
Design, realization, and characterization of 

optical negative index metamaterials 

Dissertation 

 zur Erlangung des akademischen Grades 

doctor rerum naturalium (Dr. rer. nat.) 

vorgelegt dem Rat der Physikalisch-Astronomischen Fakultät 

der Friedrich-Schiller-Universität Jena 

von Ms. Sc. Ekaterina Pshenay-Severin 

geboren am 18.02.1981 in Leningrad. 



Gutachter: 

1. Prof. Dr. Thomas Pertsch, Friedrich-Schiller-Universität Jena 

2. Prof. Dr. Ulf Peschel, Friedrich-Alexander-Universität Erlangen-Nürnberg   

3. Prof. Dr. Vladimir M. Shalaev, Purdue University, USA 

Tag der Disputation:  13.12.2011 



Contents

1 Introduction 3

1.1 Optical Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation and scope of this thesis . . . . . . . . . . . . . . . . . . . 7

2 Fundamental concepts and basic methods 10

2.1 The condition for a negative index material . . . . . . . . . . . . . . . 11

2.2 Metaatoms based on plasmonic
nanostructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Localized plasmon polaritons . . . . . . . . . . . . . . . . . . 13

2.2.2 Hybridization scheme for complex plasmonic systems . . . . . 14

2.2.3 Optical properties of metals . . . . . . . . . . . . . . . . . . . 16

2.3 Effective material parameters of MMs . . . . . . . . . . . . . . . . . . 19

2.3.1 Macroscopic fields and material equations . . . . . . . . . . . 20

2.3.2 The multipole approach for metamaterials . . . . . . . . . . . 25

2.3.3 Retrieval of the effective parameters . . . . . . . . . . . . . . . 27

2.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Design and realization of a double element NIM 31

3.1 Shaping the effective parameters of
metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Design guidelines for a double element NIM . . . . . . . . . . . . . . 35

3.2.1 Choice of the materials . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Tuning of the localized plasmon polariton resonances . . . . . 36

3.2.3 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 MM sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Evaluation of the experimental technique . . . . . . . . . . . . . . . . 42

3.4.1 Topographical characterization of the fabricated
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Characterization of the MgO layers . . . . . . . . . . . . . . . 44

3.4.3 Characterization of the gold layers . . . . . . . . . . . . . . . 48

3.5 Influence of fabrication inaccuracies . . . . . . . . . . . . . . . . . . . 50

3.6 Double-element metamaterial with negative index . . . . . . . . . . . 52

4 Experimental method for the characterization of metamaterials 56

4.1 Experimental method . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 White-light spectral interferometry . . . . . . . . . . . . . . . 57

4.1.2 Interferometric setup . . . . . . . . . . . . . . . . . . . . . . . 60

1



4.1.3 The measurement procedure . . . . . . . . . . . . . . . . . . . 62

4.1.4 Numerical treatment of the signal . . . . . . . . . . . . . . . . 63

4.1.5 Transmittance and reflectance measurements . . . . . . . . . . 64

4.2 Verification of the methods for
the characterization of NIMs . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Gold nanodisk structure . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Negative index metamaterial . . . . . . . . . . . . . . . . . . . 67

4.2.3 Accuracy of the experimental and combined methods . . . . . 68

5 Magnetic properties of asymmetric double-wire structures 74

5.1 Multipole model for asymmetric structures . . . . . . . . . . . . . . . 75

5.1.1 Parameters of harmonic oscillators . . . . . . . . . . . . . . . 77

5.1.2 Analytical model for the coupling constant . . . . . . . . . . . 79

5.2 Eigenmodes of asymmetric double-wire
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Magnetic response of double-wire systems . . . . . . . . . . . . . . . 82

5.3.1 Dynamics of currents . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Magnetization of the double-wire MMs . . . . . . . . . . . . . 85

5.3.3 Effective magnetic permeability of the double-wire
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusions and outlook 93

A Bibliography I

B Acknowledgment XIV

C Curriculum Vitae XVI

D Publications XVII

2



Chapter 1

Introduction

1.1 Optical Metamaterials

Optical properties of natural materials are determined mainly by their atomic or

molecular structure. In the classical electrodynamics the interaction of the elec-

tromagnetic (EM) radiation with a homogeneous material is described in terms of

macroscopic material parameters, electric permittivity ε and magnetic permeability

μ. These parameters can be introduced for a homogeneous material by averaging

the responses of single atoms or molecules to the EM radiation over a finite volume

with a size much smaller than the wavelength of light but still containing a large

number of atoms or molecules.

