for the slowly varying mode amplitudes [Eqs. (2.78) and (2.79)] can be modified to

˙̄d
(p)
+m =


i(−∆ω(p) + g(p))− Γ(p)


d̄

(p)
+m+


i(Γmc + g(p))− Γ(p)

rs


d̄

(p)
−m + Γ

(pq)
−m + A

(p)
+m, (4.5)

˙̄d
(p)
−m =


i(−∆ω(p) + g(p))− Γ(p)


d̄

(p)
−m+


i(Γmc + g(p))− Γ(p)

rs


d̄

(p)
+m + Γ

(pq)
+m + A

(p)
−m, (4.6)

with the total loss rate of the pth disk Γ(p) = Γ
(p)
rs + Γ

(p)
0 + Γ

(p)
ext, the frequency detuning

∆ω(p) = ω−ω
(p)
0 , the coupling to other disks Γ

(pq)
+m,−m = i

N
q=1,q ̸=p Γpqd̄

(q)
+m,−m, and the external

coupling term to each mode A
(p)
+m,−m = i


2Γ

(p)
extā

in
+m,−m. The CMT for coupled ensembles of

microdisks deals with the mode amplitudes in each of the resonators. The interaction of the

SNOM tip with the field also needs to be treated locally, depending on the location of the tip.

This has to be taken into account in Eqs. (4.2) and (4.4) with the field distribution depending

7See Fig. 4.1(a) for a sketch of the system under consideration. A comparable analysis of the SNOM tip
induced resonance shift of a photonic crystal cavity can be found in Refs. [Koe05, Lal07].
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on the disk number f (p)(rtip). For simplicity it is further assumed that the SNOM tip when

located in the gap region couples only to the modes of one disk, whereas in reality it can couple

to the modes of both disks forming the gap. The solution of Eqs. (4.5) and (4.6) follows the

way described in Sect. 2.3, leading formally to the same transmissivity and reflectivity of the

tapered fiber coupled to the pth disk

T =

1 +
i


2Γ

(p)
extd̄

(p)
+m

āin
+m


2

, (4.7)

R =

i


2Γ
(p)
extd̄

(p)
−m

āin
+m


2

. (4.8)

Using the model in Sect. 2.2.1 to calculate the two-dimensional intensity distribution of the

excited mode, Eqs. (4.2) and (4.4) give corresponding distributions of the tip-induced scatter-

ing strength, which results in theoretical predictions of transmissivity and reflectivity mode

maps [Eqs. (4.7) and (4.8)]. All unknown coefficients in Eqs. (4.5) and (4.6) can be obtained

by independent measurements without SNOM tip perturbation.

4.3 Experimental verification for a single microdisk

To test the theoretical model and its ability to describe the experimental data, a single disk as

the simplest case was considered. With this restriction, the steady state solutions of Eqs. (4.5)

and (4.6) can be given explicitly by

d̄+m =
−i
√

2Γextā
in
+m [i(−∆ω + g)− (Γrs + Γ0 + Γext)]

[i(−∆ω + g)− (Γrs + Γ0 + Γext)]
2 − [i(Γmc + g)− Γrs]

2 , (4.9)

d̄−m =
i
√

2Γextā
in
+m [i(Γmc + g)− Γrs]

[i(−∆ω + g)− (Γrs + Γ0 + Γext)]
2 − [i(Γmc + g)− Γrs]

2 . (4.10)

This results in the transmissivity and reflectivity

T =

1 +
2Γext [i(−∆ω + g)− (Γrs + Γ0 + Γext)]

[i(−∆ω + g)− (Γrs + Γ0 + Γext)]
2 − [i(Γmc + g)− Γrs]

2


2

, (4.11)

R =

 −2Γext [i(Γmc + g)− Γrs]

[i(−∆ω + g)− (Γrs + Γ0 + Γext)]
2 − [i(Γmc + g)− Γrs]

2


2

. (4.12)

The unknown parameters Γ0, Γmc and ω0 were obtained from an independent spectrum mea-

surement of the weakly excited disk when the tip was absent and by using the theoretical

model without SNOM tip perturbation for fitting. For the measured microdisk a TM po-

larized first order radial mode was chosen, resulting in the values Γ0 = 1.55 GHz, Γmc =



70 4. MAPPING OF EIGENSTATES IN COUPLED MICRODISKS

2.89 GHz and λ0 = 2πc/ω0 = 1556.055 nm. For the perturbed system, the unknown parame-

ters g, Γrs and Γext can be approximated. The coupling coefficient g and the scattering rate

Γrs depend on the polarizability of the SNOM tip and the mode volume. From FEM simula-

tions (see Sect. 2.1.2) a mode volume of Vmode = 6.7× 10−17 m3 and the normalization of the

field strength at the tip position of about 10 nm above the disk of fnorm(x, y) = 0.52f(x, y, z)

can be estimated. Although, the height of the tip above the disk might change or is not

exactly known, this value was kept fixed. The polarizability α depends on the radius of the

tip (approximated as a sphere) and its effective relative permittivity. For the gold coated

SNOM tip ϵtip = −131.718 + i12.639 [Pal91] was used. The radius was allowed to vary in

the range of Rtip = 10 nm to 150 nm due to possible degradation during the large number of

measurements. The external coupling rate Γext was chosen in the range of 1 GHz to 10 GHz.

Although Γext is set at the beginning of each mapping, fluctuations of the tapered fiber posi-

tion during the measurement can change this value. Due to the stepwise wavelength scan and

the accompanying adjustments of the whole setup, it was unlikely to obtain exactly the same

coupling conditions for each of the mode mappings. Within the given parameter ranges, the

calculations are compared to the measured data.

In Fig. 4.2(a) the transmission signal of the resonance under investigation is shown. The

taper is slightly overcoupled and the splitting is hidden by the loaded bandwidth of the sym-

metric and antisymmetric mode. A mode map was recorded at each wavelength marked with

the red lines. The mode maps were taken close to the rim to measure the first order radial

mode, but with the tip not scanning across the rim to avoid vertical tip movements and the

above mentioned artifacts. The scan window has a size of 1.5×1.5 µm2 and the 11 transmis-

sivity and reflectivity mode maps are arranged successively in Figs. 4.2(c) and 4.2(e). The

intensity distributions for the respective wavelengths are calculated for the same section of

the disk and arranged in the same way in Fig. 4.2(b). The corresponding calculated transmis-

sivity and reflectivity mode maps are shown in Figs. 4.2(d) and 4.2(f), respectively. Several

characteristic features can be identified when comparing measurements and simulations:

• The first, most obvious characteristic is the expected phase shift, which the intensity

distribution undergoes when scanning the excitation wavelength through the resonance.

This shift can be seen in any of the picture series in Figs. 4.2(b)-(f) and is tracked by

the dotted lines.

• Unlike the intensity, which shows only positive values, the calculated transmissivity and

reflectivity maps show both positive and negative values, which is in agreement with the

measured data. As also mentioned above, the transmission signal shows less contrast

than the reflection signal.

• The calculated intensity maximum (corresponding to the minimum of the taper trans-

mission spectrum) in frame 5, Fig. 4.2(b) does not coincide with the strongest signal

either in the transmissivity or reflectivity mode maps. Also the absolute maximum sig-
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Fig. 4.2: Successive mode mappings for a stepped wavelength scan of the exciting laser through a resonance
of a single disk using the perturbation of a scattering SNOM tip. For each of the 11 wavelengths marked in
the transmission spectrum, (a) a scan window of 1.5×1.5 µm2 [highlighted in (f), frame 11] was mapped and
arranged horizontally to a picture series (numbered 1 to 11) for (c) transmission and (e) reflection signals.
For the same area of the disk (and arranged in the same way), the intensity distributions of the mode were
calculated in (b), and from this the theoretical (d) transmission and (f) reflection signal maps were obtained.
The dotted lines in (b) - (f) indicate the phase shift that the mode distribution shows when scanning through
the resonance. A good agreement is obtained for the shift of the signal maximum in transmission [(e), (f),
frames 6, 7] and reflection [(c), (d), frames 8, 9] compared to the expected intensity maximum of the mode
[(b), frame 5]. In addition, complex patterned maps are obtained from the measured signal in agreement with
the calculations [ring structure in (c), (d), frame 9].

nal in the transmissivity maps [frame 9 and 10, Fig. 4.2(c)] does not coincide with the

absolute maximum in the reflectivity maps [6 and 7, Fig. 4.2(e)], which is well reproduced

by the calculated maps.

• From the comparison with the optical collection measurement [Fig. 4.1(d)], it is expected

that the intensity maxima and the maxima in the reflectivity maps coincide, which is also

seen here in Figs. 4.2(b), (d), and (f). For the transmissivity maps a phase shift between

frame 10 and frame 11 in Fig. 4.2(b) occurs that is not observable in the reflection mode

maps and could be attributed to a stronger change in the excitation condition to a regime

where transmissivity and reflectivity maps are inverted.8

• A ringlike structure is observable in the transmissivity mode maps in both experiment

and calculation [frame 9, Figs. 4.2(c) and (d)].

8This regime was also observed for several mappings of two coupled disks where the reflectivity maps show
only smaller values than the background and the transmissivity maps show larger values than the background
at the same coordinates (not shown here).
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The observed maps are a result of the complex interplay of excitation wavelength, external

coupling rate and perturbation by the SNOM tip. The found characteristics indicate a redshift

of the resonance due to the perturbation, identifiable from the shifted absolute transmission

and reflection signal in comparison to the intensity maximum as well as the ring structure

described above. Perturbing the mode while it is excited above the resonance leads to a

decrease of the transmission signal and an increase of the reflection signal. For the ring

structure the perturbation is strong enough to shift the resonance through the transmission

minimum, which leads to the increase of the transmission signal at the center of the intensity

maximum. Due to less spectral features in the reflection signal (e.g., see Sect. 5.4), the ring

structure is not observable in the reflectivity mode maps.

On the one hand, the observations contradict the results in Refs. [Zhu11, Wan10] where

a metallic perturbation leads to a blueshift of the resonances. Furthermore, the statement

that the perturbation affects only the symmetric mode can not be verified here, which has at

least two possible reasons. First, the mode splitting in the experiment was weak (due to the

strong coupling to the tapered fiber) and the shift of the symmetric mode did not overcome

the bandwidth at all. Second and more likely, there is no redistribution of the symmetric

and antisymmetric mode for different positions of the tip (as described in Ref. [Zhu11]) since

they are fixed due to the distribution of the surface roughness and the location of the taper

excitation.9 Therefore, both modes are influenced by the tip and get shifted. On the other

hand, in the observed interaction regime the influence of the tip on the mode can not be

neglected as in Ref. [Bla10] since no signal would be observed at all.

The simulation of the above mentioned details show that the described model is capable

of explaining the measured results by the rather simple dipole approximation of the interac-

tion of the SNOM tip with the disk resonator mode. From this one can conclude that the

measured transmission and reflection signals are related to the actual intensity distributions

of the WGMs in coupled microdisks. The measurements also reveal the standing wave nature

due to the coupling of cw and ccw WGM. Although the surface perturbations are randomly

distributed along the sidewall of the disk, the measured reflection signal indicates a fixed

phase relation between the individual scatterers and a fixed standing wave pattern. This is

also substantiated by the nature of the symmetric and antisymmetric combinations of cw and

ccw modes, where the former tends to maximize its overlap with the high index regions and

the latter one with the low index regions.

In the following sections of this chapter eigenmode mappings of two and three coupled

microdisks in different arrangements are presented. Depending on the number of coupled disks

and the symmetry of their arrangement, a splitting into a certain number of normal modes

occurs (see Sect. 2.2.2). Only first order radial modes with a single intensity maximum ring

9 Otherwise no standing wave pattern would be observable because, e.g., the maximum of the intensity of
the symmetric mode would follow the tip position instantaneously. Also a much stronger splitting of the
resonances in the presence of the SNOM tip should be observed, which was not the case in the experiments.
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along the rim of the disks are investigated. The mapping of the mode distribution of the entire

coupled disk structure is not necessary in this case, because from theoretical calculations it is

expected that the differences of the intensity distributions emerge in the gap regions. Hence,

the mappings were taken across the gaps of neighboring disks only. For each gap, a squared

scan window of of 5×5 µm2 or 10×10 µm2 was chosen. This approach has the advantage

of reduced scanning time and avoids measurement artifacts when scanning far from the gap

regions. For the comparison with calculations, the intensity maps from the modal expansion

method (Sect. 2.2.3) were used. On the one hand, this is motivated by the fact that for all

measured modes and gaps, the coupling conditions during the scan could be different, which

would result in a large number of simulations (parameter adjustments). On the other hand,

the calculated intensity distribution from the rigorous modal expansion agrees quite good with

the measured reflectivity mode maps for a relatively large range of detunings from the exact

resonance wavelength, although the maxima of both do not coincide [Figs. 4.2(b) and (f)].

This leads to fast and reliable calculations for comparison with experimental data.

4.4 Two coupled microdisks

For two coupled microdisks, a splitting in two resonances can be observed in the spectra

(see Chap. 3 or [CS5]). These are the symmetric and antisymmetric combinations of the

eigenmodes of each of the single disks. The difference in the intensity can be observed when

scanning across the gap between the two disks. In Figs. 4.3(a) and 4.3(b), the respective mode

mappings and the calculated intensity distributions are shown. At the shorter wavelength

antisymmetric mode, the fields in both disks have a phase difference of π, which leads to a

destructive interference in the gap region. The recorded reflection mode map shows no notable

signal change in the center of the gap between the disks, which is in excellent agreement with

the simulations of the mode intensity [Fig. 4.3(a)]. The intensity profile along the blue dashed

lines in the mode maps shows that the signal reaches the background level in the gap. For

the symmetric mode at long wavelengths, the fields in both disks are in phase, which leads to

constructive interference in the gap. This can be seen by the strong signal changes in the gap

of the reflection mode map in agreement with the simulated intensity distribution [Fig. 4.3(b)].

Here the intensity profile shows much larger values than the background level.

From the measured standing wave pattern the effective wavelength and the effective mode

index of the excited resonance can be extracted. To this end, the intensity profile along

the green dashed line in Fig. 4.3(b) is plotted in Fig. 4.3(d), which shows a regularly os-

cillating curve. The distance between successive maxima corresponds to half of the wave-

length in the disk. Calculating numerically the fast Fourier transform (FFT) gives the

spectrum of this oscillation shown in Fig. 4.3(e). The main peak appears at an effective

wave vector keff = 2πneff/λ = (5.08± 0.33) µm−1, resulting in an effective mode index of
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Fig. 4.3: Measured reflection mode maps and calculated intensity distributions across the gap of two coupled
microdisks of the (a) antisymmetric and (b) symmetric mode. The profile in each picture is along the blue
dashed line and shows the difference between the two modes. For the antisymmetric mode the signal in the
gap between disk 1 and 2 drops down to the background level, whereas for the symmetric mode a significant
signal in the gap can be measured in agreement with the calculated intensity. (d) The profile along the green
dashed line in (b) is used to extract the effective mode index of the excited resonance. (e) The FFT from the
signal in (d) results in a main spatial frequency of keff = (5.08± 0.33) µm−1, which gives neff = 1.258± 0.082
in agreement with calculations for first order radial modes (see Fig. 3.4).

neff = 1.258± 0.082. This value is in agreement with the calculations for the first order radial

modes based on the analytical EIM model in Sect. 2.1.1 (see also Fig. 3.4 for comparison)

and hence verifies the measurement of standing waves in the microdisks. In the spectrum in

Fig. 4.3(e) peaks at higher orders of the main spatial frequency can be observed, which are

due to a slight saturation of the detector at the maximum and minimum values for the mode

mapping shown in Fig. 4.3(d).10

4.5 Three coupled microdisks - linear arrangement

For three coupled microdisks in a line arrangement the splitting into three resonances can be

observed. In general they are not equally spaced in the wavelength spectrum (for comparison

see Fig. 3.11 or the discussion in Sect. 2.2.1). In the same way as for the two coupled disks,

the mode maps were recorded for each of the three eigenmodes across the two gaps. Figure 4.4

shows the measured mode maps with the disk numbered from right to left with 1, 2 and 3,

where always the right disk (disk 1) was excited. In Fig 4.4(a) the measured and calculated

intensity distribution for the antisymmetric mode at the shortest wavelength of the three

10The intensity profile was subtracted by the background level and normalized to the maximum value.
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Fig. 4.4: Measured reflection mode maps and calculated intensity distributions across the two gaps of three
coupled microdisks of the (a) antisymmetric, (b) intermediate and (c) symmetric mode. For the antisymmetric
mode (a) no signal from the gaps but from all disks with almost equal strength is obtained. For the middle
resonance (b) a signal is measured in disk 1 and 3 but not in disk 2. For the symmetric mode (c) a signal
from all disks as well as from the gaps is measured, with the strongest signal from disk 2. All measurements
are in good agreement with the calculated intensity distributions of the same sample sections (10×10 µm2

window covering the gap region). Corresponding far-field scattering signals are shown in the lowest row of
each subfigure, from which the intensity distribution can be obtained roughly.

resonances is shown. As in the case of two disks, the fields in adjacent disks have a phase

difference of π, which leads to destructive interference in the gaps between the disks. The

differences in the signal strength and characteristics of the measured maps of the two gaps are

caused by the measurement procedure itself: for one gap, all modes were mapped first before

the SNOM tip was moved to the other gap. This requires new alignment of the taper-disk

gap as well as the resonance wavelength for each mode. It was shown in Sect. 4.3 that these

parameters have a strong influence on the characteristics of the recorded mode maps and it is

unlikely to match exactly the same conditions of the complex system at different measurement

times. Nevertheless, there is an agreement between measurements and simulations. For the

central resonance [Fig. 4.4(b)], the phase differences between the fields in adjacent disks is π/2,

which leads to a cancellation of the field in the complete middle disk (disk 2), and therefore

no signal changes can be measured in agreement with the simulation. The symmetric mode

at longest wavelength [Fig. 4.4(c)] shows a signal from all three disks, while the signal from

the central disk is strongest. The fields in adjacent disks are in phase, so their constructive

interference leads to an intensity signal in the gap, which is clearly seen in the measurements

and the simulated mode maps. An interesting detail is the agreement of the relative signal

strength in the weaker excited disk (1 and 3) when comparing measurement and simulation.