To realize new materials with optical properties not available with natural ma-

terials, one of the possible ways is based on the structuring of materials on sub-

wavelength dimensions forming new constitutive elements. These constitutive ele-

ments created from natural materials by combining and shaping them in a spatial

way, while keeping their sizes smaller than the wavelength of EM radiation, can

be considered as metaatoms or metamolecules. As a result, a metamaterial (MM)

composed of metaatoms or metamolecules with dimensions much smaller than the

wavelength of EM radiation can be treated as an effectively homogeneous material.

The optical properties of MMs, in turn, can be described with εeff and μeff determined

now by the EM response of the metaatoms and metamolecules. In the literature

concerning MMs, the notation “metaatoms” became well established to define arti-

ficial inclusions of arbitrary complex shapes. Hereafter, for the sake of consistency,

the notation “metaatom” is used to define the unit cell of a MM regardless of its

complexity.

The approach based on the engineering of the EM response of metaatoms al-

lows for the realization of metamaterials with extraordinary EM properties. One of
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Chapter 1

those is the optical magnetism. It is well known, that the magnetic permeability of

naturally occurring materials is close to unity at optical frequencies. The dielectric

function, in contrast, varies significantly for different materials.

Long before magnetic optical materials became a reality, theoretical considera-

tions of the light propagation in such a medium were undertaken. The modern

electromagnetic theory of media with simultaneously negative ε and μ was devel-

oped in 1968 by V. Veselago [1]. It should be noticed, however, that the first works

on this issue are dated to the begining of the 20th century [2–4]. In the work of V.

Veselago [1], it was shown that in a medium with ε < 0 and μ < 0 the phase velocity

is negative, which means its direction is opposite to the direction of the energy flow

determined by the pointing vector. As a result, the refractive index n attributed

to this material is negative. Almost all phenomena related to light propagation in

such materials have realizations different to those in materials with positive n. For

example, the Doppler shift is reversed in such media and the Cherenkov radiation

emitted from a charge passing through a material with n < 0 is emitted in the op-

posite direction to the charge’s motion [1]. However, probably the most attractive

feature of negative index materials (NIMs) for applications is the negative refraction.

Almost four decades separate the theoretical work of V. Veselago and the first re-

alization of MMs with a negative effective refractive index. The starting point in the

development of contemporary MMs was the work of J. Pendry published in 1999 [5],

where an artificial medium possessing magnetic response was proposed. In Ref. [5]

it was shown that a MM composed of nonmagnetic thin sheets of metal rolled in

cylinders has a response to the microwave radiation as if it possesses an effective

magnetic permeability. Furthermore, the planar split-ring resonators (SRRs) intro-

duced likewise in Ref. [5] became the most prominent magnetic metaatom for MMs

in the microwave range. A SRR is a metallic ring with a gap and can be understood

as an L - C circuit. In the spectral ranges below and above the resonance frequency of

the equivalent L - C circuit the SRR demonstrates para- and diamagnetic response,

respectively. The first NIM in the microwave range was based on SRRs and metallic

wires providing negative μeff and εeff, respectively [6]. Experimentally, a negative

index of a MM composed of SRRs and metallic wires [7] was demonstrated by the

registration of negative refraction on a wedge made of this material [8].

After the first NIMs were experimentally realized the field of MMs developed

rapidly. Principally new devices based on NIMs were proposed, among those the

perfect lens and the cloaking device. The perfect lens proposed by J. Pendry [9]

allows for imaging with subwavelength resolution, due to the support of the evanes-

cent fields by NIMs. After the limitations of the device were clarified [10, 11], the

perfect lens was demonstrated first numerically [12] and finally experimentally [13].
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At microwave frequencies, using a lens made of a NIM, imaging with a resolution

better than 0.235λ was achieved. Later, the invisibility cloaking based on the engi-

neering of ε and μ was proposed [14, 15] and experimentally realized for microwave

frequencies [16].

After the demonstration of the perfect lens effect in the microwave range massive

efforts were devoted to realize NIMs in the optical spectral range, where they promise

a breakthrough for imaging devices. Here, for the sake of conciseness, with the

notation optical spectral range the VIS and NIR spectral domains are meant.

The work on this thesis began in 2005, at the time when pioneering works on

optical MMs had been conducted. At that time, to realize NIMs at the optical fre-

quencies the strategy of the straight scaling of the structures developed for microwave

frequencies was pursued. However, very soon the limitations of this approach be-

came obvious.

Firstly, to satisfy the condition of an effective medium at high operation frequen-

cies, the size of the metaatoms had to be reduced to the scale of several hundreds

of nanometers. As the fabrication of MMs composed of such metaatoms became a

challenging technological problem, the design of the metatoms had to be simplified

to correspond to the state-of-the-art technology. It should be noticed that only a

few groups in the world had technological facilities for NIM fabrication at that time.

Secondly, a fundamental difference between optical and microwave MMs was rec-

ognized. At optical frequencies the metals used to construct the magnetic atoms

can not be considered as perfect conductors as the ratio between the real and imag-

inary parts of their dielectric functions drops dramatically. As a result, the mag-

netic response of a SRR experiences resonance frequency saturation with decreasing

its dimensions [17–20]. Furthermore, in the optical domain the interaction of the

EM radiation with nanostructured metallic inclusions is determined by the physics

of localized surface plasmon polaritons. Thus, the development of an appropriate

physical model providing the theoretical description of metaatoms was required. It

should be emphasized, that until now the final theory has not yet been developed.

To realize NIMs in the optical range, alternative geometries accounting for the

new physical conditions and the limitations imposed by the technology were devel-

oped. A double cut-wire structure became a prominent magnetic metaatom for the

optical spectral range [21–24]. This magnetic metaatom consists of two metallic

nanowires separated by a dielectric. The excitation of the antiparallel effective cur-

rents in the metallic wires provided the magnetic response of the system. In 2005

and 2006 so-called fishnet NIMs, where cut-wires and continuous wires are merged

in one element, were realized in the NIR [25, 26]. Later, a low-loss NIM based on

silver for the telecommunication wavelength was demonstrated [27].
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Over a period of several years, the major efforts were focused on the development

of the technological facilities to push the operation frequency of NIMs from the

NIR to the VIS spectral range [28, 29]. Further, due to technological progress the

realization of “bulk” metamaterials consisting of several metaatomic layers became

possible [30–32]. However, due to the high absorption even in a single metaatomic

layer the transparency of a NIM consisting of several layers drops dramatically with

increasing their number. Hence, the majority of the experimentally realized NIMs

still consist of a single metaatomic layer. This makes the experimental characteriza-

tion of the optical properties of such NIMs a challenging task. It should be noticed

that there are only a few works addressing direct experimental characterization of

the effective optical parameters of MMs [25, 26, 29, 33]. Though these experiments

successfully demonstrated the negative refractive index of MMs, they can be hardly

used as a routine technique.

After the concept of metamaterials based on metaatoms was experimentally es-

tablished in the optical range, a revision of their theoretical description became

unavoidable. Initially, the material properties of MMs were described with effec-

tive electric permittivity εeff and effective magnetic permeability μeff, as well as an

effective refractive index neff and impedance zeff, assuming the validity of their intro-

duction for the MMs in the same manner as for natural optical materials. However,

due to technological reasons and the plasmonic origin of the effects in metaatoms,

the sizes of metaatoms turned out to be only a few times smaller than the wave-

length of light. In this regime the EM response of MMs becomes nonlocal and, as a

result, the effective permittivity and permeability of MMs depend on the wavevector

k [34–36]. The recognition of the fact that spatial dispersion is an inherent property

of metamaterials provoked wider debates about the validity of the introduction of

the effective material parameters for MMs [37–43]. It should be noticed that un-

til now the final approach to describe EM properties of optical MMs has not yet

been developed. In the experiments, however, this problem could be tolerated until

now, because only metaatoms with simple geometries could be realized providing

the desired EM response solely for normal incidence. Accordingly, experimentally

available optical MMs are commonly described with effective εeff and μeff, valid only

for normal incidence.

Besides the lacking theoretical description of NIMs, the main limitation of con-

temporary NIMs lies in the high rate of losses, which are caused by the absorption

of gold and silver commonly used as materials for metaatoms. Nowadays, one of

the promising approaches to overcome this drawback is the compensation of the

losses by implementation of gain materials [44,45]. Moreover, research is ongoing to

find plasmonic materials with low losses which could replace the metals [46] in the
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metaatoms.

1.2 Motivation and scope of this thesis

This thesis is devoted to the design, experimental realization, and characterization of

NIMs in the optical domain. When the work on this thesis was started the realization

of NIMs for the optical range was a challenging technological task. Hence, in the

beginning the establishment of the technological process based on electron-beam

lithography and the development of realizable designs of metaatoms were in the focus

of the research. The prime aim was the elaboration of guidelines for the design of

NIMs based on double cut-wires and continuous wires accounting for limitations of

the accessible fabrication technology. Though a negative refractive index of double

element NIMs had been demonstrated in the THz and microwave regions [47–50],

the challenge was to design and realize them in the optical range.

Alongside the progress in the realization of NIMs the development of a routine

experimental method for the characterization of their optical properties became ur-

gent. Though a few experimental methods [25,26,29,33] were developed to demon-

strate a negative refractive index, they either required a certain configuration of

the samples [25] or had limitations regarding the width of the accessible spectral

range [26,29,33]. Therefore, the second aim of the work was the development of an

experimental interferometric setup providing a routine technique for the measure-

ments of MM optical properties in a broad spectral range.