At the region where the gap is smallest, the intensity in these disks is lower than further

away from the gap along the rim and the signal extends more toward the center of disk.
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For each of the modes in Fig. 4.4 an image of the corresponding far-field scattering signal is

shown in the last row of each subfigure. From these images the intensity distribution can

be obtained roughly. Particularly, the dark middle disk (disk 2) can be identified at the

central resonance [Fig. 4.4(b)] as well as the higher intensity from disk 2 of the symmetric

mode [Fig. 4.4(c)]. Nevertheless, no details about the mode symmetry and distribution can

be obtained due to the random distribution of the scatterers and the low resolution of the

infrared camera.

4.6 Three coupled microdisks - triangular arrangement

For the coupling of three identical disks in a triangular arrangement, a splitting into four

resonances is expected from the theory developed in Sect. 2.2.1. The measured spectrum

in Fig. 4.5(a) shows six (numbered) resonances, which can be explained by a nanoscale size

mismatch of the disks. This results in a lift of degeneracy of modes, which for identical coupled

disks have the same resonance wavelength but different mode distributions. Comparison to the

calculated spectrum indicates that all disks have a slightly different radius: R1 = 15.1008 µm,

R2 = 15.0958 µm and R1 = 15.1012 µm with a maximum deviation of ∆R = 5.4 nm. The

weaker, unnumbered resonances in the spectrum belong to a mode with different polarization,

which spectrally overlap and are not suppressed completely. For the numbered resonances

a mode map across each gap was recorded and is shown together with the corresponding

simulation in Fig. 4.5(c)-(h). The disks are numbered according to the microscope image

shown in Fig. 4.5(b) with disk 1, disk 2 and disk 3. The gaps are denoted as gap 1-2 for the

gap between disk 1 and 2, gap 2-3 for the gap between disk 2 and 3 and gap 1-3 for the gap

between disk 1 and 3. The first resonance [Fig. 4.5(c)] is justified as the antisymmetric mode

with zero intensity in the gaps. For the measurement of gap 1-3 the mode was not excited

exactly at the same wavelength as for the other gaps, which can be seen by the slight phase

difference between the fields in disk 1 and 3 and a weak signal in the gap region. Both can

be reproduced by the simulation when taking the shifted excitation wavelength into account.

For the second mode [Fig. 4.5(d)] the fields in disk 1 and 2 have a phase difference of π,

resulting in a destructive interference in the gap between them. The phase difference of both

disks with respect to disk 3 is π/2, leading to the observed cancellation of the field in disk 3.

The agreement between the measured map and the simulation for the gap 1-3 [third row of

pictures in Fig. 4.5(d)] is remarkable, where the signal from disk 1 fills the gap and disappears

at the surface of disk 3. For the third mode [Fig. 4.5(e)] the fields in disk 1 and 3 have a phase

difference of π, hence no intensity from the gap 1-3 is observed, whereas the phase difference

of both to disk 2 leads to a cancellation in disk 2 (almost no signal is measured from disk 2

at both gaps, 1-2 and 2-3). In the case of identical disks, the two cases [Figs. 4.5(d) and (e)]

would be indistinguishable and the resonances in the spectrum would be degenerated, whereas
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the small radius difference leads to different energy levels and hence distinguishable resonance

wavelengths.

The mode maps for the long wavelength resonances 4, 5 and 6 [Fig. 4.5(f)-(h)] show the

same characteristics but for the symmetric modes of the system. This means that in general

an intensity signal from the gap between two disks can be observed when there is a signal in

both of the disks. In detail, for resonance 4 [Fig. 4.5(f)] no intensity was measured in disk 3,

whereas for the resonance 5 [Fig. 4.5(g)] no intensity was obtained from disk 2. The fields in

the remaining disks for both modes are in phase and interfere constructively in the gap. The

simulations are in good agreement for resonance 5 but deviate a little for resonance 4. Here the

intensity in disk 3 is not well reproduced. This indicates the strong sensitivity of the system

on the exact parameters. The fully symmetric resonance 6 shows an intensity signal from all

three disks and gaps in the measurement as well as in the simulation. However, the measured

maps show relatively weak contrast, which can be explained by the degradation of the used

SNOM tip. After dozens of scans the tip loses sharpness, which results in reduced contrast of

the intensity signal during the measurements. Nevertheless, all modes can be identified from
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the associated maps in agreement with the simulations.

Chapter summary

To summarize this chapter, the implementation of an experimental method for high resolution

near-field mapping of WGM in coupled microdisk resonators was presented. The perturbation

of the transmission and reflection signals in a coupled taper-disk system by the presence of

a scattering SNOM tip can be used to extract the intensity distribution of the WGM in the

disks. This approach outperforms the resolution of a direct near-field collection by an aperture

SNOM tip [Bal99]. Additionally, the stronger interaction of the tip results in a better signal-

to-noise-ratio than the far-field collection of the scattered light from the scattering SNOM tip

[Bla10]. But the latter characteristic also points out the complexity of the method because

the interaction with the SNOM tip can no longer be neglected when interpreting the results.

Using a combination of a rigorous modal expansion method with a coupled mode model, the

influence of the SNOM tip can be taken into account at reasonable computational effort11

and allows to perform several important parameter variations. The model offers the ability

to simulate the transmission and reflection signals measured at both tapered fiber ends used

for excitation of the microdisk samples and to predict the characteristics observed in the

measured scattering SNOM mode maps. Moreover, detailed near-field mode mappings of two

and three coupled microdisks are presented, which show excellent agreement with theoretical

calculations.

In spite of the demonstrated agreement between measurements and simulation, the accuracy

of the model could be enhanced further by taking into account details of the shape of the SNOM

tip and by describing its interaction with the disk mode beyond the dipole approximation. In

order to improve the experimental setup an interferometric detection scheme could be added,

which would allow to measure phase information of the mode distributions inside the disks.

The obtained data from spectrum measurements and the respective mode intensity distri-

butions can be used, on the one hand, to identify size variations of the individual disks in

the fabricated coupled disk samples and, on the other hand, to selectively excite or tune the

resonances of such a coupled resonator system. In particular, the samples consisting of three

coupled disks can be of interest for sensing applications because it is possible to spatially re-

solve perturbations of the system. For example, the position of adsorbed nanoparticles, which

cause a resonance shift and broadening [Zhu09], can be identified because only certain modes

of the system are influenced. Also it is possible to selectively tune the spectral distance of

the modes, e.g., by changing the temperature of a certain disk in the coupled ensemble, which

might be useful for optical filter applications.

11In comparison to computationally demanding FDTD or FEM simulations.



5 Optically induced thermal nonlinearity

in coupled microdisks

The high Q-factor and small mode volume of the WGMs in microresonators lead to a strong

enhancement of the circulating intensities given by (according to Sect. 3.4.2)

Icirc =
FPpump

πAmode

=
λ

2πng

Q

Vmode

Ppump, (5.1)

with the excitation wavelength λ, the pump power Ppump, the finesse F , the cross sectional

mode area Amode, the mode volume Vmode, the Q-factor Q and the group index ng [Eq. (3.12)].

The typical parameters obtained for the investigated microdisks [λ = 1.55 µm, ng = 1.441,

Q = 2 × 105, and Vmode = 85(λ
n
)3] and Ppump = 1 mW result in Icirc ≈ 32 MW/cm2. In com-

parison to other fused silica based microresonators like spheres and toroids, this value is up to

two orders of magnitude lower [Vah03], which obviously is due to the lower Q-factor in the mi-

crodisks. This also inhibits the observation of Kerr nonlinearity based effects1 [Bra89, Rok05],

e.g., optical parametric oscillations [Spi04] or stimulated Raman scattering [Joh09] in the mi-

crodisks for pump powers of a few milliwatts. According to the pump power threshold observed

for silica microtoroids and the V/Q2 dependence [Kip04a], one can estimate the parametric

oscillation threshold to a few watts (if other requirements are fulfilled, e.g., resonance detun-

ing).

Thermal nonlinearity (or temperature induced dispersion) [Bra89, Ilc92, Gor04, Fom05], on

the other hand, relies on heating of the resonator material due to linear absorption of light in

the material. The related temperature dependent quantities are the positive thermal refrac-

tivity n−1dn/dT and expansion coefficient αth summarized in the experimentally observable

thermal coefficient βth

βth =
1

n

dn

dT
+ αth. (5.2)

In fused silica microtoroids threshold powers of approximately 50 nW where estimated [Sch09a].

Translated to the Q-factor observed for the microdisks, thermal effects come into play for pump

powers larger than Ppump = 50 µW. They are thus the lowest threshold nonlinear effect in

fused silica microresonators. Although thermal effects are slow in comparison to the instan-

taneous Kerr effect, for sufficiently slow power modulation (e.g., slowly sweeping through a

1In amorphous fused silica the third order nonlinear term is the first contributing to the nonlinear polarization.
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resonance) they can lead to effects similar to those which can be observed for Kerr nonlinearity

like bistability and hysteresis. For this reason these effects are of interest for the realization

of optical switching and all optical tuning of resonances in microresonators.

In this chapter the consequences of the thermal nonlinearity for the spectral response of

coupled microdisks are investigated in detail. To this end, the CMT is extended to take into

account the thermal nonlinear effects. The temperature dynamics inside the microdisks is

described by means of a heat equation and different relaxation time scales are identified. Ex-

perimentally, the impact of thermal nonlinearity is observable as a pump power dependent

resonance frequency shift. This can be measured either by fixed wavelength pump power tun-

ing with focus on the transmission signal changes or by sweeping excitation at different pump

power levels observing distortions in the spectral shape of the resonances. The applicability of

both methods for the particular system of tapered coupled microdisks is discussed in detail.

Furthermore, a pump and probe technique is implemented to measure the temperature relax-

ation time independently since it is the most important characteristic for proper description

of the thermal nonlinearity by the extended CMT. With a reliable experimental measurement

technique and the important parameters of the microdisks at hand, the nonlinear resonance

spectra of two and three coupled microdisks are investigated comprehensively and new effects

like differential all optical resonance tuning are discussed. Finally, a concept for compensation

of the thermal refractivity of the resonator material is discussed and experimentally realized

since thermal resonance shifts are detrimental for particular practical applications.

5.1 Coupled mode theory including thermal nonlinearity

The CMT (Sect. 2.3) can be expanded to take into account the thermal nonlinear effects by

introducing the polarization term

∆P̄th(r, t) = ϵ0∆ϵth(r, ωm)d̄m(t)Em(r, ωm), and ∆ϵth(r, ωm) = 2n(ωm)
dn(ωm)

dT
δT (r, t). (5.3)

Substitution into Eq. (2.58) leads to the mode dynamics (single disk with external coupling)

d

dt


d̄m(t)


=


i(ω0 − ωm)− (Γ0 + Γext)


d̄m(t) + iω0βth,nδT (t)d̄m + i


2Γextāin(t), (5.4)

with the mode distribution averaged temperature change δT and the thermal refractivity βth,n

δT (t) =


ϵ(r, ωm)δT (r, t)|Em(r, ωm)|2dr

ϵ(r, ωm)|Em(r, ωm)|2dr
, and βth,n =

1

n(ω0)

dn(ω0)

dT
. (5.5)

For the derivation of Eq. (5.4) only the thermal refractivity was used since for fused silica it

is much larger than the thermal expansion. To be more accurate one can take into account
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thermal expansion by replacing βth,n with βth from Eq. (5.2).2 The resonance frequency shift

per Kelvin can be inferred from Eq. (5.5) to ∆νth = −(ω/2π)βth, which for a wavelength

around 1550 nm calculates to ∆νth = −1.58 GHz K−1 corresponding to ∆λth = 12.7 pm K−1

(αth = 5.5× 10−7 K−1 [Web03], dn/dT = 1.1× 10−5 K−1 [Mal65]).3

The temperature dynamics can generally be described by the heat equation for the deviation

δT (r, t) from a reservoir temperature

d

dt
δT (r, t)− kth

ρCp

∇2δT (r, t) =
αabs

ρCp

I, (5.6)

with the thermal conductivity kth, the material density ρ and the specific heat capacity (at

constant pressure) Cp. The temperature increase is driven by the linear material absorption

αabs of the optical intensity I carried by the WGM. The right hand side of Eq. (5.6) can

be written as4 αabsI/(ρCp) = αabsc|dm(t)|2/(ρCpnVmode). Here the relation for the intensity

I = ⟨u⟩c/n in terms of energy density ⟨u⟩ and light velocity in the medium c/n was used as

well as the energy stored in the resonator |dm(t)|2. The temperature relaxation can be due to

different heat exchange mechanisms: heat conductivity of the bulk material, heat conductivity

and convection of the surrounding gas or thermal radiation. Usually, microresonators are fixed

to substrates (disks and toroids) or optical fibers (spheres) and hence heat conduction into

the resonator material and the support are the main contributions. If the microresonator is

placed in a non-evacuated environment also heat convection of the surrounding gas can have

significant influence as mentioned in Ref. [Ilc92]. For a detailed analysis of the relaxation

dynamics one has to distinguish between different regimes:

• First, one can consider the relaxation of the temperature in the mode volume to the

remainder of the resonator, which is heated by the linear absorption of the WGM.

Since the mode volume is generally very small compared to the volume of the resonator

(especially for spheres), the relaxation is expected to be relatively fast. Assuming a

constant (mean) temperature throughout the mode volume, the second spatial derivative

in Eq. (5.6) can be approximated as ∇2δT = −2δT/b2 [Ilc92] with the FWHM width of

the mode profile b. This leads to a temperature relaxation rate of

γth,f =
2kth

ρCpb2
, (5.7)

which for the corresponding values (see appendix C) gives a fast relaxation time τth,f ≈ 1 µs.

• Secondly, the relaxation of the temperature in the whole resonator to the environment

2Formally, one could add a term 2ϵ(r, ωm)αthδT to ∆ϵth in Eq. (5.3) and interpret it as change of the dielectric
function at the boundary of the microdisk inducing additional polarization. A comprehensive perturbation
theory for moving boundaries of a dielectric can be found in [Joh02].