The progress of fabrication techniques enabled the realization of metaatoms with

advanced geometries and, thus, opened new possibilities to engineer their EM re-

sponse. The asymmetry of the metaatoms was recognized as a powerful tool to

design their EM properties. Numerous numerical and experimental investigations

on the tailoring of the magnetic properties of MMs by breaking the symmetry of

their constitutive elements have been undertaken in the microwave [51–54] and op-

tical [55–57] frequency ranges. Different types of structures, in particular split ring

resonators [52–55,58] and double cut-wire structures [51] were investigated. Exper-

iments on different configurations and combinations of these elements have shown

that breaking the symmetry of the structures enables tuning of their EM response

in a broad range and provides access to additional modes. Nevertheless, there was a

lack of simple theoretical models providing qualitative understanding of the mecha-

nisms behind the observed effects and, that is important, enabling to predict them.

To fill this gap, an expansion of the theoretical multipole model presented in Ref. [59]

for the case of asymmetric double cut-wire structures was undertaken in this thesis.

The extended model was employed to investigate the magnetic response of double
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cut-wire structures with broken symmetry.

It should be noticed that in the present work the EM properties of MMs were

investigated only for the case of normal incidence.

This thesis is structured as follows. In chapter 2 the fundamental concept of NIMs

composed of plasmonic metaatoms is presented. After a brief introduction of the

condition for a negative refractive index the concept of magnetic metaatoms based

on plasmonic nanostructures is discussed. The basics of plasmonics, essential for

the understanding of the functionality of metaatoms, are considered in the second

section of the chapter. Further, the problem of the introduction of effective material

parameters for MMs is discussed and the multipole approach [60] used to introduce

the effective parameters is presented. At the end of the chapter a computational

method used for numerical studies of metamaterials is briefly introduced.

Chapter 3 is devoted to the design and the realization of NIMs based on double

cut-wires and continuous wires. In this chapter the engineering of the EM response

of a cut-wire structure by tuning its geometry is investigated. It is shown how εeff and

μeff of a MM can be designed employing the plasmon polariton resonances supported

by the cut-wires. Further, the main steps and limitations of the used technological

process are presented and its influence on the design of NIMs is considered. The

chapter is closed with the demonstration of a double element NIM at λ = 2.1 μm.

In chapter 4 the experimental method developed for the characterization of the op-

tical properties of MMs is presented. In the beginning of the chapter the theoretical

background of the white-light spectral interferometry and the realized experimental

setup are introduced. Further, the evaluation of the developed experimental method

and a method based on the combination of the simulated and the experimental data,

commonly used to determine the refractive index of MMs, are conducted. The ac-

curacies of the two methods are compared considering a simple plasmonic structure

and a fishnet NIM.

In chapter 5 the investigations of the magnetic properties of asymmetric double

cut-wires are presented. The magnetic response of the asymmetric cut-wires, con-

trolled by the variation of the length of the wires, was studied experimentally and

theoretically using numerical simulations and the multipole model [59]. In the first

section of the chapter, the extension of the multipole model [59] towards the case of

asymmetric cut-wires is introduced. Further, using the extended multipole model

the dynamics of the currents in the system, giving rise to the magnetic moment, is

analyzed. Using the results of this analysis, the dependence of the magnetic moment

on the asymmetry of the structures could be explained. The chapter is closed with

experimental investigations of asymmetric cut-wire structures.

Some further remarks should be made regarding the general conventions accepted
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in this thesis. As it has been mentioned above, for the sake of conciseness, the nota-

tion optical range will be used for the spectral range from VIS to NIR (wavelength

from 0.5 μm to 3 μm). Spectral information will be presented in wavelengths λ

or, in the cases when the energy representation of the spectral data is important,

in wavenumbers ν̃ = 1/λ. The wavenumber representation was preferred in most

figures to facilitate the easy conversion to the wavelength domain. The circular

frequencies ω = 2πc/λ, however, are kept in the analytical calculations.

The present work is the result of a close collaboration with Dr. Uwe Hübner from

the Institute of Photonic Technology Jena who performed the fabrication of almost

all samples used in this work. The investigations of technological aspects of electron-

beam lithography and thin films evaporation processes required for MM’s fabrication

belong to the scope of this own scientific research. My personal contribution to the

establishment of the technological process was made by designing MM samples,

performing optical characterization of fabricated structures and providing analysis

of their optical properties.

I also appreciate the contribution of Matthias Falkner in the development of the

experimental setup for phase measurements, which he made during his Diploma

thesis under my supervision.
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Fundamental concepts and basic

methods

In the first section of this chapter the condition for a negative refraction index mate-

rial will be introduced according to the works of V.G. Veselago and R. Depine [1,61].

MMs with εeff and μeff satisfying the condition of a negative index material can be

realized following the concept of artificial effective media composed of metaatoms

with subwavelength dimensions. Up to now, the majority of metaatom designs pro-

viding a magnetic response of MMs employ the excitation of localized or surface

plasmon polaritons in metallic nanostructures [62]. Hence, in the second section

of the chapter the basics of plasmonics essential for the understanding of the con-

cept and functionality of metaatoms are introduced. Additionally, the issue of the

dielectric function of metals in the case of nanoparticles is discussed.

Further, in Sec. 2.3 the problem of the introduction of effective material pa-

rameters for the MMs is considered. Though the development of a theory for the

description of optical properties of MMs is beyond the scope of this thesis, the con-

cept of effective parameters, essential for experimental studies, is presented in this

chapter. The effective material parameters of MMs in the present thesis are intro-

duced according to the multipole model proposed by A. Chipouline and published

in the work of J. Petschulat, C. Menzel, and A. Chipouline [59]. The concept of the

multipole approach presented in Ref. [59] and in the thesis of J. Petschulat [60] is

summarized in Sec. 2.3.

The chapter is closed with a brief introduction of a computational method used

for numerical studies of metamaterials.
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2.1 The condition for a negative index material

Theoretical investigations on hypothetic homogeneous media possessing a negative

electric permittivity ε and permeability μ [1] have shown that the phase velocity of

light in such media given by the wave vector k is directed opposite to the energy

flow given by the Poynting vector S

S = E ×H . (2.1)

Indeed, considering Maxwell’s equations in frequency space for plane waves in a

homogeneous medium

k ×E = ωμμ0H , (2.2)

k ×H = −ωεε0E (2.3)

one can see that the simultaneous change of the sign of ε and μ leads to the trans-

formation of the right handed triplet formed by k, E, and H to a left handed one.

Since the vectors E, H , and S always form a right handed triplet this means that

if ε < 0 and μ < 0 then k is directed opposite to S. Introducing the refractive index

n, as k = nk0, where k0 is the wave vector in vacuum, materials with a negative

phase velocity can be characterized with a negative refractive index. In a negative

index material a number of fundamental electromagnetic phenomena such as light

refraction, reflection, and transmission expressed with the Snell’s law and Fresnel

formulas, Doppler effect and Fermat principle are realized in an uncommon way [1].

Probably the most attractive application of a negative index material, which initially

forced the rapid development of the field, was the super lens, enabling imaging with

subwavelength resolution [9, 63].

A generalized condition for a medium with negative phase velocity was introduced

in Ref. [61]. Assuming a dissipative electric permittivity ε = ε′ + iε′′ = |ε| exp[iφε]

and permeability μ = μ′ + iμ′′ = |μ| exp[iφμ] the refractive index can be written as

n = ±√εμ =
√|ε||μ| exp[i(φε + φμ)/2]. Obviously, the real part of the refractive

index n′ is negative if π ≤ (φε + φμ)/2 < π/2. Thus, the double-negative condition

ε′ < 0, μ′ < 0 is sufficient but not necessary to achieve a negative refractive index.

Necessary is, that at least one of ε and μ has a negative real part (π ≤ φε/μ <

π/2) and the other has nonzero imaginary part (π ≤ φμ/ε < 0). Negative index

materials with simultaneously negative ε′ and μ′ are usually called double-negative

materials. Accordingly, single-negative materials have either negative ε′ or negative

μ′. According to Ref. [61] the condition of a negative index material can be written

11
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as

|μ|ε′ + |ε|μ′ < 0. (2.4)

To evaluate the efficiency of a negative index material the figure of merit (FOM)

is commonly introduced as the relation of the real to the imaginary part of the

refractive index of a NIM

FOM =

∣∣∣∣ n′

n′′

∣∣∣∣ =
|μ|ε′ + |ε|μ′

|μ|ε′′ + |ε|μ′′ . (2.5)

From Eq. (2.5) it follows that a double-negative material with a real part of the

refractive index n′ will have a higher FOM than a single-negative material with the

same n′. Indeed, using ε = |ε| exp[iφε] and μ = |μ| exp[iφμ], FOM and n′′ can be

expressed as

FOM = |cot [(φε + φμ)/2]| = |cot φi| , (2.6)

n′′ =
n′

cot [(φε + φμ)/2]
=

n′

cot φi

. (2.7)

The argument of the cotangent function for a double-negative material (φi = φDN)

lies between π/2 and π and its absolute value is larger than the one for a single-

negative material φi = φSN. Thus, as expected, n′′
DN < n′′

SN and the FOM for a

double-negative material is larger than the FOM of a single-negative material.

In short, in an isotropic, homogeneous material the phase velocity of light is

directed opposite to the power flow, if the material parameters ε and μ satisfy

the condition expressed with Eq. (2.4). The refractive index of such a material is

negative.