3Depending on the reference the value of dn/dT varies between 1× 10−5 K−1 and 1.3× 10−5 K−1.
4This strictly holds only for plane waves and is used as the lowest order approximation. In general one has to
use the Poynting vector to describe the intensity of an arbitrary field.
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has to be considered. For the conducting case the contact to the substrate determines the

relaxation rate. In contrast to the fast relaxation we assume an averaged temperature of

the whole resonator and replace the spatial derivative by the resonator radius. Therefore,

we set γth,s = kth/(ρCpR
2
res), which for Rres = 20 µm gives a relaxation time τth,s ≈ 420 µs.

The above mentioned heat energy transfer due to convection of the surrounding gas can

be important especially for a constant pump power or very slow pump power modu-

lation. It leads to a relaxation rate γth,s,conv = Nukth/(ρCpR
2
res), where Nu is the so

called Nusselt number describing the ratio of convective and conductive heat transfer

at a boundary (for air at room temperature Nu ≈ 0.3) [Ilc92]. This would lead to a

characteristic relaxation time of τth,s,conv ≈ 1.4 ms, approximately on the same order as

the slow conductive relaxation time.

The general solution of the heat equation may be found with the help of spectral decomposition

[Fom05] but usually is hard to calculate and the approximations described above [for the spatial

derivative in Eq. (5.6)] are applied as well. Nevertheless, for the microdisk geometry the heat

equation can be reduced to a 1D problem in the Fourier domain with the assumption that

the temperature is constant across the height and azimuthal direction of the disk [Sch09a].

Further assuming that the heat source (absorption region) is located only at the edge of the

disk at Rres and the temperature above the pillar supporting the disk (with radius Rpil) is

constant, leads to a standard inhomogeneous Bessel differential equation. Expansion of the

solution in terms of Fourier thermal frequencies Ω up to the first order results in a general

cut-off frequency, i.e., a highest possible frequency of a propagating temperature wave [Sch09a]

Ω1 = − 4 ln (Rpil/Rres)

1− (Rpil/Rres)2 + 2 ln (Rpil/Rres)[1 + ln (Rpil/Rres)]

kth

ρCpR2
res

. (5.8)

This maximum frequency can be interpreted as fastest possible thermal relaxation rate and

the corresponding relaxation time can be found to τth,s = 2π/Ω1 ≈ 950 µs for typical radii

Rpil = 5 µm and Rres = 20 µm and is at the same order as the slow relaxation time from the

approximation above. Taking into account the second order of the spectral decomposition of

the heat equation, a second cut-off for an extended heating source with the size of the mode

can be found. This results in the same relation for the fast relaxation rate (5.7) as given above.

From the steady state solution of the combined Eqs. (5.4) and (5.6) one can estimate the

pump power threshold for the thermal nonlinear effects to appear in the spectral response of

the microdisks 
i

∆ω + ω0βthδT


−


Γ0 + Γext


d̄m = −i


2Γextāin, (5.9)

δT =
1

γth

αabs

ρCp

c

nVmode

|d̄m|2 =
Bth

γth

|d̄m|2, (5.10)

with ∆ω = ω0 − ωm. Taking the absolute value of Eq. (5.9) and replacing δT , one ends
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Fig. 5.1: Steady state analysis of the Eqs. (5.9) and (5.10). In (a) a graphical representation with possible
solutions for the intersections of the curves showing one solution (D) below threshold and three solutions
(two stable A and C and one unstable B) above threshold. In (b) the temperature induced total resonance
shift as a function of the pump laser detuning from the unperturbed resonance is calculated numerically for
different pump powers (for parameters see appendix C). For a red detuned excitation above threshold the two
stable solutions are the non-shifted low temperature and the shifted high temperature solution. The latter
one compensates for the pump detuning and shifts the system on resonance. The unstable branch is plotted
as dashed line. For a weak red detuned excitation above threshold (red line for ∆ω > −25 GHz, orange line
for ∆ω > −15 GHz) only the high temperature solution appears (no bistability). Below threshold only a weak
redshift of the resonance occurs (green line).

up with a cubic equation in |dm|2. Using the pump power |ain|2 as control parameter the

system bifurcates into three real solutions if the discriminant of the polynomial vanishes,

which happens at (∆ω = 0)

Pthres = |ain|2thres =
(Γ0 + Γext)

3γth

3
√

3Γextω0βthBth

=
2γth

3
√

3βthB
′
th

Vmode

Q2
, (5.11)

where for the last relation critical coupling (Γext = Γ0) was assumed and the relations Q =

ω0/2Γ and B
′

th = BthVmode/ω0 were used to show the V/Q2-dependence of the threshold pump

power. With the typical values for the investigated microdisks this gives Pthres ≈ 80 µW in

agreement with the estimates from the beginning of the chapter. In Fig. 5.1(a) the graphical

representation of the solution of Eqs. (5.9) and (5.10) is shown for three different pump powers.

The intersections of the resonance curve [Eq. (5.9)] with the straight lines from [Eq. (5.10)] are

possible solutions of the system. Below the threshold power only a single solution exists but

above threshold three intersections can be found, where the middle one is an unstable solution

and the other two are stable. The existence of two stable solutions, or stable output states for

a given input state, indicates optical bistability [Gib85]. In Fig. 5.1(b) this is shown from the

numerical solution of Eqs. (5.9) and (5.10) by calculation of the temperature induced total

resonance shift ∆ω + ω0βthδT as a function of the pump laser detuning from the unperturbed

resonance ∆ω. For a red detuned excitation (∆ω < 0) and pump powers above threshold Pthres

the two stable solutions are the non-shifted low temperature solution (at the low power straight

line) and the high temperature solution, where the induced shift compensates the detuning of

the excitation to resonance (exactly only at the threshold power for a given detuning). If the
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initial red detuning becomes less for a given pump power above threshold, the low temperature

solution disappears as does the bistability. For further increase of the blue detuning the shift

of the high temperature solution decreases with respect to the linear solution. Below threshold

only a small redshift of the resonance occurs for excitations close to resonance.

5.2 Optical bistability observable in tapered fiber coupled

microdisks

With the knowledge of the above mentioned characteristics the optical bistability usually

is measured in terms of the system’s output power as a function of the input power, in

this case for a red detuned excitation, where typically a hysteresis can be observed [Gib85].

Translated to the measured transmission signal through the tapered fiber, which is coupled

to the microresonator, the hysteresis is generated as follows [illustrated with the help of

Fig. 5.1(b)]: The initially red detuned pump causes an off-resonant high transmission sig-

nal [e.g., ∆ω ≈ −25 GHz at the low temperature branch in Fig. 5.1(b)]. When increasing the

pump power above a certain threshold, the induced resonance shift compensates the detuning

and the system switches on resonance resulting in a low transmission signal [P ≈ 1000 µW,

switching from low to high temperature solution]. A subsequent decrease of the pump power

results in a low transmission on-resonant state, until a second, lower threshold is reached, be-

low which the system is off-resonant again showing a high transmission signal [P ≈ 240 µW,

switching from high to low temperature solution]. A measured hysteresis can be found in

[Alm04b] for an on-chip silicon ring resonator coupled to a ridge waveguide.

The measurements of the power dependent hysteresis for a tapered fiber coupled microdisk

at fixed wavelengths is shown in Fig. 5.2(a). The observations for increasing and decreasing

pump power contradict with the expectations of the simulations. A detailed analysis identifies

optically induced mechanical oscillations of the coupling tapered fiber considerably influencing

the measurements. First investigated in detail in Ref. [Eic07], the bend tapered fiber can be

forced to mechanical displacement due to induced polarizations by the optical field stored in

the cavity. The repelling force reaches its maximum in the overcoupled regime leading to a

dynamical interaction of the power coupled to the cavity and the position of the tapered fiber.

The tapered fiber can be seen as a mechanical oscillator and the dynamical interaction can

drive its oscillations.

For this reason the transmission signal will permanently switch between the two stable

solutions. However, the measurements of the transmission signal over time for different pump

powers and different detuning [Fig. 5.2(b, c)] indeed shows differences depending on whether

the pump power increases or decreases. Taking the time averaged transmission signal for each

pump power and detuning, one obtains the hysteresis curves in Fig. 5.2(a). Although the

branches for decreasing and increasing pump power are switched due to the influence of the
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Fig. 5.2: Bistability measurements by pump power tuning for fixed wavelengths around a resonance at
λ = 1550.445 nm. (a) For a red detuned excitation bistability hystereses can be observed for the time av-
eraged transmission signals in qualitative agreement with calculations. In the experiment the onset of the
hysteresis occurs for less red detuning than expected from the simulations and also the different branches for
up and down pump power tuning are interchanged as compared to theoretical expectations [see also Fig. 5.1(b)].
The differences are caused by optically induced mechanical oscillations of the tapered fiber leading to periodic
alterations of the transmission signal over time shown in (b) and (c) with different strength depending on
the detuning of the excitation. The period of the oscillations is independent of the detuning [e.g., compare
P = 0.7 mW in (b) and P = 1.1 mW in (c)].

taper oscillation dynamics, the shape and size of the hysteresis agrees qualitatively with the

simulations of the power and detuning dependent transmission [Fig. 5.2(a), calculated from

Eqs. (5.9), (5.10) and (2.66)].

The oscillations of the bend tapered fiber were analyzed experimentally in further detail

to identify the parameter ranges where they play a significant role. Measuring the time

traces of the transmission signal for different pump powers and detuning from resonance one

obtains the spectral components of the taper oscillation by Fourier transformation. The main

oscillation is found at 130 Hz. The taper oscillation prevents the system to be held at a

constant transmission signal level and hence is the limiting factor for performing reproducible

experiments. Especially, for high pump powers the taper displacement amplitudes can become

so large that the taper eventually gets stuck to the resonator.

To circumvent the drawbacks of the fixed wavelength excitation one can measure the bista-

bility also in the case of a wavelength sweeping excitation used for the resonance spectrum

measurements.5 Sweeping the excitation from smaller to longer wavelengths (positive sweep-

ing) across a resonance for high enough pump power, leads to a distorted asymmetric resonance

line shape (smooth transition at the low wavelength side of the resonance, steep transition

at the long wavelength side of the resonance). The pump laser traps the resonance, which

gets thermally shifted, up to a maximum detuning corresponding to the actual pump power.

As the excitation tunes above this wavelength the system switches from the on-resonant to

the off-resonant state and the resonance relaxes to its initial (cold cavity) wavelength. When

5This method was used from the early days on to measure bistability hystereses [Ilc92].
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Fig. 5.3: Bistability measurements with sweeping excitation of a single microdisk (same microdisk as in
Fig. 5.2). (a) For a positive wavelength sweeping (vsweep = 40nm s−1) the resonance shape becomes asymmetric
with an increasing redshift of the transmission signal minimum for increasing pump powers. A negative
sweeping at the same power levels results in a narrow and weakly shifted resonance. In the lower graph
corresponding simulations based on Eqs. (5.9), (5.12) and (5.13) show good agreement, although for high
pump powers (P = 2 mW) again the onset of taper oscillations can shift the transition wavelength of the
signal. (b) The bistability hysteresis is most pronounced for the first order radial modes and disappears for
the third order modes caused by the reduced Q-factor.

tuning the excitation from longer to smaller wavelengths (negative sweeping) the transmission

signal becomes low at the cold cavity resonance (or close to it for higher pump powers). Since

the laser sweeping is opposite to the temperature induced resonance shift, the system gets

off-resonant immediately. This behavior is illustrated in Fig. 5.1(b), where for the positive

wavelength sweeping one has to start on the right upper corner of the graph following the

high temperature branch, and for the negative sweeping one starts at the lower left corner

following the low temperature branch. To observe the bistable hysteresis the sweeping time

through the resonance must be on the order of or slower than the thermal relaxation [CS8].

However, it must be faster than the response of the taper oscillations to keep a constant cou-

pling while scanning through the resonance. The maximum sweeping speed of the available

tunable laser was 40 nm s−1, which for a resonance with a Q-factor of about 105 results in a

sweeping time through resonance of τsweep ≈ 250 µs. This indeed is on the order of the slow

thermal relaxation time estimated above and confirms that the whole resonator is thermalized

during this time due to the fast relaxation of the temperature in the pumped mode volume.

As a result the excitation is much faster than the mechanical oscillation period, leading to a

constant coupling strength uninfluenced by self-induced taper vibrations.

Typical measurement curves for a single disk resonance (λ = 1550.445 nm, compare Fig. 5.2)

in Fig. 5.3(a) show the increasing hysteresis for increasing pump powers as expected from the

considerations above. For the simulation of the measured spectra Eq. (5.9) can still be used

in the steady state approximation since the Q-factor corresponds to a mode relaxation time

τ0 ≈ 100 ps much faster than τsweep. The sweeping dynamics is introduced by an explicit time
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dependence of the detuning as

∆ω(t) = ω0(t)− ωm =
2πc

λ0 + vsweept
− ωm. (5.12)

The temperature relaxation must be calculated dynamically since τsweep ≈ τth,s and reads as

d

dt
δT = −γth,sδT + Bth|d̄m|2. (5.13)

The calculated transmission signal hystereses are plotted in the lower graph of Fig. 5.3(a) and

show good agreement with the corresponding measured data. The difference in the position

of the steep signal transition when comparing simulation and experiment, especially for high

pump powers, is again caused by the onset of taper oscillations because the on-resonant time

becomes comparable to the taper response time due to the resonance trapping effect. Nev-

ertheless, the influence is much weaker than for the fixed wavelength pump power tunings,

which allows reliable and reproducible measurement of the temperature induced nonlinearity.

In Fig. 5.3(b) a comparison of the power dependent resonance shape is shown for different

radial mode orders. As expected, the nonlinear resonance shift is strongest for the high-Q first

order modes and decreases for increasing radial mode order. For the third order only a small

shift of the resonance is observed but no distorted resonance shape or bistability hysteresis.

5.3 Direct measurement of the thermal relaxation time

The thermal relaxation rate in Eq. (5.13) so far was estimated from theoretical considerations

and used as a fitting parameter in the calculations of thermal nonlinear effects (which is com-

mon practice in literature, e.g., see [Joh06, He09, CS3]). To reduce the uncertainties of this

parameter and to possibly confirm the values from the dynamic models one has to measure the

thermal relaxation time independently. Here we use a pump and probe experiment involving

two separate first order resonances of a single microdisk. A sketch of the setup is shown in

Fig. 5.4(a). A high power pump laser with a fixed wavelength at a microdisk resonance λpump

is coupled through a first tapered fiber. The low power probe laser, coupled to the microdisk

through a second tapered fiber, sweeps over another resonance λprobe spectrally distinct from

the pump mode. The sweep start of the probe laser triggers a pulse generator that allows to

switch off the pump laser with a variable time delay ∆t by use of an acousto-optical modulator

(AOM). The switching time of the pump signal is about 200 ns, which is much faster than

any thermal effects. The two tapered fibers are used to reduce the impact of taper oscillations

due to the high power pump switching on the probe measurement and also allow for different

coupling ratios of pump and probe signal. The probe should be coupled much less to avoid

thermal or resonance broadening effects by the probe laser itself. After the microdisk the

signals are filtered using wavelength-division-multiplexer (WDM) to measure only pump or
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start triggers a pulse generator (PG) driving an acousto-optical modulator (AOM), which switches off the
pump laser (fall time approx. 200 ns) with a tunable time delay (∆t = 10µs per sweep); TLS - tunable laser
source, FPC - fiber polarization controller, N2 - nitrogen purged sample stage, WDM - wavelength division
multiplexer, VOA - variable optical attenuator, PR - photo receiver, Osci - oscilloscope. (b) Measured probe
transmission signal for increasing switching delay. As the switching delay of the pump approaches the sweeping
delay of the probe resonance, a significant shift of the probe resonance can be observed. The green circles
mark the transmission signal minimum corresponding to the resonance wavelength. (c) Plotting the resonance
wavelength as a function of the switching delay (zero shifted to the hot cavity resonance), an exponential fit
allows to extract the thermal relaxation time τth = (0.496± 0.043) ms.

probe in the respective arms. Starting with the pump switching at a time when the sweeping

probe laser wavelength is far below λpump, in each subsequent sweep the switching delay was

increased by ∆t = 10 µs in order to shift the pump switching time across the time the probe

laser is at the resonance λprobe. A typical measurement is shown in Fig. 5.4(b). As the pump

switching time (blue diagonal line) approaches the cold cavity probe resonance it gets shifted

to its hot cavity value due to the temperature increase in the resonator. Plotting the extracted

probe transmission signal minima as a function of the switching delay ∆t [Fig. 5.4(c)] an expo-

nential decay from hot to cold cavity resonance with a decay time of τth = (0.496± 0.043) ms

was measured. For the strongly under-etched samples [compare Fig. 3.2(a)] that were used in

this experiment this value agrees well with the above made estimate for the slow conducting

thermal relaxation time τth,s ≈ 420 ms of the whole resonator (see Sect. 5.1). Measurements

also reveal the independence of the relaxation time on the polarization of both pump or probe

excitation. The measured total resonance shift ∆λ = 32 pm corresponds to δT = 5 K inside

the disk, where the measured value βth = 4× 10−6 K−1 was used (see Sect. 5.5).