2.2 Metaatoms based on plasmonic

nanostructures

In the optical spectral range the common approach to create a NIM is based on the

combination of two elements in its unit cell. Using a noble metal in the unit cell of

a MM a negative real part of the effective permittivity ε′eff(ω) < 0 of the MM can be

easily achieved. The realization of the required μeff(ω), in turn, is connected with the

creation of a metaatom providing the desired magnetic response. The vast majority

of metaatom designs providing a magnetic response to NIMs utilize the localized or

surface plasmon polaritons supported by the metallic nanostructures [62].
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2.2.1 Localized plasmon polaritons

Localized plasmon polaritons are non-propagating excitations of the conducting elec-

trons in metallic nanostructures coupled to the electromagnetic field [64]. In a

metallic nanoparticle, electrons driven by the electric field shift as a whole relative

to the positively charged host. As a result, a restoring force occurs and a resonance

can arise. This resonance is called localized surface plasmon resonance or in short:

plasmon resonance.

Analytical expressions for the polarizability of a nanoparticle can be derived in

the quasi-static approximation [65] for particles of simple forms only, i.e. spheres or

ellipsoids. Nevertheless, the analysis of the polarizabilities of spherical and elliptical

particles provide inside into the dynamics of metaatoms, even if they have a more

complex form.

For a sub-wavelength metallic particle of ellipsoidal form with the semiaxes a1,a2,

and a3, whose surface is given as

x2

a2
1

+
y2

a2
2

+
z2

a2
3

= 1 (2.8)

the polarizabilities αi along the principal axes (i = 1, 2, 3) according to Ref. [66] are

αi = 4πa1a2a3
ε(ω)− εh

3εh + 3Li [ε(ω)− εh]
, (2.9)

where the permittivity of the material of the particle is ε(ω) and the permittivity of

the host medium is εh. Li is a geometrical factor given by

Li =
a1a2a3

2

∫ ∞

0

dq

(a2
i + q)

√
(q + a2

1) (q + a2
2) (q + a2

3)
. (2.10)

For a spherical particle of the radius a the geometrical factor is L = 1
3

and the

polarizability is

αsphere = 4πa3 ε(ω)− εh

2εh + ε(ω)
. (2.11)

In this case, the condition for an extremum of the polarizability is a minimum of the

denominator 2εh + ε(ω). In a non absorbing host medium this gives the condition

Re[ε(ω)] = −2εh. (2.12)

Thus, the position of the plasmon resonance can be controlled by changing the

material parameter of the host medium or the particle. Furthermore, deviations of
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the particle shape from a sphere cause a shift of the resonance frequencies, according

to Eq. (2.9). Thus, for a gold nanowire which can be approximated with a prolate

spheroid with a1 = a2 � a3 tuning of the resonance frequency from the VIS to the

NIR region is possible by changing its geometry and the host medium.

2.2.2 Hybridization scheme for complex plasmonic systems

Metallic nano-particles support localized surface plasmons, whose excitation results

in the resonant increase of the polarizability of the particles. A complex response

including the rise of a magnetic moment can be achieved by shaping and/or by

grouping nanoparticles into complex geometries. Insight into the behaviour of com-

plex nanostuctures is provided by a hybridization model proposed in Ref. [67]. The

model is in a sense an analog of molecular orbital theory and describes interaction of

elementary plasmonic elements forming a complex structure. Developed for metallic

dimers [67, 68] and nanoshells [69], the model was employed for the description of

various complex nanostructures used as a constitutive elements of MMs [62,70–74].

Using the hybridization scheme the origin of the magnetic response of the double

cut-wire structure (Fig. 2.1(a)), which consists of two metallic wires separated by

a spacer, can be explained as follows. Each wire supports a plasmon mode with

the eigenfrequency ω0. A system of two wires possesses two eigenmodes of different

symmetry, whose frequencies are degenerate if the distance between them is large

enough to prevent any interaction between the wires. In a system of two closely

spaced cut-wires the interaction between the plasmons of each wire lifts the degen-

eracy of the eigenmodes. The mode with a spatially symmetric field distribution,

hereafter called symmetric mode, has a higher eigenfrequency ω0,+ than the anti-

symmetric mode with antisymmetric field distribution and the eigenfrequency ω0,−
(see the hybridization diagram in Fig. 2.1(a)). The eigenfrequency splitting in a sys-

tem of two cut-wires can be observed in the transmittance spectra of a layer of such

cut-wires where two minima correspond to the excitation of the symmetric (2) and

antisymmetric (3) modes (see Fig. 2.1(b) blue line). In contrast, the spectrum of a

layer of single cut-wires shown in Fig. 2.1(b) with a red line has only one minimum

(1).

The spatial distributions of the electric and magnetic fields at the frequencies of

the symmetric and antisymmetric resonances for a gold double cut-wire structure

infinite in one direction and with a length of 300 nm, a thickness of 10 nm, and a

separation distance of 40 nm are shown in Fig. 2.1(c)-(f). In the symmetric resonance

the electric field distribution (see Fig. 2.1(c)) corresponds to two dipoles oscillating

in phase. Thus, the symmetric mode is associated with a strong dipole moment,
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Figure 2.1: (a) - Transmittance of single (red curve) and double (blue curve) cut-wire
structures. (b) - Eigenfrequency splitting diagram for a double cut-wire structure. (c), (e)
and (d), (f) - electric and magnetic field distributions at the symmetric and antisymmetric
resonances, respectively. As it is seen from the vector diagrams for the electric fields the
charge distribution in the system in the symmetric resonance corresponds to the one of a
dipole. The electric field distribution in the antisymmetric resonance corresponds to the
one of two dipoles oscillating out of phase. From the diagrams for the magnetic field, one
can see that the magnetic field in the center of the system in the antisymmetric resonance
increases.
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while the magnetic moment in the center of the system is zero (see Fig. 2.1 (d)).

In the antisymmetric resonance, in contrast, the plasmon oscillations in the two

wires are out of phase, see the electric field distribution in Fig. 2.1(e). The cor-

responding charge dynamics in the system can be associated with an equivalent

loop current giving rise to a magnetic moment. The increase of the magnetic field

between the wires is clearly seen in Fig. 2.1(f).

It has been demonstrated that a double cut-wire structure owes its magnetic

response to the excitation of the antisymmetric mode. As a result, it can be used as

a magnetic metaatom of a MM to manipulate its effective magnetic permeability.

It should be emphasized that the excitation of the plasmonic modes is a result

of the interaction of the electrons of the metal with the electric field. As a result,

the magnetic moment of the system is induced dominantly by the electric field of

an exciting electromagnetic wave.

The excitation of a mode of a double cut-wire system is possible if the overlap

integral of the mode profile and the exciting field is nonzero. Hence, the excitation

of the antisymmetric mode requires either the asymmetry of the exciting field or

the system itself. Due to the retardation effect, the exciting electric field commonly

includes some asymmetry on the dimensions of the metaatom. Thus, the antisym-

metric mode can be excited even in a symmetric structure. The fact that the wave

“recognizes” the structure of metaatoms, in turn, means that the EM response of

MMs is nonlocal and spatial dispersion has to be accounted for in the introduction

of their material properties. A possible approach for the introduction of the material

parameters of MMs in the framework of the multipole approach was developed in

Ref. [59] and is considered in Sec. 2.3.

2.2.3 Optical properties of metals

In the previous sections the localized plasmon polaritons supported by metallic

nanoparticles of basic and complex forms were discussed. Besides the form of a

nanoparticle, the important parameter determining the eigenfrequency of the plas-

mon resonance (for a spherical particle see Eq. (2.12)) and the polarizability of the

particle (Eq. (2.11)) is the dielectric function of the metal forming the nanoparticle.

In this section, the issue of the evaluation of the dielectric function of metals in the

case of nanoparticles is discussed.

To describe the optical properties of metals, a model of free electrons moving in

a fixed background frame of positive ions is commonly used. The displacement of

the negative carriers defining the polarization of the material can be described with

a model of a linear harmonic oscillator without a returning force. As a result, the
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electric permittivity of a metal is expressed with the well-known Drude-Sommerfeld

formula

εm(ω) = 1− ωp

ω2 + iγω
, (2.13)

where γ is the damping constant and the plasma frequency is

ωp =
1

ε0

e2N

m
, (2.14)

with m - the mass of the electron, e - the electron charge , N - the concentration of

the electrons.

For noble metals, the free-electron model is valid in a broad spectral range up

to optical frequencies, where interband transitions first occur. At high optical fre-

quencies the electrons from the filled band below the Fermi surface can be excited

to the higher bands by the photons. For example, for gold the interband transitions

occur in the optical spectral region and the free-electron model fails at wavelengths

less than 1 μm [75]. Nevertheless, the effects connected with interband transitions

can be accounted for in the Drude-Sommerfeld formula, using the model of bounded

electrons referenced with the resonance frequency ω0i, damping γi, and amplitude fi.

Accordingly, resonant Lorentz-oscillator terms of the form fi

ω2
0i−ω2+iγiω

are introduced

into the Drude-Sommerfeld formula.

There are different sources providing the dielectric function of noble metals mea-

sured on thin films in the literature [75–77]. However, the published dielectric func-

tions vary significantly. As an example, in Fig. 2.2 the real and imaginary parts of

ε(λ) for gold from the “Handbook of Optical Constants of Solids”, ed. Palik Ref. [76]

(originally measured in Ref. [78]) and from the work of Johnson and Christy Ref. [75]

are presented. The difference between the published data demonstrates that the

dielectric function of a thin metallic film depends significantly on the fabrication

process, which determines the cluster building and as a result the quality of the

crystallographic structure of the metal.