5.4 Nonlinear mode dynamics in coupled microdisks6

Since it was found in Sect. 3.4 that the advantageous characteristics of single microdisks

are preserved when they are coupled to each other, we expect to observe nonlinear effects

as described in Sect. 5.2 in coupled microdisks as well. Nonlinear effects in such coupled
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resonator systems are of interest due to the ability of tuning the spectral response of only

partial modes all optically in order to realize, e.g., sophisticated tunable filters and delay lines

[Yan04, Mel10, Tob08].

For the theoretical description of the mode dynamics of coupled fused silica microdisks,

taking into account thermal nonlinearity, Eqs. (5.4) and (5.6) of the single disk case can

be expanded straightforwardly using the relations in Sect. 2.3.3. The resulting system of

coupled nonlinear differential equations can be simplified by making use of the different time

scales for the optical and thermal response. Due to the fast mode relaxation the steady

state approximation of the mode amplitudes can be used, describing all dynamics on the time

scale of the much slower thermal effects as done in Sect. 5.2. Further simplification can be

made by assuming equal temperature coefficients for all of the individual disks in the coupled

structure. This limits the observable stable solutions of the system as compared to the study

of two nonidentical coupled microtoroids presented in Ref. [Gru09]. Nevertheless, the effects

of inter-disk coupling as well as variable excitation of individual disks of the structure can be

investigated for the used coupled disk samples. The final system of equations is written as

d̄
(p)
+m = −

iΓmcd̄
(p)
−m + i

N
q=1,p ̸=q Γqpd̄

(q)
−m + i


2Γ

(p)
extāin

i(∆ω
(p)
m + ω0βthδT

(p)
)− (Γ0 + Γ

(p)
ext)

, (5.14)

d̄
(p)
−m = −

iΓmcd̄
(p)
+m + i

N
q=1,p ̸=q Γqpd̄

(q)
+m

i(∆ω
(p)
m + ω0βthδT

(p)
)− (Γ0 + Γ

(p)
ext)

, (5.15)

d

dt
δT

(p)
= −γth,sδT

(p)
+ Bth


|d̄(p)

+m|2 + |d̄(p)
−m|2


, (5.16)

with the coefficients described in Sects. 5.1 and 5.2. Equation (5.16) is integrated numerically

according to the sweeping speed dependence [Eq. (5.12)] of the frequency detuning ∆ω in

Eqs. (5.14) and (5.15). The resulting values δT
(p)

(∆ω) are then used to calculate the steady

state amplitudes of d̄
(p)
±m from which the transmissivity and the reflectivity can be calculated

according to Eqs. (2.66) and (2.76). The values of the parameters used in the calculations can

be found in appendix C. The coupling and loss rates (Γ-parameters) as well as a possible reso-

nance detuning of the individual disks are determined independently by linear measurements

as described in Sect. 3.4. The pump power applied to the system is the crucial parameter

for nonlinear measurements and hence the taper transmission losses (see Sect. 3.2) have been

taken into account for accurate calculations. The thermal relaxation rate γth was taken from

the measurements in Sect. 5.3. Due to a variable radius of the silicon pedestal and hence a

different thermal contact to the substrate, the relaxation rate may vary for different samples.

In the following Eqs. (5.14), (5.15) and (5.16) were used to predict the spectral characteristics

of two and three coupled disks for variable pump powers.

6The main results of this section are published in [CS3].
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5.4.1 Two coupled disks

In Fig. 5.5 the measurements and simulations of the transmissivity and reflectivity for pump

powers Ppump = 0.1 mW to 4.0 mW are shown for the TE mode at λ0 = 1555.3 nm of the two

coupled disks already investigated in the linear pump power regime in Fig. 3.9. The linear

characterization reveals a resonance mismatch of the two disks, which results in a different

excitation strength of the antisymmetric mode at short wavelengths [Figs. 5.5(a,c)] and the

symmetric mode at long wavelengths [Figs. 5.5(b,d)]. In Fig. 5.5(a) the measured spectra for

low Ppump = 0.1 mW (solid line, white squares) and high Ppump = 4 mW (solid line, gray dots)

are shown together with the corresponding simulated transmissivity (red lines) and reflectivity

(green lines). In the low power case the resonance was excited close to critical coupling. For

the high pump power the coupling shifts to the undercoupled regime, which is due to an

optically induced taper movement as discussed in Sect. 5.2. Using a slightly reduced Γext in

the simulations, this effect can be accounted for [blue dashed line in Fig. 5.5(a)]. Agreement

between measurement and simulation was found and is underlined by the reproduced resonance

bandwidths for low and high pump power as well as the small splitting induced by the coupling

of cw and ccw modes. This feature is clearly observable in the transmission signal, whereas

the reflection signal does not show that rich details. The right y-axis in Fig. 5.5(a) measures

the calculated temperature variation δ̄T from the theoretical model, which is shown for disk 1

(the directly excited disk) as solid line with dark gray shading and for disk 2 as dashed line

with light gray shading. The higher temperature in disk 1 indicates a higher intensity inside

disk 1 than inside disk 2. A corresponding plot for the symmetric mode is shown in Fig. 5.5(b).

Agreement between simulation and measurement is found in terms of resonance bandwidth

and excitation strength, whereas the low power measurement is distorted and the splitting

due to coupling of cw and ccw modes is not observed. The calculated higher temperature in

disk 2 indicates a higher intensity for the excitation of the symmetric mode. Measurements

with the excitation of disk 2 instead of disk 1 show an exchange of the excitation strengths

between symmetric and antisymmetric mode, whereas the ratio of temperatures in the two

disks at both resonances remains unchanged.7 This indicates that the intensity distribution

for each of the resonances depends only on the radius mismatch of the disks in agreement with

the results in Sect. 2.2.2 and [CS5].

In Figs. 5.5(c,d) the measurements of transmissivity and reflectivity are compared to sim-

ulations for the whole pump power tuning range showing very good agreement in terms of

resonance bandwidth, excitation strength and reflected intensity.8 The irregular transitions

of the transmissivity and reflectivity levels at the right edge of the resonances in the mea-

sured data are caused by fluctuations of the system (mainly attributed to changes in the taper

excitation) as discussed in Sect. 5.2.

7The absolute value of temperatures correlates with the excitation strength.
8The transmission signals were normalized experimentally by fixing the working point of the detector using a
VOA. The much weaker reflection signal was measured as is and normalized separately for each Ppump.
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Fig. 5.5: Bistability measurements and simulations for two coupled disks with one disk (disk 1) excited by a
tapered optical fiber. Comparison of measurements for Ppump = 0.1 mW (solid line, white squares) and high
Ppump = 4mW (solid line, gray dots) to simulations of transmissivity (red lines) and reflectivity (green lines)
shows good agreement for (a) the antisymmetric mode and (b) the symmetric mode. Variations of the external
coupling Γext [blue dashed line in (a)] are caused by fluctuations of the taper position. The difference of the
excitation strengths is caused by a resonance mismatch between the two disks and leads to differences of the
temperature changes [right y-axis in (a) and (b)]expected in both disks. Simulations and measurement for the
complete pump power tuning range are shown in (c) and (d) for transmissivity (T) and reflectivity (R). The
sweeping speed is vsweep = 40 nm s−1.

5.4.2 Three coupled disks in linear arrangement

The observable effects of temperature induced resonance tuning and optical bistability for three

coupled microdisks in a line arrangement are of even higher complexity due to the additional

degree of freedom of the eigenmode dependent intensity distribution (see Sects. 2.2.2 and 4.5).

Even in the case of identical coupled resonators the central mode of the three eigenmodes of

the system shows no intensity in the center disk, whereas the intensities of the short and long

wavelength modes are equally distributed in all three disks. Hence, significant differences in

the power dependent spectral distortion can be expected for the excitation of different disks

in the coupled disk system. Experimentally this was measured for three coupled disks of

Rres = 20 µm and dgap = 300 nm, shown in Fig. 5.6. A linear characterization of the system

according to Sect. 3.4 reveals a small resonance mismatch between the disks, resulting in

different excitation strengths of the observable resonances. The individual disk resonances

were found at λ1 = 1543.31 nm for disk 1, λ2 = 1543.70 nm for disk 2 and λ3 = 1543.47 nm

for disk 3, which correspond to radius differences of the disks of about ∆Rres ≈ 6 nm. Taking
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Fig. 5.6: Bistability simulations and measurements for three coupled disks shown on (a) excited at a TM
mode family around λ = 1543 nm. Changing the excited disk from (b) disk 1 over (c) disk 2 to (d) disk 3
the measured transmissivity shows different detuning for the three observable resonances when increasing the
pump power. This is related to the different intensity distribution of the eigenstates of the coupled disk system
and due to slight resonance mismatch between the disks. The sweeping speed is vsweep = 40 nm s−1.

this into account the power dependent transmissivity can be calculated and compared to

measurements as shown in Fig. 5.6 for changing the excitation from disk 1 [Fig. 5.6(b)] to disk

2 [Fig. 5.6(c)] and disk 3 [Fig. 5.6(d)]. The predicted characteristics are well reproduced in

the measured data, especially for the excitation of disk 2. In that case the strong detuning

of the long wavelength resonance can be explained by the strong intensity maximum in the

center disk caused by the particular resonance mismatch of the disks. Pumping the center disk

at the long wavelength therefore leads to a strong excitation and hence a strong heating and

resonance shift. For the excitation of disk 3 the measured excitation strength and detuning

of the short and long wavelength resonance are in agreement with the simulation, whereas

the measurement for the central resonance shows stronger detuning. This is also the case for

the central and long wavelength resonance when disk 1 is excited. A possible explanation of

these observations can be heat transfer between the disks as well as different absorption and

temperature relaxation rates of the individual disks, which were not taken into account in the

simulation.

Nevertheless, the found characteristics can be used to selectively tune the resonances of a

mode family all optically. This is demonstrated by a pump and probe experiment (according to

Sect. 5.3) and the results are shown in Fig. 5.7. In the particular measurement both pump and

probe were coupled to disk 3 with separate tapered fibers. For the pump a TE mode family

around λ = 1550.8 nm was chosen and the pump power was varied from Ppump = 0.1 mW

to 4 mW. For the low power probe a TE mode family around λ = 1524.8 nm was used.

Before the signals reach the detectors both wavelength ranges are separated by appropriate

WDM, because in both fibers pump and probe signals are present due to the sample as a

coupling element. In Fig. 5.7(a), (b) and (c) the pump wavelength was fixed at the short
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Fig. 5.7: Demonstration of a selective resonance tuning of three coupled disks using a pump and probe
technique. For the pump a TE mode family around λ = 1550.8 nm was chosen and the pump power was varied
between Ppump = 0.1 mW and Ppump = 4mW. For the low power probe a TE mode family was used with the
resonances (from short to long wavelength) λ1,probe = 1524.6 nm (blue squares), λ2,probe = 1524.75 nm (green
circles) and λ3,probe = 1525.1 nm (red diamonds). A selective tuning of the probe resonances can be observed
when changing the pump wavelength: (a) λ1,pump = 1550.65 nm, almost equal tuning of all probe resonances;
(b) λ2,pump = 1550.81 nm, strong tuning of λ2,probe; (c) λ3,pump = 1551.15 nm, strong tuning of λ2,probe and
λ2,probe. At the top right of each graph the expected intensity distribution of the pump mode (ideal case of
identical resonators) is shown. Both, pump and probe were coupled to disk 3 with separate tapered fibers.

wavelength resonance, central resonance and long wavelength resonance of the pump mode

family, respectively. For each case the pump power was increased and the resonance detuning of

the probe resonances at λ1,probe = 1524.60 nm, λ2,probe = 1524.75 nm and λ3,probe = 1525.10 nm

were measured. When pumping at λ1,pump all probe resonances are almost equally detuned.

With the pump at λ2,pump the central probe resonance λ2,probe is much more strongly detuned

than λ1,probe and λ2,probe. When the pump is fixed at λ3,pump the central and long wavelength

probe resonances λ2,probe and λ3,probe are strongly detuned, whereas the short wavelength

probe λ1,probe is weakly detuned. The observations are in agreement with the measurements in

Fig. 5.6(d). The measured maximal detuning for the applied pump powers reaches ∆λ = 70 pm

(corresponding to ∆ν = 8.3 GHz) from the initial low power resonance. The spectral separation

between the single resonances can be tuned from a few MHz to several GHz. This effect could

be of interest for a potential application of the three coupled disks as a narrow bandwidth

tunable wavelength division multiplexer (WDM). This device would allow the separation of

three wavelengths with variable spectral spacing and depending on the pump wavelength three

different tuning scenarios are possible: λ1, λ2, λ3 equally tuned; λ3 tuned differently from λ1

and λ2; and λ1 tuned differently from λ2 and λ3.

5.5 Compensation of thermal nonlinearity9

The low threshold thermal nonlinear effects generally are of interest due to the dynamics they

introduce to (coupled) microresonators. Besides the fundamental study to understand nonlin-

ear interaction observable in such systems it might be of interest for possible applications, e.g.,

all optical switching [Alm04b]. Nevertheless, for some applications, like narrow band optical

9The main results of this section are published in [CS4].
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Fig. 5.8: (a) Comparison of the SEM profiles of a pure silica microdisk (top) and a hybrid microdisk containing
a polymer layer (bottom), which can be deposited by additional etching steps during the fabrication. The
insets show the distributions of respective first order WGMs under investigation. The partial overlap with the
polymer layer results in an effective thermal coefficient (refraction and expansion) which is negative. This is
indicated in (b) by the opposite nonlinear bistability sweeping curves of the two different disks. (c) Measuring
the temperature induced resonance shift by heating the sample globally with a thermo-electric heater, the
thermal coefficients of silica, hybrid and polymer microdisks can be measured. For the latter the silica layer on
top of the polymer was removed by an additional etching step. The absolute value of the negative coefficient
found for the polymer is one order of magnitude larger than for the silica.

filters [Tob08] or the stabilization of lasers [Vas03, Lia10] the dependence of the resonance

wavelength on the optical pump power can be a disturbing effect. In order to avoid unwanted

resonance shifts special resonator designs [Sol07a] were developed, which result in a better

thermal contact to the substrate and hence a much faster relaxation. Another approach is the

combination of materials with opposite thermal refractivity that partially guide the WGM,

which for well designed layer thicknesses experiences an effective thermal refractivity close to

zero. This approach was implemented in Ref. [He08] by deposition of polymer layers onto the

microresonator using a wetting technique [Hes90] after the fabrication process.

Here we follow the approach of combining different materials in such a way that we generate

the additional functional layer during the basic fabrication process. Making use of a time

multiplexed deep etching process [Ayo99], which usually is used to fabricate vertically deep

etched structures in silicon by alternating SF6 etching and passivation with CHF3 [Leg95] or

C4F8 [Hen12], thin fluorocarbon polymer films (Teflon) can be deposited on the surfaces of the

microresonator. The polymer layer thickness is well controllable by variation of etching times

and influences all samples on a wafer in the same way. In Fig. 5.8(a) a hybrid silica-polymer

disk with a very thick polymer layer is shown. The polymer layer covers only the bottom

surface of the disk since the top surface was protected by the chromium mask (see Fig. 3.1)

during the multiplexed etching process. Removing the chromium mask before the deep etching

process leads to deposition on top of the resonator, too, which allows to use thinner, more

homogeneous single polymer layers with the same effect on the WGM.

The effect of the thermal properties of the polymer layer on the response of the hybrid

microdisk is exemplified in Fig. 5.8(b). The high power sweeping curves show an opposite
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Fig. 5.9: (a) FEM calculation of the ratio of optical power fractions ζ of the WGM in the silica and polymer
layer for an increasing polymer layer thickness hpolymer. For the same thickness and polarization all modes
(first and second radial order) show approximately the same ratio ζpolymer/ζsilica. A compensation is expected
for hpolymer ≈ 200 nm (arrows) according to the measured temperature coefficients βth of the two materials.
The inset shows the profile of a tested sample with top and bottom polymer layer with a total thickness
hpolymer ≈ 300 nm. (b) Pump power dependent resonance shift measurements for samples with different
hpolymer show compensation for the 200 nm sample in agreement with the calculations. The polymer layer
decreases the Q-factor only slightly as compared to the pure silica sample.

shift of the resonance compared to the pure silica disk, caused by an overcompensation of the

positive thermal refractivity of silica. Although, the thickness of the polymer layer is too large

for compensation, it can be used to measure the combined thermal refractivity and expansion

coefficient of the polymer layer itself, since it forms a polymer microdisk after removing the

silica layer by an additional etching step. To this end, the different samples (silica, hybrid

and polymer disk) were placed on a thermoelectric heater and the global resonance shifts

of a set of resonances around λ = 1550 nm at low pump power (to avoid optically induced

resonance shifts) were measured depending on the temperature of the sample. From the

relation ∆λth = λT0βthδT with δT = T −T0 the thermal refractivity and expansion coefficients

βth = 1/n(dn/dT ) + αth of the different materials10 and combinations can be obtained. The

linear fit of the measured data in Fig. 5.8(c) gives the values βth,silica = (4.0± 0.1)× 10−6 K−1,

βth,hybrid = (−1.3± 0.4)× 10−5 K−1 and βth,polymer = (−3.9± 0.9)× 10−5 K−1. The measured

value for the fused silica disk is close to a reported value of 6× 10−6 K−1 in Ref. [Car04].

The resonance shift of the hybrid microdisk depends on the temperature coefficients βth

and the particular fraction of optical power ζ of the WGM in the corresponding layers and

can be expressed as ∆λth = λT0(βth,1ζ1 + βth,2ζ2)δT . Extracting the profile of the hybrid disk

from the SEM image in Fig. 5.8(a), FEM calculations of the mode distributions give a ratio

of ζpolymer/ζsilica ≈ 0.45. Together with the above measured thermal coefficients this results

in an effective temperature coefficient of βeff
th,hybrid = −1.44× 10−5 K−1, in agreement with

the measured value for the hybrid disk βth,hybrid = (−1.3± 0.4)× 10−5 K−1. A compensation

(∆λth = 0) can be obtained for a ratio of ζpolymer/ζsilica = 0.085 ± 0.025. Assuming a single

polymer layer, this ratio of power fractions in the two materials corresponds to a thickness of

10The refractive index of the polymer around λ = 1550 nm was obtained by comparison of tactile and laser
interferometric thickness measurements of a flat polymer layer on a silicon wafer to npolymer = 1.47.
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hpolymer ≈ 200 nm as can be seen from FEM calculations shown in Fig. 5.9(a). The calculations

are done for all first and second radial order modes in the wavelength range of 1.4 µm to

1.7 µm. An increase of hpolymer causes a red shift of all resonances according to the increased

total thickness of the disk [compare Fig. 2.3(a)] but for fixed polarization and hpolymer all

modes show approximately the same compensation ratio ζpolymer/ζsilica ≈ 0.085, which allows

for a broadband compensation. For TE polarization the desired ratio is reached at smaller

hpolymer as compared to TM polarization. To test the compensation experimentally, four

different samples with increasing hpolymer from 0 nm to 300 nm were fabricated. The polymer

was deposited on already existing samples, which leads to a top and bottom layer of polymer

[as shown in the inset of Fig. 5.9(a) for the 300 nm sample]. Taking the total thickness of

both polymer layers, the expected compensation around 200 nm is obtained as can be seen

from power dependent resonance shift measurements in Fig. 5.9(b). Since the polymer layer

is relatively thin and has a smooth surface, the Q-factor is reduced only by a factor of 3 to

Q ≈ 1.7× 105 as compared to the pure silica sample.

Chapter summary

The nonlinear effects of single and coupled fused silica microdisks are to first order determined

by temperature induced refractive index variations caused by the intrinsic optical absorption.

This effect results in optical power dependent detuning of the microdisk resonances and optical

bistability can be observed. It was shown that the nonlinear effects can be reliably measured

by recording the pump power dependent distortion of the resonance shape when sweeping the

pump laser wavelength through the resonance. In a static excitation regime strong mechanical

oscillations of the bend tapered fiber can be induced, which inhibit reliable measurements,

e.g., of a bistability hysteresis expected for proper pump power tuning. The thermal nonlinear

effects can be taken into account in the CMT and the nonlinear resonance spectra for two and

three coupled disk were calculated in agreement with measured data. A critical parameter

for the nonlinear calculations is the thermal relaxation time, which was measured by a pump

and probe technique and agrees with a theoretical approximation of the heat transfer from a

thermalized disk to the substrate.

The found nonlinear characteristics of three coupled disks in a line arrangement allow for

an all optically induced selective resonance tuning of the eigenmodes of the structures. This

effect is caused by the eigenmode dependent inhomogeneous light intensity distribution in the

resonators leading to a different heating of the individual coupled disks.

Finally, the compensation of the temperature induced resonance shift was demonstrated,

allowing the stabilization of the resonance wavelength for a broad range of applied pump

powers to the system. The compensation was realized by deposition of a properly sized polymer

layer during the fabrication process of the disks showing a negative thermal refractivity.
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In this work we have investigated ensembles of fused silica coupled optical disk microres-

onators in order to gain insight into the dynamics of the optical modes supported by such

structures. One of the main questions deals with the impact of the optical coupling of WGM

microresonators on the advantageous properties of individual microresonators. The particular

characteristics which are of interest are the high quality factor and the small mode volume.

They are related to the low threshold nonlinear effects observable in microresonators as well

as the high sensitivity of the narrow band resonances on perturbations of the system, useful

for sensing applications.

The choice of microdisks as a particular realization of coupled optical microresonators was

accounted for by the fact that the optical coupling of microresonators relies mainly on the

spectral overlap of their individual resonances. As with increasing Q-factor the resonance

bandwidth decreases, it is a challenging task to achieve spectrally coinciding resonances of the

individual microresonators, which demands a highly accurate and reproducible fabrication.

Furthermore, the spatial overlap of the fields in the individual resonators is critical for effi-

cient coupling and should on the one hand be variable for optimization and on the other hand

stable for reliable experiments. To meet these requirements, in this thesis an electron beam

lithography was used with subsequent etching steps to process the involved materials. The

choice of etchants was optimized to allow for the fabrication of large scale arrays of coupled

microdisks. With respect to the demands on a finite distance between the coupled microres-

onators and the reproducibility, the fabrication does not involve any reflow process, e.g., of

the resist or the final coupled microresonators. The advantage of the particular realization of

microdisks is twofold: First, the fabrication technique and the geometric peculiarities limit the

Q-factor to the order of 105 to 106, which can be translated to an acceptable size mismatch of

the individual microdisks on the order of a few nanometers. This is captured by the accuracy

and reproducibility of the used fabrication technique. Second, the on-chip microdisks are a

highly flexible sample platform in terms of the variety of coupling arrangements, which can

be characterized by a standardized experimental setup.

From a theoretical point of view the efficient mathematical description of optical microres-

onators depends strongly on their particular realization. Analytical solutions in 3D are possible

only for spherical or spheroidal microresonators, whereas toroids and disks have to be treated

approximately. As for the different resonator shapes and particular characteristics under in-

97
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vestigation various theoretical models are used in literature, one aim of this thesis was to

summarize and extend existing approaches for a comprehensive analysis. In the particular

case of circular microdisks the formulation of an analytical 2D scattering problem as well as

a numerical finite element method were used. From these models resonance frequencies, Q-

factors and mode volumes of single microdisks were calculated from their basic material and

geometry parameters. The 2D scattering approach was extended to calculate the spectrum

and mode distribution of coupled microdisks in a fast and reliable manner. Furthermore, a

thorough description of the temporal mode dynamics in coupled microresonators based on a

coupled mode theory (CMT) was presented. Several effects like intra-disk modal coupling,

inter-disk coupling and the excitation by an external field as well as thermal nonlinearity

can be treated perturbatively. This approach is quite universal and not restricted to coupled

microdisks.

To verify the predictions of the theoretical models and to characterize the fabricated samples

an automated experimental setup was developed and built. The excitation of the microdisks

was realized by the use of tapered optical fibers. The setup allows to couple two tapered fibers

at the same time to different microdisks of a coupled resonator sample in order to carry out

pump and probe experiments. Additionally, a scanning near field optical microscope (SNOM)

was installed for the implementation of near field mode mappings.

As a main part of this thesis, the mode mapping technique was realized, which uses a

scattering SNOM tip to perturb the system of tapered fiber and excited microdisks. Depending

on the position of the SNOM tip above the sample, the perturbation has a significant effect

on the resonance spectrum of the microdisks, which alters the measured transmission and

reflection signals at the tapered fiber. A combination of the CMT and the 2D calculations of

the mode distribution in coupled disks allows for a detailed investigation of the system response

taking into account the position dependent SNOM perturbation. A comparison between theory

and experiment can be used to extract the intensity distribution of modes of coupled microdisks

from the measured signals. This method, for the first time, allows experimental insight into the

manyfold distributions and symmetries of near fields of eigenmodes in coupled microresonators.

In the last part of this thesis the optically induced thermal nonlinearity in coupled mi-

crodisks was investigated experimentally and theoretically. An optical bistabilty was observed

for pump powers in the low milliwatt regime which strongly depends on the inter-disk cou-

pling and the resonance mismatch of the individual disks. Additionally, the thermal relaxation

time of the microdisks was measured to a few hundreds of microseconds. For the particular

experimental conditions this reveals the thermalization of the whole disk heated by the in-

tensity located in the mode volume. The limiting time scale in this case is the relaxation of

the whole disk due to conductive heat transfer into the substrate. Using the obtained knowl-

edge of specific intensity distributions of different eigenmodes of the coupled microdisks in

conjunction with the nonlinear effects, a selective all optical tuning of the resonances in such
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systems was achieved.

As for potential applications the power dependent resonance shift is undesired, a broadband

compensation of the thermal nonlinearity was demonstrated by an additional functional layer

with an opposite thermal refractivity. As compared to existing approaches using a post-

fabrication deposition of polymers on single resonators here a different method was developed.

Additional etching steps allow for the precise deposition of polymer during the fabrication

process leading to homogenous layers on all microdisks throughout the whole sample.

To seize on the initially asked question concerning the preservation of characteristic prop-

erties of optical microresonators when they are coupled to each other, a positive answer can

be given from the obtained results in this thesis. Perspectively, further routes of investiga-

tions on coupled microresonators can be identified based on this work. Considering technical

aspects, the quality of the samples might be further increased by reviewing the fabrication

process or by removing fabrication induced errors in the sample geometry, e.g., using focused

ion beam assisted etching. Furthermore, the mode mapping technique can be extended by

an interferometric detection scheme for direct phase measurements of the fields in microdisks

[Bla10]. So far the implemented method measures only intensities and the phase of the fields in

adjacent disks is inferred from interference phenomena in the gap between the disks. Another

interesting approach would be the use of a thermo-couple SNOM tip [Fish94] that is able to

map the temperature distribution above the sample by direct heating or measure the intensity

distribution due to absorptive heating of the tip. First experiments following this approach

reveal a very high sensitivity, allowing to measure the intensity distribution of higher radial

order low-Q modes in coupled microdisks.

Focused on fundamental physical characteristics the nonlinear effects could be investigated

in a wider range of system parameters. In the presented analysis strongly coupled, almost

identical disks were used, resulting in spectrally well separated resonances not influencing each

other also in the high pump power regime. The situation is expected to change for the case

of very weakly coupled disks with spectrally closely spaced resonances if either the Q-factors

of adjacent disks of the coupled system or their excitation strength is different. Upon pump

power increase particular modes may become unstable and the corresponding resonances may

disappear in the spectrum as discussed for two nonidentical coupled microtoroids in [Gru09].

In addition, not only the size of the coupled microresonators but also their shape could be

chosen on purpose, which would extend the coupled microresonator research to the field of

chaotic microcavities [Nöc97, Son11].

From an application’s point of view, the combination of the obtained results from the

mode mapping experiments with the observed nonlinear effects widens the scope of possible

applications of coupled microresonators. One may think of optically tunable frequency filters

based on the selective optical resonance tuning or the generation of optically tunable signals

in the GHz range using the difference frequency of the resonances. Another example would
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be the use of coupled microresonators as sensors allowing for position detection with respect

to the microdisk in the coupled arrangement. This would be based on the selective resonance

detuning depending on the location of the perturbation of the coupled resonator structure.

Such possible applications of microresonators stand and fall with the stability of the external

coupling, which was a critical task also in this more fundamental study. Using tapered fibers

would make it necessary to passively [War08, Lou10] or actively [O’S11] stabilize the coupling.

Another way is to switch to more rigid concepts, e.g., prism coupling but with the drawback

of less coupling efficiency or including the coupling waveguide on-chip.

This consequently motivates the concluding remark. In general, the applied methods and

obtained results are applicable to microresonators based on other material systems. On the

one hand they would be closer to real world applications like for silicon on insulator systems

[Alm04a, Sol07a]. On the other hand additional physical effects can be introduced and inves-

tigated like free carrier dispersion in silicon microresonators [Joh06], properties of semicon-

ductors like gallium arsenide [Din10a] or strong second order nonlinear polarization in lithium

niobate microresonators [Für10]. Introducing the coupled resonator concept into these fields

will open up further and even more interesting studies.



A Bibliography

[Abr72] M. Abramowitz and I. A. Stegun: Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables (Dover Publications, New York, 1972)

[Agh06] I. Agha, J. Sharping, M. Foster, and A. Gaeta: “Optimal sizes of silica micro-

spheres for linear and nonlinear optical interactions,” Appl. Phys. B: Lasers Opt.

83 (2), 303 (2006)

[Alm04a] V. Almeida, C. Barrios, R. Panepucci, and M. Lipson: “All-optical control of light

on a silicon chip,” Nature 431 (7012), 1081 (2004)

[Alm04b] V. Almeida and M. Lipson: “Optical bistability on a silicon chip,” Opt. Lett.

29 (20), 2387 (2004)

[Arm03] D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala: “Ultra-high-Q

toroid microcavity on a chip,” Nature 421 (6926), 925 (2003)

[Arm05] A. Armani, D. Armani, B. Min, K. J. Vahala, and S. M. Spillane: “Ultra-high-Q

microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87, 151118 (2005)

[Arm07] A. Armani, R. Kulkarni, and S. Fraser: “Label-free, single-molecule detection

with optical microcavities,” Science (2007)

[Arn03] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer: “Shift of

whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.

28 (4), 272 (2003)

[Ast04] V. N. Astratov, J. Franchak, and S. Ashili: “Optical coupling and transport

phenomena in chains of spherical dielectric microresonators with size disorder,”

Appl. Phys. Lett. 85, 5508 (2004)

[Ast07] V. Astratov and S. Ashili: “Percolation of light through whispering gallery modes

in 3d lattices of coupled microspheres,” Opt. Express 15 (25), 17351 (2007)

[Ayo99] A. Ayon, R. Braff, C. Lin, H. Sawin, and M. Schmidt: “Characterization of a time

multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146 (1), 339

(1999)

[Bal99] M. Balistreri and D. Klunder: “Visualizing the whispering gallery modes in a

cylindrical optical microcavity,” Opt. Lett. 24 (24), 1829 (1999)

[Bay98] M. Bayer, T. Gutbrod, J. Reithmaier, A. Forchel, T. Reinecke, P. Knipp,

A. Dremin, and V. Kulakovskii: “Optical modes in photonic molecules,” Phys.

Rev. Lett. 81 (12), 2582 (1998)

i



ii A. BIBLIOGRAPHY

[Bec11] T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse,

and I. Breunig: “Highly tunable low-threshold optical parametric oscillation in

radially poled whispering gallery resonators,” Phys. Rev. Lett. 106 (14), 143903

(2011)

[Ber94] J. Berenger: “A perfectly matched layer for the absorption of electromagnetic

waves,” J. Comput. Phys. 114 (2), 185 (1994)

[Bir92] T. A. Birks and Y. Li: “The shape of fiber tapers,” J. Lightwave Technol. 10 (4),

432 (1992)

[Bla10] S. Blaize, F. Gesuele, I. Stefanon, A. Bruyant, G. Lérondel, P. Royer, B. Martin,

A. Morand, P. Benech, and J. Fedeli: “Real-space observation of spectral degen-

eracy breaking in a waveguide-coupled disk microresonator,” Opt. Lett. 35 (19),

3168 (2010)

[Boh83] C. F. Bohren and D. R. Huffman: Absorption and Scattering of Light by Small

Particles (Wiley, New York, 1983)

[Bor04] S. Boriskina, P. Sewell, T. Benson, and A. Nosich: “Accurate simulation of two-

dimensional optical microcavities with uniquely solvable boundary integral equa-

tions and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21 (3), 393

(2004)

[Bor05] M. Borselli, T. Johnson, and O. Painter: “Beyond the Rayleigh scattering limit

in high-Q silicon microdisks: Theory and experiment,” Opt. Express 13 (5), 1515

(2005)

[Bor06a] S. Boriskina: “Spectrally engineered photonic molecules as optical sensors with

enhanced sensitivity: A proposal and numerical analysis,” J. Opt. Soc. Am. B

23 (8), 1565 (2006)

[Bor06b] S. Boriskina: “Theoretical prediction of a dramatic Q-factor enhancement and de-

generacy removal of whispering gallery modes in symmetrical photonic molecules,”

Opt. Lett. 31 (3), 338 (2006)

[Bor06c] S. Boriskina, V. Pishko, and A. Boriskin: “Optical spectra and output coupling

engineering in hybrid WG-mode micro-and meso-scale cavity structures,” 2006

International Conference on Transparent Optical Networks 1, 84 (2006)

[Bor06d] M. Borselli: High-Q microresonators as lasing elements for silicon photonics,

Ph.D. thesis, California Institute of Technology (2006)

[Bor06e] S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich: “Q factor and emission

pattern control of the WG modes in notched microdisk resonators,” IEEE J. Sel.

Top. Quantum Electron. 12 (1), 52 (2006)

[Bor07] S. Boriskina: “Spectral engineering of bends and branches in microdisk coupled-

resonator optical waveguides,” Opt. Express 15 (25), 17371 (2007)



A. BIBLIOGRAPHY iii

[Boy01] R. Boyd and J. Heebner: “Sensitive disk resonator photonic biosensor,” Appl.

Opt. 40, 5742 (2001)

[Boy03] R. W. Boyd: Nonlinear Optics (Academic Press, London, 2003)

[Bra89] V. Braginsky, M. Gorodetsky, and V. Ilchenko: “Quality-factor and nonlinear

properties of optical whispering-gallery modes,” Phys. Lett. A 137 (7-8), 393

(1989)

[Cam91] A. Campillo, J. Eversole, and H. Lin: “Cavity quantum electrodynamic enhance-

ment of stimulated emission in microdroplets,” Phys. Rev. Lett. 67 (4), 437 (1991)

[Car04] T. Carmon, L. Yang, and K. J. Vahala: “Dynamical thermal behavior and thermal

self-stability of microcavities,” Opt. Express 12 (20), 4742 (2004)

[Car08] T. Carmon, H. G. L. Schwefel, L. Yang, M. Oxborrow, A. D. Stone, and K. J.

Vahala: “Static envelope patterns in composite resonances generated by level

crossing in optical toroidal microcavities,” Phys. Rev. Lett. 100 (10), 1 (2008)

[Che94] W. Chew and W. Weedon: “A 3D perfectly matched medium from modified

Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett.

7 (13), 599 (1994)

[Chr07] I. Chremmos and N. Uzunoglu: “Properties of regular polygons of coupled mi-

croring resonators,” Appl. Opt. 46 (31), 7730 (2007)
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B Useful mathematics and calculations

This appendix summarizes some basic mathematical relations that are used for calculations

or for the implementation of numerical models in the main part of this thesis. Almost all

the relations can be found in the given references, but to the opinion of the author, it might

be helpful to have it in a summarized form. Especially for the FEM explicit terms are given

which can be used for implementation in other PDE solvers than Comsol. Additionally, some

technical analysis of optimal parameters for FEM simulations is given.

B.1 Vector algebra and integral theorems

Some useful vector identities using a and b as scalars and a, b, and c as vectors as well as

∇ · a and ∇× a denoting the divergence and curl of the vector a (see also Ref. [Jin02])

∇× (∇× a) = ∇ (∇ · a)−∇2a, (B.1)

∇ · (∇× a) = 0, (B.2)

∇× (∇a) = 0, (B.3)

∇× (a× b) = a∇ · b− b∇ · a− (a · ∇)b + (b · ∇) a, (B.4)

∇ · (a× b) = b · ∇ × a− a · ∇ × b, (B.5)

∇ (a · b) = a×∇× b + b×∇× a + (a · ∇)b + (b · ∇) a, (B.6)

∇× (ab) = a∇× b− b×∇a, (B.7)

∇ · (ab) = a∇ · b + b · ∇a, (B.8)

a× (b× c) = (a · c)b− (a · b) c, (B.9)

a · (b× c) = b · (c× a) = c · (a× b) . (B.10)

Divergence theorem1


V

(∇ · F)dV =


∂V

(F · n̂)d(∂V ), (B.11)

with F being a continuously differentiable vector field on a subset of R3 with a piecewise

smooth boundary ∂V and the outward pointing unit surface normal n̂.

1Also known as Gauss’ theorem.

xv
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Green’s theorems

According to Ref. [Jin02] with a formal substitution of the vector field F in Eq. (B.11) by the

expression a∇(ϵb) with the continuous scalar functions a and b and the parameter ϵ, the first

scalar Green’s theorem can be written as
V

[∇ · (a∇(ϵb))]dV =


V

[a∇ · (ϵ∇b) + ϵ(∇a)(∇b)]dV

=


∂V

[(aϵ∇b) · n̂]d(∂V ).

(B.12)

With a substitution of the vector field F in Eq. (B.11) by the expression a × (ϵ∇ × b) with

the vector functions a and b, the first vectorial Green’s theorem can be written as:
V

[∇ · (a× (ϵ∇× b))]dV =


V

[ϵ(∇× a) · (∇× b)− a · (∇× ϵ∇× b)]dV

=


∂V

[ϵ(a×∇× b) · n̂]d(∂V ).

(B.13)

B.2 Functional formulation for the FEM

B.2.1 The standard vector wave equation

Starting from the vector wave equation for the magnetic field [Eq. (2.27)]

∇×

ϵ̂−1∇×H(r, ω)


− k2

0H(r, ω) = 0, (B.14)

the variational functional form can be obtained by taking the inner product [as defined in

Eq. (2.30)]

⟨a,b⟩ =


V

(b∗ · a) dV, (B.15)

of both sides with the test magnetic field H̃

F (H) = ⟨∇ ×

ϵ̂−1∇×H


, H̃⟩ − ⟨k2

0H, H̃⟩

=


V

H̃∗ ·

∇×


ϵ̂−1∇×H


dV −


V

H̃∗k2
0HdV.

(B.16)

Applying Eq. (B.13) to the first integral leads to

F (H) =


V


∇× H̃∗ · ϵ̂−1∇×H


− k2

0H̃
∗H


dV, (B.17)

with the natural boundary condition for an ideal conducting wall
∂V


ϵ̂−1


H̃∗ ×∇×H


· n̂


d(∂V ) = 0. (B.18)
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The boundary condition can be reformulated using ϵ̂−1∇×H = −iωϵ0E to

iωϵ0


∂V


E× H̃∗ · n̂

d(∂V ) = iωϵ0


∂V


S · n̂


d(∂V ) = 0, (B.19)

with the Poynting vector S tangential to the boundary (indicating no power flow across the

surface). Alternatively, one can use the cyclic permutation identity


H̃∗ × ϵ̂−1∇×H


· n̂ =


ϵ̂−1∇×H× n̂


· H̃∗ =


n̂× H̃∗ · ϵ̂−1∇×H


, (B.20)

to obtain the often used notation

n̂× E = 0 or n̂× ϵ̂−1∇×H = 0. (B.21)

As discussed in the main text (Sect. 2.1.2) the solutions are not divergence free, resulting

in non-physical spurious solutions. Koshiba et al. [Kos84] suggested to enforce ∇ · H = 0

explicitly by adding a penalty term [Lei68, Hop81] to the functional [Eq. (B.16)]

F̃ (H) = F (H) +


V


∇ · H̃∗∇ ·H

dV

= F (H)−


V


H̃∗ · ∇


∇ ·H


dV +


∂V


H̃∗n(∇ ·H)


d(∂V ).

(B.22)

The stationarity of the functional requires the first variation ∂F̃ (with respect to the test

function) to be zero

∂F̃ (H) =


V

∂H̃∗ ·

∇×


ϵ̂−1∇×H


−∇


∇ ·H


− k2

0H

dV

−


∂V

∂H̃∗ ·

n̂×


ϵ̂−1∇×H


− n


∇ ·H


d(∂V ) = 0.

(B.23)

This is fulfilled when

∇×

ϵ̂−1∇×H


−∇


∇ ·H


− k2

0H = 0, (B.24)

n̂×

ϵ̂−1∇×H


= 0, (B.25)

n

∇ ·H


= 0, (B.26)

where Eq. (B.24) is the modified vector wave equation corresponding to Eq. (2.29) in Sect. 2.1.2

with an α added to adjust the strength of the penalty term. Equation (B.25) [identical with

(B.21)] and (B.26) are the boundary conditions ensuring that the electric field is normal and

the magnetic field is tangential to the boundary. To follow the logic in Sect. 2.1.2 one can

perform all steps (B.15) to (B.21) for the modified vector wave equation (2.29) instead of

Eq. (B.15) to obtain the functional (2.31).
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B.2.2 Weak terms for axisymmetric resonators

According to Ref. [Oxb07] the weak terms of the functional [Eq. (2.31), Sect. 2.1.2]

F (H) =


V


∇× H̃∗ · ϵ̂−1∇×H


+ α


∇ · H̃∗∇ ·H

− k2
0H̃

∗H

dV, (B.27)

can be calculated in the axisymmetric case for a field expression [Eq. (2.32)]

H(r) =

Hr(r, z), iHφ(r, z), Hz(r, z)


eimφ, (B.28)

the cylindrical coordinate volume element dV = rdrdφdz and the permittivity and permability

tensor ϵ̂ = diag(ϵr, ϵφ, ϵz) and µ̂ = diag(µr, µφ, µz). Here the permeability is taken into account

in order to implement the PMLs. To this reason the modified versions ˆ̃ϵ and ˆ̃µ from Eq. (2.33)

have to be used. For the first term one obtains

r

∇× H̃∗ · ˆ̃ϵ−1∇×H


=


1
r
H̃z,φ + iH̃φ,z

H̃r,z − H̃z,r

1
r


− riH̃φ


r
− 1

r
H̃r,φ


T

·

 ϵ̃−1
r


1
r
Hz,φ − iHφ,z


ϵ̃−1
φ


Hr,z −Hz,r


ϵ̃−1
z


1
r


riHφ


r
− 1

r
Hr,φ




= r


ϵ̃−1
r


− im

r
H̃z + iH̃φ,z

im

r
Hz − iHφ,z


+ ϵ̃−1

φ


H̃r,z − H̃z,r


Hr,z −Hz,r


+ ϵ̃−1

z


− i

r
H̃φ − iH̃φ,r +

im

r
H̃r

 i

r
Hφ + iHφ,r −

im

r
Hr


= ϵ̃−1

r


− m2

r
H̃zHz −mH̃zHφ,z −mH̃φ,zHz + rH̃φ,zHφ,z


+ϵ̃−1

φ r

H̃r,zHr,z − H̃r,zHz,r − H̃z,rHr,z + H̃z,rHz,r


+ϵ̃−1

z

1

r
H̃φHφ + H̃φHφ,r −

m

r
H̃φHr + H̃φ,rHφ + rH̃φ,rHφ,r

−mH̃φ,rHr −
m

r
H̃rHφ −mH̃rHφ,r +

m2

r
H̃rHr


=

1

r


ϵ̃−1
r m2H̃zHz + ϵ̃−1

z


H̃φHφ −m


H̃φHr + H̃rHφ


+ m2H̃rHr


+


ϵ̃−1
z


H̃φ,r


Hφ −mHr


+ Hφ,r


H̃φ −mH̃r


− ϵ̃−1

r m

H̃zHφ,z + H̃φ,zHz


+ r


ϵ̃−1
r H̃φ,zHφ,z + ϵ̃−1

φ


H̃z,r − H̃r,z


Hz,r −Hr,z


+ ϵ̃−1

z H̃φ,rHφ,r


,

(B.29)
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with Hφ,r denoting the partial derivative of the azimuthal component of the magnetic field with

respect to the radius (same notation is used for other coordinate combination, respectively).

The second, penalty term can be calculated to

αr[∇ · (ˆ̃µH̃∗)][∇ · (ˆ̃µH)] = αr

µ̃rH̃r,r +

1

r
µ̃rH̃r −

m

r
µ̃φH̃φ + µ̃zH̃z,z


µ̃rHr,r +

1

r
µ̃rHr

− m

r
µ̃φHφ + µ̃zHz,z


= α


µ̃2

r


rH̃r,rHr,r + H̃r,rHr + H̃rHr,r +

1

r
H̃rHr


+ µ̃2

φ

m2

r
H̃φHφ + µ̃2

zH̃z,zHz,z

+ µ̃rµ̃φm

rH̃r,rHφ − H̃φHr,r +

1

r


H̃rHφ − H̃φHr


+ µ̃rµ̃z


r

H̃r,rHz,z + H̃z,zHr,r


+ H̃rHz,z + H̃z,zHr


− µ̃φµ̃zm


H̃φHz,z + H̃z,zHφ


= α

 1

r


µ̃2

rH̃rHr − µ̃rµ̃φm

H̃rHφ − H̃φHr


+ m2µ̃2

φH̃φHφ


+


µ̃2

r


H̃r,rHr + H̃rHr,r


− µ̃rµ̃φm


H̃r,rHφ − H̃φHr,r


+ µ̃rµ̃z


H̃rHz,z + H̃z,zHr


− µ̃φµ̃zm


H̃φHz,z + H̃z,zHφ


+ r


µ̃2

rH̃r,rHr,r + µ̃rµ̃z


H̃r,rHz,z + H̃z,zHr,r


+ µ̃2

zH̃z,zHz,z


.

(B.30)

The third, temporal weak term can be written as

−k2
0r ˆ̃µH̃∗H = −k2

0r

µ̃rH̃rHr + µ̃φH̃φHφ + µ̃zH̃zHz


= −

2π

c

2

r

µ̃rH̃rHr,tt + µ̃φH̃φHφ,tt + µ̃zH̃zHz,tt


,

(B.31)

where the subscript tt denotes the second partial derivative of the harmonic field with respect

to time. The factors in the last relation are chosen to identify the general eigenvalue (λ in

e−λt) used in Comsol with the optical frequency ν.

Likewise the boundary conditions [Eq. (2.28), Sect. 2.1.2] are modified and with the surface

normal components n = (nr, 0, nz) can be calculated to

n×

ˆ̃ϵ−1∇×H


=

 −nz ϵ̃
−1
φ


Hr,z −Hz,r


nz ϵ̃

−1
r


im
r

Hz − iHφ,z


− nr ϵ̃

−1
z


im
r

Hφ + iHφ,r − im
r

Hr


nr ϵ̃

−1
φ


Hr,z −Hz,r


 = 0, (B.32)

and

n×

ˆ̃µH


= 0, (B.33)
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resulting in the three conditions

Hr,z −Hz,r = 0

1

r


nz ϵ̃z


mHz − rHφ,z


− nr ϵ̃r


Hφ + rHφ,r −mHr


= 0

nrµ̃rHr + nzµ̃zHz = 0.

(B.34)

One can easily notice that none of the resulting terms of the Eqs. (B.29) to (B.34) depends

on φ, which indicates the reduction of the problem to 2D. Furthermore it should be men-

tioned that all the above expressions are generally formulated for axisymmetric, anisotropic

and magnetic materials and can (or should) be further simplified for use in a FEM software

whenever possible, e.g., for isotropic and nonmagnetic materials.

B.2.3 Convergence tests

To optimize the numerical solution by the FEM the thickness of the PML layer hPML, the

PML growth factor δPML, the penalty term strength α, the mesh resolution as well as the

extension of the air domain between disk and PML (determined by hair and Rair) needs to

be adjusted. A few calculations are performed to cover all the parameters and to point out

their influences. The results are plotted in Fig. B.1, looking at the resonance wavelength and

the Q-factor as the crucial values, depending on hPML. Varying δPML from 0 (no PML) to 7.5

for the largest air region (hair = 20 µm, Rair = 35 µm) shows no influence on the resonance

wavelength [all lines coincide at the thick blue line with light blue dots in Fig. B.1(a)], whereas

the Q-factor decreases from 1022 to realistic values around 1011. Reducing the thickness of

the air layer (hair = 12 µm, Rair = 26 µm) shifts the resonance slightly to longer wavelengths

but shows less dependence on hPML. The Q-factor converges at hPML = 5 µm. Decreasing the

thickness of the air layer further (hair = 6 µm, Rair = 25 µm) leads to stronger influence of the

PML layer (δPML) on the resonance wavelength as well as on the convergence of the Q-factor.

To test the influence of the penalty term strength α was varied from 0 (no penalty term)

to 7.5 for the medium sized air layer and δPML = 5. All simulations result in a resonance

wavelength difference of only a few pm (white to red filled squares in Fig. B.1). The Q-factor

of all but the simulation with α = 0 leads to the same Q-factor in coincidence with the

converged value. For all other simulations α = 5 was used.

A comparison of a fine and a coarse mesh was performed for the thinnest and thickest air

layer and δPML = 2.5 (green lines and symbols in Fig. B.1). Whereas the Q-factor for the

thick air layer converges also for the coarse mesh at hPML = 5 µm, the resonance wavelength

deviates a few tens of pm with a large variation for different hPML. For the thin air layer even

the Q-factor does not converge. For the resonance wavelength accuracy of a few pm and a

converged Q-factor the optimal parameters can be summarized to hair = 12 µm, Rair = 26 µm,

δPML = 5, hPML = 5 µm, α = 5 and a not too coarse mesh (≥ 105 elements).
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Fig. B.1: Parameter scans to determine the optimal values for precise calculation of (a) the resonance wave-
length and (b) the Q-factor. A large enough air layer (hair = 12 µm, Rair = 26µm) gives reasonable results
for δPML ≥ 2.5, hPML = 5µm and α ≥ 1. A small distance between disk and PML layer (thin air layer) as
well as a too coarse mesh (green lines and symbols) leads to strong variations of the resonance wavelength and
bad convergence of the Q-factor. A too thick air layer gives good results but wastes computational resources.
The convergence of the Q-factor is marked by the shading in (b), whereas the correct resonance wavelength is
reached around ∆λ = 0 pm.

B.3 Characteristic equation of a slab waveguide

The 2D effective index approximation used for calculating the resonances of single and coupled

microdisks is based on the vertical confinement of the mode similar to that of a slab waveguide.

Therefore the characteristic equation of a slab waveguide is of particular interest for the

calculation of the effective 2D refractive disk index and its derivation is summarized here (see

also [Oka06]). Choosing a slab mode propagating in y-direction the electromagnetic fields

are invariant in x-direction [see Fig. B.2(a)] and the guided modes can be separated into two

independent classes: TE and TM polarized modes. Therefore, the nonzero components of

the general electromagnetic fields F̃(r) = F(x, z)ei(ωt−βy) are FTE = (Ey, Hx, Hz) and FTM =

(Ex, Ez, Hy) for TE and TM polarization, respectively. Using the field components in plane

of the slab and transversal to the propagation direction the wave equation can be given as

∂

∂z


ñ

∂Fx

∂z


+ ñ


k0n

2 − β2

Fx = 0, (B.35)

with the parameter ñ = 1 for TE and ñ = 1/n2 for TM polarization, respectively. Since we

are interested in guides modes of the slab, the ansatz of an oscillating field in the slab layer

and exponentially decaying fields in the substrate and cladding can be used

Fx =


A cos(kf

df

2
− Φ)e−kc(z−

df
2

) z > df

2

A cos(kfz − Φ) −df

2
≤ z ≤ df

2

A cos(kf
df

2
+ Φ)eks(z+

df
2

) z < −df

2
,

(B.36)
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Fig. B.2: (a) Slab waveguide geometry with thickness df, refractive index of slab nf, substrate ns and cladding
nc, respectively. The mode propagation is in y-direction and the fields are invariant in x-direction. (b) Solution
of Eq. (B.40) in terms of normalized parameter β̄(k̄) for nc = ns = 1, nf = 1.45, and df = 1 µm. (c) Effective
mode index for the first two orders modes of TE and TM polarization at λ = 1550 nm for varying thickness
df.

where df is the thickness of the slab layer, Φ is the optical phase and the wavenumbers along

the z-axis for the different regions (f -film or slab, c - cladding, s - substrate) are given as

kf =


k2
0n

2
f − β2, (B.37)

kc =


β2 − k2
0n

2
c, (B.38)

ks =


β2 − k2
0n

2
s . (B.39)

Using Eq. (B.36) together with the boundary conditions, e.g., continuous tangential fields

(Fx, Fy) across the boundaries between the layers, yields the characteristic equation

2k̄


1− β̄ = lzπ + arctan


n̄s


β̄

1− β̄


+ arctan


n̄c


β̄ + γ

1− β̄


, (B.40)

where we used the normalized wavenumber

k̄ =
df

2


k2

f + k2
s = k0

df

2


n2

f − n2
s , (B.41)

and the normalized propagation constant

β̄ =
n2

eff − n2
s

n2
f − n2

s

, (B.42)

with the effective refractive index of the slab mode neff = β/k, as well as the refractive index

symmetry parameter

γ̄ =
n2

s − n2
c

n2
f − n2

s

. (B.43)
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The parameters n̄s and n̄c account for the differences of TE and TM polarization

n̄s,c =

1 for TE

n2
f /n

2
s,c for TM.

(B.44)

The mode order in z-direction, e.g., the number of zero crossings of the field in the slab layer

in this direction is denoted by lz.

A general solution can be found by solving Eq. (B.40) numerically looking for β̄(k̄), which

is given in Fig. B.2(b) for different polarization and mode orders lz. TE modes of the same

order are confined much better than TM modes. In the case of microdisks we are interested

in the lowest order slab modes only. In Fig. B.2(c) the effective index of both, the TE and

TM fundamental slab modes are shown for a fixed wavelength of λ = 1550 nm as a function

of the thickness of the disk or slab (h or df, respectively). One can see that for the thickness

of about 1 µm, used for the microdisks in this thesis, the second order slab modes play only a

minor role.



C Symbols, constants and parameters

am(ω) Mode amplitude in eigenfunction expansion of incident field Finc

a
(p)
m (ω) am(ω) distinguishing between different disks p;

Similar notation for bm(ω), dm(ω), Finc,sc,int

āin(t) Slowly varying incident taper mode amplitude in time domain (CMT); similar

notation for reflected/transmitted taper mode amplitude ārefl(t)/ātrans(t)

b FHWM width of the WGM profile (b ≈ 1 µm)

bm(ω) Mode amplitude in eigenfunction expansion of scattered field Fsc

bj Mode amplitude of a reservoir mode (SNOM scattering)

c Speed of light in vacuum (c = 2.9979× 108 m s−1)

d0 Initial fiber diameter

dext Minimum distance between tapered fiber and excited disk

dgap Minimum distance between adjacent disks (gap size)

dm(ω) Mode amplitude in frequency domain (CMT)

d̄m(t) Slowly varying mode amplitude in time domain (CMT); appears also as

d̄±m(t) accounting for couter-propagating modes (+m,−m → cw,ccw);

appears also as d̄s,a(ω) for steady state amplitudes of symmetric and

antisymmetric combinations of d̄±m

dm(t) Mode amplitude in eigenfunction expansion of internal field Fint

dsep Minimum distance between intensity maxima of

tapered fiber and resonator mode

dtf Diameter of tapered optical fiber

f(rtip) normalized WGM field strength at the position of the SNOM tip

g Coupling coefficient of intra disk modal coupling induced by a SNOM tip

g′ Coupling coefficient of WGM to reservoir modes induced by a SNOM tip

h Height of microdisks (typically h = 1 µm)

hair Thickness of air layer (used in FEM)

hpolymer Thickness of polymer layer

hPML Thickness of PML layer (used in FEM)

i Imaginary unit (i2 = −1)

k0 Vacuum wave number

k Modulus of the wave vector

keff Modulus of the effective wave vector

xxiv
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kth Thermal conductivity (kth = 1.4 W m−1 K−1, [Boy03])

l Mode order of tapered fiber mode

lpull Pull length during tapered fiber fabrication

m Azimuthal mode number of resonator mode; if different mode orders need

to be distinguished n is used additionally

n0 Refractive index of surrounding medium of resonator

n(r, ω) Refractive index (also appears as n(z) or n(r, z) with omitted ω-dependence)

ncl,air Refractive index of the fiber cladding/ surrounding air

neff,z(ω) Effective refractive index of a slab mode or microdisk mode

neff Effective refractive index of a tapered fiber mode or microdisk mode

ng Group index

nh Effective index in 2D of microdisk with height h (nh ≡ neff,z)

nres Bulk refractive index of resonator material (nres = 1.44 to 1.45)

n̄ Relative refractive index in 2D (n̄ = n0/nh)

n̂ Outward pointing surface normal of ∂V ; also used as field unit vectors

with subscripts (mode, j) (SNOM scattering)

r Radial component of the space vector r in cylindrical coordinates

r̄ Modified radial coordinate (introducing PML in the FEM)

r Spatial coordinates [cartesian (x, y, z) or cylindrical (r, φ, z)]

r0 Spatial coordinates of the center of the Gaussian distribution

approximating tapered fiber excitation (coupled disk analysis)

rp Spatial coordinates of the center of the pth disk (coupled disk analysis)

rtip Spatial coordinates of the SNOM tip

r̂ Unit radius vector

sr Stretching parameter in radial direction (introducing PML in the FEM)

sz Stretching parameter in axial direction (introducing PML in the FEM)

t Time

ûsurf(r̂) Spatially averaged electric field energy density at the disk edge

vg Group velocity of a light pulse

vsweep Wavelength sweeping speed of the pump TLS (vsweep = 40 nm s−1)

w Width of Gaussian distribution approximating tapered fiber

excitation (coupled disk analysis)

x Normalized frequency (x = ωRres/c; generally complex-valued x = x1 + ix2);

also used as cartesian component of r

x
(p)
gl Global x coordinate of the boundary of the pth disk (coupled disk analysis)

y
(p)
gl Global y coordinate of the boundary of the pth disk (coupled disk analysis)

z z/axial component of space vector r in cartesian/cylindrical coordinates

α Strength of the divergence condition in the penalty term (FEM);

also used as polarizability
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αabs Linear material absorption coefficient (αabs = 6× 10−2 m−1, [Fom05])

αm(x) Modal scattering coefficient [α(x) = bm(x)/am(x)]; x is normalized frequency

αth Temperature dependent expansion coefficient

βm(x) Ratio of modal expansion coefficient of internal and scattered field

[β(x) = dm(x)/bm(x)]; x is normalized frequency

βeff
res Effective propagation constant of resonator

βtf,res Propagation constant of tapered fiber/resonator mode

βth Thermal coefficent (sum of thermal refractivity and expansion;

βth = 4× 10−6 K−1 measured)

βth,n Thermal refractivity

γ0 Intrinsic energy loss rate

γext External energy loss rate

γ±m,∓m Intra disk modal coupling rate

γqp Inter disk modal coupling rate

γrs Damping rate due to SNOM induced coupling to reservoir modes (scattering)

γth Temperature relaxation rate (additional subscripts f - fast, s - slow,

conv. - convective)

δϵ(r, ωm) Variation of dielectric function (relative permittivity) accounting for

inter disk modal coupling (CMT)

δλFSR Free spectral range in wavelength domain

δωFSR Free spectral range in frequency domain

δT (r, t) Spatial and temporal temperature variation

δ(arg) Dirac delta function of argument arg

δPML Growth factor of PML attenuation

δ̄T (t) Mode distribution averaged temperature change

ϵ0 Vacuum electric permittivity constant (ϵ0 = 8.8542× 10−12 A s V−1 m−1)

ϵmed Relative permittivity of the surrounding medium of the SNOM tip

ϵr,φ,z Radial/azimuthal/axial component of the relative permittivity

ϵtip Relative permittivity of the SNOM tip material

ϵ(r, ω) Dielectric function (relative permittivity) in frequency domain

ϵ̂(r, ω) Relative permittivity tensor

ϵ̂−1(r, ω) Inverse relative permittivity tensor

ˆ̃ϵ(r, ω) Modified relative permittivity tensor (introducing PML in the FEM)

ζi Fraction of optical energy of the WGM in ith layer of

the structure (i = polymer, silica)

κ Coupling coefficient of microdisk and tapered fiber (κ =
√

γext; CMT);

appears also as κi,j

λ Free space optical wavelength (typically around λ = 1550 nm)

µ0 Vacuum magnetic permeability constant (µ0 = 4π × 10−7 V s A−1 m−1)
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µ̂(r, ω) Relative permeability tensor

ˆ̃µ(r, ω) Modified relative permeability tensor (introducing PML in the FEM)

ν Optical frequency

ρ material density (ρ = 2.2× 103 kg m−3, [Gru09])

σR Standard deviation of surface roughness (radial direction)

τ0 Intrinsic WGM mode energy decay time

τrt Round trip time of a photon in a WGM

τsweep Sweeping time through WGM resonance of TLS

τth Temperature relaxation time (additional subscripts f - fast, s - slow,

conv. - convective); measured slow relaxation: τth = (0.496± 0.043) ms

φ Azimuthal angle (of the space vector r in cylindrical coordinates)

φp Azimuthal angle measured in pth disk (coupled disk analysis)

ω Angular optical frequency (ω = 2πν)

ω0 Angular optical frequency of external excitation

ωm Angular optical frequency of eigenmode m

A Amplitude of Gaussian distribution (coupled disk analysis)

Amode Cross sectional area of a WGM

Arad Vector potential of radiation problem

Bth Specific mode absorption coefficient (thermal nonlinearity)

B(r, ω) Magnetic induction in frequency domain

Cp Specific heat capacity at constant pressure (Cp = 6.7× 102 m2 s−2 K1, [Gru09])

D Distance between centers of two adjacent disks; also used as diameter

of disks

D(r, ω) Dielectric displacement in frequency domain

Er,φ,z Radial/azimuthal/axial component of electric field strength

E(r, ω) Electric field strength in frequency domain

Em(r, ωm) Electric field strength of unperturbed eigenmode at frequency ωm

Etf,res Electric field strength in tapered fiber (tf) and resonator (res) modes

Ê⊥
i,j Normalized electric field strength of the unperturbed taper

and resonator modes perpendicular to propagation direction

in the tapered fiber (i, j → res, tf)

F (H) Functional of vector field H

Finc(r, φ, ω) Incident field onto a microresonator, single polarization [Finc = Fz,∥]

F glob
inc Global incident field onto coupled microdisks

Fint(r, φ, ω) Internal field of a microresonator, single polarization [Fint = Fz,∥]

Fsc(r, φ, ω) Scattered field of a microresonator, single polarization [Fsc = Fz,∥]

Fz Field coefficient for linear/axial polarization [Fz = Fz(r, φ, z)]

Fz,∥ In disk plane components of linear polarized field

coefficient [Fz,∥ = X(r, φ) = Xr(r)Xφ(φ)]
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Fz,⊥ Transverse to disk plane component of linear polarized

field coefficient [Fz,⊥ = Y (z)]

F Finesse

G(r̂) Polarization dependent geometrical radiation factor

Gm(x) Denominator of αm(x) in characteristic equation of scattering problem

of 2D microdisk; x is normalized frequency

F(r, t) General vector field; F = (E,D,B,H)

F(r, ω) Fourier transform of general vector field with respect to t

H
(1)
m (arg) Hankel function of the first kind (argument arg, order m)

Hr,φ,z Radial/azimuthal/axial component of magnetic field strength (only a single

subscript appears)

Hr,φ Partial derivative of the radial component of magnetic field strength with

respect to the azimuthal angle (all combinations of (r, φ, z) possible; FEM)

H(r, ω) Magnetic field strength in frequency domain

H̄(r, ω) Test function magnetic field (FEM)

I Modulus square of the electric field (maximum Imax); Intensity

Icirc Circulating Intensity in a WGM

ℑ(arg) Imaginary part of complex argument arg

Jm(arg) Bessel function of the first kind (argument arg, order m); appears also with

order l for the calculation of tapered fiber modes

J Polarization currents Vector potential of radiation problem

Kl(arg) Modified Bessel function of the second kind (argument arg, order l)

L0 Length of the heating zone (tapered fiber fabrication process)

Lc Correlation length of the surface roughness of a microdisk

N Number of coupled disk in an ensemble

Pcirc Optical power circulating in a microdisk

Ploss Lost optical power

Ppump Optical pump power (Ppump = 0.1 mW to 4 mW in experiments)

Prad Total radiated optical power

Ptresh Threshold optical pump power for nonlinear effects

P(r, ω) Dielectric polarization

Q Quality factor (for investigated samples up to Q = 5× 105 measured);

appears with different subscripts to distinguish different loss mechanisms

Rair Radius of air layer around microdisk (used in FEM)

Rpil Radius of the substrate pillar supporting the microdisk

Rtip Radius of SNOM tip

Rp Radius of pth microdisk (coupled disk analysis)

Rq,p Radial coordinate of the center of the pth disk in the coordinate system

of the qth disk (coupled disk analysis)
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Rres Radius of microdisks (typically Rres = 15 µm or Rres = 20 µm)

ℜ(arg) Real part of complex argument arg

R(∆ωm) Reflectivity of tapered fiber as function of detuning from resonance

⟨S⟩ Averaged Poynting vector

T (∆ωm) Transmissivity of tapered fiber as function of detuning from resonance

U Electromagnetic energy; also used as U -parameter in characteristic

equation of step index fiber

Uall Electromagnetic energy in resonator and environment

Ures Electromagnetic energy stored in the resonator

V Volume (of calculation domain); also used as V -parameter in characteristic

equation of step index fiber

Vd Volume of a microdisk

Vj Quantization volume of a reservoir mode (SNOM scattering)

Vmode Mode volume of WGM (typically Vmode = 0.5× 10−16 m3 to 1.1× 10−16 m3;

for nonlinear simulations Vmode = 0.67× 10−16 m3)

Vs Effective volume of a scatterer at the surface of a disk

W W -parameter in characteristic equation of step index fiber

Γ0 Intrinsic loss coefficient (Γ0 = γ0/2; CMT);

for nonlinear simulations Γ0 = 1.6 GHz

Γext External loss coefficient (Γext = γext/2; CMT)

Γext,crit Critical external loss/coupling coefficient (T = 0 at ∆ω = 0)

Γmc Intra disk modal coupling coefficient (Γmc = γ±m,∓m/2; CMT);

for nonlinear simulations Γmc = 2.88 GHz

Γqp Inter disk modal coupling coefficient (Γqp = γqp/2; CMT); appears also as Γ12,

for nonlinear simulations Γ12 = 144 GHz

Γrs Loss coefficient due to SNOM induced coupling to reservoir modes (scattering)

∆nres Variation of resonator material refractive index nres

∆h Variation of disk thickness h

∆β Propagation constant (phase) mismatch

∆ϵ(ωm) Perturbation of complex relative permittivity at ωm

[∆ϵ(r, ωm) = ∆ϵ′(r, ωm) + i∆ϵ′′(ωm)] (CMT)

∆ϵ̂(p)(r, ωm) Perturbation of the relative permittivity (dielectric function) introduced by

the pth disk (CMT)

∆λ Variation of optical wavelength λ; also appears as resonance splitting

due to inter disk coupling

∆λ12 Resonance mismatch of coupled disks (typically ∆λ12 = 0.2 nm)

∆λb Bandwidth covered by the splitting of resonances of coupled disks

∆λmc Resonance splitting due to intra disk modal coupling

∆λth Temperature induced resonance wavelength shift
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∆νb Frequency bandwidth according to ∆λb

∆νth Temperature induced resonance frequency shift

∆ωm Detuning of the excitation from the resonance frequency (∆ωm = ω0 − ωm)

∆Ω(p) Abbreviation for i∆ω
(p)
m − (Γ0 + Γ

(p)
ext) (CMT)

∆P(r, ω) Perturbation polarization term in frequency domain (CMT)

∆P̄(r, t) Slowly varying perturbation polarization term in time domain (CMT)

∆P̄loss(r, t) Slowly varying perturbation polarization term accounting

for intrinsic resonator losses (CMT)

∆P̄ext(r, t) Slowly varying perturbation polarization term accounting

for external coupling (CMT)

∆P̄mc(r, t) Slowly varying perturbation polarization term accounting

for intrinsic modal coupling (CMT)

∆P̄
(p)
m (r, t) Slowly varying perturbation polarization term accounting

for inter disk coupling (CMT)

∆P̄th(r, t) Slowly varying perturbation polarization term accounting

for temperature induced nonlinearity (CMT)

∆Ri Variation of disk radius (i = res or i = 1, 2, . . . )

Θq,p Azimuthal coordinate of the center of the pth disk in the coordinate system

of the qth disk (coupled disk analysis)

Ω Fourier thermal frequency

Ω(p) Boundary of pth disk

∂V Surface enclosing the volume V

∇a Gradient of a

∇ · a Divergence of vector a

∇× a Curl of vector a



D List of Abbreviations

1D One dimensional
2D Two dimensional
3D Three dimensional
AOM Acousto-optical modulator
CCD Charged coupled device
CCW Counter clockwise
Chap. Chapter
CHF3 fluoroform
CMT Coupled mode theory
(C)QED (Cavity) quantum

electrodynamics
CROW Coupled resonator optical

waveguide
CW clockwise
EBL Electron beam lithography
EIM Effective index method

effective index approximation
Eq. Equation
FDTD Finite difference time domain
FEM Finite element method
FEP Fluorinated ethylene propylene

resist
FFT Fast Fourier transform
Fig. Figure
FPC Fiber polarization controller
FSR Free spectral range
FSU Friedrich-Schiller-Universität
FWHM Full width at half maximum
IAP Institute of Applied Physics
ICP Inductively coupled plasma etch
IFTO Institute of Condensed Matter

Theory and Solid State Optics
InGaAs Indium gallium arsenide
IR Infrared
KOH Potassium hydroxide
N2 Nitrogen
ODE Ordinary differential equation

PC Personal computer
PDE Partial differential equation
PML Perfectly matched layer
PR Photo receiver
Q-factor Quality factor
Sect. Section
SEM Scanning electron microscope
SF6 Sulfur hexafluoride
SNOM Scanning near field optical

microscopy
TE Transverse electric
TEC Temperature controller
TLS Tunable laser source
TM Transverse magnetic
VIS Visible
VOA Variable optical attenuator
VR Vibration reduction
WDM Wavelength division multiplexing
WGM(s) Whispering gallery mode(s)
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E Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit gekoppelten optischen Flüstergalerie-Resona-

toren und deren kollektiven resonanten Anregungen, den sogenannten Flüstergalerie-Moden.

Flüstergalerie-Resonatoren sind rotationssymmetrische Strukturen, in denen das Licht durch

fortwährende Totalreflexion geführt und nach einem Umlauf durch Interferenz für die ent-

sprechenden Wellenlängen resonant verstärkt wird. Durch geeignete Herstellungsprozesse und

Querschnitte können aufgrund sehr glatter Oberflächen und den damit verbundenen geringen

Streuverlusten sehr hohe optische Güten erzielt werden. Die typischen Abmessungen dieser

Strukturen liegen im Mikrometerbereich, wodurch das Licht in einem sehr kleinen Volumen

lokalisiert werden kann. Diesem Umstand ist die alternative Bezeichnung Mikroresonatoren

geschuldet. Hohe optische Güten und kleine Modenvolumina sind von besonderem Interesse

aufgrund der damit verbundenen niedrigen Pumpleistungsschwellen für die Beobachtung nicht-

linearer optischer Effekte sowie der hohen Empfindlichkeit der schmalbandigen Resonanzen

gegenüber Störungen am System, was für Sensoranwendungen von Bedeutung ist. Die gegen-

seitige Kopplung von Flüstergalerie-Resonatoren verbindet dabei die genannten vorteilhaften

Eigenschaften einzelner Mikroresonatoren mit Charakteristiken diskret-optischer Systeme und

eröffnet neue Untersuchungsfelder.

Die Kopplung benachbarter Resonatoren erfordert eine räumliche und spektrale Überlap-

pung der Resonatormoden. Die räumliche Überlappung wird durch einen geringen Abstand

zwischen den einzelnen Mikroresonatoren erreicht, wodurch ein Energieaustausch über die

evaneszenten Felder möglich ist. Die Realisierung der spektralen Überlappung ist weitaus

schwieriger und erfordert eine sehr genaue und reproduzierbare Herstellung einzelner Mikro-

resonatoren, insbesondere da mit steigender Resonatorgüte die Resonanzbandbreite kleiner

wird. Um diesen Anforderungen gerecht zu werden, wurden im Rahmen dieser Arbeit frei-

stehende gekoppelte Scheibenresonatoren aus amorphem Quarzglas mittels Elektronenstrahl-

lithographie hergestellt. Dieses Herstellungsverfahren limitiert die erreichbaren Güten auf 105

bis 106. Die dadurch auftretenden, minimalen Resonanzbandbreiten erlauben einen spektralen

Überlapp der Resonanzen benachbarter Mikroresonatoren, auch wenn deren Radien sich um

wenige Nanometer unterscheiden. Diese Anforderungen werden durch die Reproduzierbarkeit

des Herstellungsverfahrens erfüllt. Desweiteren erlaubt die Elektronenstrahllithographie die

Herstellung beliebiger zweidimensional gekoppelter Strukturen auf einem einheitlichen Chip-

basierten Probenträger, wodurch eine systematische Untersuchung erleichtert wird.

Ein Hauptziel der Arbeit war die umfassende experimentelle Charakterisierung gekoppelter

xxxii
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Mikroresonatoren, um zu zeigen, dass durch die Kopplung mehrerer Scheibenresonatoren die

herausragenden Eigenschaften, wie etwa die hohe optische Güte, nur geringfügig beeinflusst

werden. Der Nachweis der optischen Kopplung der Moden in den vorliegenden Strukturen

wurde anhand der charakteristischen spektralen Resonanzaufspaltung erbracht, die von der

Anzahl als auch der Anordnung der einzelnen Mikroresonatoren abhängt. Zur Untermauerung

der spektralen Resonanzaufspaltung als Indiz einer optischen Kopplung wurde eine Methode

entwickelt, mit welcher erstmals die Intensitätsverteilung der kollektiven Anregungen in gekop-

pelten Scheibenresonatoren mit einer räumlichen Auflösung im Nanometerbereich gemessen

werden konnte. Die Methode beruht dabei auf der ortsabhängigen Störung der Resonatormo-

de, und damit des Resonanzspektrums, durch eine streuende Spitze eines Rasternahfeldmi-

kroskops (SNOM). Neben der für die einzelnen beobachtbaren Resonanzen charakteristischen

Intensitätsverteilung wurde damit auch die Symmetrie der kollektiven Anregung bestimmt.

Begleitend zur experimentellen Charakterisierung bestand ein wesentlicher Teil der Ar-

beit in der umfassenden theoretischen Modellierung der gekoppelten Mikroresonatoren. Dafür

wurden bestehende analytische und numerische Konzepte adaptiert, zusammengefasst und er-

weitert, um das experimentelle System, wann immer möglich, in einem hohem Detailgrad zu

beschreiben. Basierend auf der quantitativen Übereinstimmung zwischen theoretischen und

experimentellen Ergebnissen konnten charakteristische Systemparameter bestimmt werden.

Aufbauend auf der Realisierung gekoppelter Mikroresonatoren erfolgte die Untersuchung

des Einflusses thermischer nichtlinearer Effekte auf die Resonatormoden. Diese dynamische

Licht-Materie-Wechselwirkung wird durch Absorption des Lichts in den Mikroresonatoren her-

vorgerufen und tritt aufgrund der starken Intensitätsüberhöhung schon bei geringen optischen

Anregungsleistungen im Mikrowattbereich auf. Im Rahmen der vorliegenden Arbeit konnten

in diesem Zusammenhang anregungsleistungsabhängige Resonanzverschiebungen und optische

Bistabilität in gekoppelten Mikroresonatoren gezeigt werden. Die theoretische Modellierung

und Vorhersage dieser Effekte erfolgte mit Hilfe einer gekoppelten Modentheorie, unter Einbe-

ziehung der dynamischen Temperaturänderung in den Mikroresonatoren. Als entscheidender

Parameter ist dabei die thermische Relaxationszeit anzusehen, welche experimentell bestimmt

wurde. Des Weiteren konnte in gekoppelten Mikroresonatoren eine differentielle opto-optische

Resonanzverstimmung beobachtet werden, welche eine Konsequenz der charakteristischen In-

tensitätsverteilung der einzelnen Moden ist.

Die detaillierte Kenntnis der thermo-optischen Eigenschaften der untersuchten Mikroresona-

toren erlaubte die Realisierung einer Methode zur Kompensation der thermisch induzierten Re-

sonanzverstimmungen. Durch Modifikationen im Herstellungsprozess ist es möglich, Polymer-

schichten bestimmter Dicke auf den Quarzglas-Scheibenresonatoren aufzubringen, die eine

zu Quarzglas entgegengesetzte thermische Refraktivität aufweisen. Durch das schichtdicken-

abhängige Verhältnis der Anteile der geführten Mode in den jeweiligen Schichten kann so eine

effektive thermische Refraktivität nahe Null erreicht werden. Es wurde eine nahezu polarisati-

onsunabhängige Kompensation bis zu optischen Leistungen von mehreren Milliwatt realisiert.
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T. Pertsch: “Nonlinear thermal effects in optical microspheres at different wavelength

sweeping speeds,” Opt. Express 16, 6285-6301 (2008)

xxxiv

http://dx.doi.org/10.1364/JOSAA.29.002197
http://dx.doi.org/10.1103/PhysRevA.85.033827
http://dx.doi.org/10.1007/s00340-011-4636-7
http://dx.doi.org/10.1007/s00340-011-4636-7
http://dx.doi.org/10.1364/OL.35.003351
http://dx.doi.org/10.1364/OL.35.003351
http://dx.doi.org/10.1103/PhysRevA.80.043841
http://dx.doi.org/10.1103/PhysRevA.80.043841
http://link.springer.com/article/10.1007/s00340-008-3149-5?LI=true
http://link.springer.com/article/10.1007/s00340-008-3149-5?LI=true
http://pra.aps.org/abstract/PRA/v77/i5/e051801
http://pra.aps.org/abstract/PRA/v77/i5/e051801
http://dx.doi.org/10.1364/OE.16.006285


APPENDIX F. PUBLICATIONS xxxv

Conference Contributions

1. C. Schmidt, M. Liebsch, A. Klein, N. Janunts, A. Chipouline, T. Käsebier, E.-B. Kley,
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13. C. Schmidt, A. Chipouline, T. Käsebier, L. Deych, E.-B. Kley, A. Tünnermann, and

T. Pertsch: “Spectral characteristics of coupled silica disc micro resonators,” IEEE/LEOS

Winter Topicals Meeting Series on Nanophotonics, 12th to 14th January 2009, Innsbruck,

Austria - Talk, Conference Paper
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