Moreover, studies conducted on plasmonic particles of small sizes (2 nm - 20 nm)

have shown that the dielectric function of a metal depends on the size of the particles

(Ref. [79–81] and references in Ref. [82]). Experimental investigations on particles

of different sizes have shown that the bandwidth of the plasmon resonance strongly

depends on the size of the particle. However, the absorption cross section σabs of a
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Figure 2.2: (a) - real part and (b) - imaginary part of the electric permittivity ε(λ) of gold
according to Palik Ref. [76] and Johnson and Christy Ref. [75] data.

small spherical particle within the long wave approximation is

σabs = ω
√

εhα
′′
sphere/c (2.15)

= 9
ω

c
ε
3/2
h V

ε′′(ω)

(ε′(ω) + 2εh)
2 + (ε′′(ω))2 ,

where α′′
sphere is the imaginary part of the polarizability of the sphere αsphere (see

Eq. (2.11)), εh is the dielectric function of the host medium, and V is the volume

of the particle [66]. One can see that σabs contains the size of the particle only in

the volume factor V , which does not influence the position and bandwidth of the

resonance (the denominator in Eq. (2.15) does not depend on V ). Thus, for small

particles the experimentally observed broadening of the plasmon bandwidth with

decreasing particle size must be related to the increase of the damping constant γ

in the Drude-Sommerfeld formula for εm(ω) of a metal (Eq. (2.13)). The damping

constant γ in bulk is related to the lifetimes of the electron scattering processes

defined by the scattering of the electron on other electrons, phonons, and lattice

defects. Since the free path of the conducting electron in noble metals is in the order

of tens of nanometers, electron-surface scattering due to the particle’s boundaries

becomes important for small particles. According to Ref. [83, 84], the damping

coefficient γ in the Drude-Sommerfeld model for εm(ω) of a small particle can be

redefined as

γ(r) = γ0 +
AvF

r
. (2.16)

Here γ0 is the bulk damping constant, vF is the velocity of the electrons at the Fermi

energy, r is the radius of the particle, and A is a parameter including details of the
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scattering process for electrons in a particle [85].

For large particles (r > 25 nm) the broadening of the plasmon bandwidth is

caused mainly by radiation effects as the increased size of the particle becomes

comparable to the wavelength of light [66]. It should be emphasized that there is

a lack of studies on the dielectric function of metals in the case of large plasmonic

particles. The existing studies on spherical particles with sizes up to 100 nm give

inconsistent results regarding the dependence of the dielectric function on its size

and surface quality (Ref. [86–88] and references in Ref. [82]).

A systematic study of the dielectric function of nanostructures used in metama-

terials was conducted by V. P. Drachev et al. [89] for silver double wires of different

thicknesses and surface qualities. The authors argued that, though the loss at the

plasmon resonances of the coupled wires increases with increasing roughness, it does

not affect the dielectric function. The imaginary part of dielectric function of silver

for the double-wires, in turn, depends significantly on the geometry of the wires.

In short, the damping in εm(ω) depends significantly on the fabrication process,

which determines the quality of the crystallographic structure of the metal. Ad-

ditionally, the application of different etching processes during the fabrication of

nanostructures results in the growth of the surface roughness, which can contribute

to a stronger inelastic electron-surface scattering. These effects can be accounted for

by increasing the damping constant γ in the Drude-Sommerfeld model for a metal.

It can be shown that an increase of γ influences the imaginary part of dielectric

function of a metal ε′′m(ω) stronger than its real part ε′m(ω) [89]. Thus, in the case of

nanostructures the dielectric function of metal is commonly obtained by the direct

tuning of the imaginary part of published tabulated values of εm(ω), which were

measured on unstructured thin films [25,29,90].

2.3 Effective material parameters of MMs

Using a mixture of materials is a well known method for advanced control of the

dielectric function of an effective medium. The effective dielectric permittivity of

such an effective material in the simplest case is calculated as the averaged value of

the permittivities of the intrinsic components according to their concentrations. It is

also known, that by shaping the constitutive phases, for example considering inclu-

sions of different forms encapsulated into a host medium, a richer optical response

than just the averaged one can be realized [66].

The problem of the definition of the average dielectric function of a composite

material, in the general case, is complicated by the presence of interactions between

the components. Hence, a number of formulas has been derived to approximate
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the effective dielectric function. Among them are the Maxwell-Garnett and the

Lorentz-Lorenz formulas (see references in [91]) and the Bruggeman [92] approach.

However, these theories were developed to treat cases where the polarization and

magnetization of effective media are directly connected to the electric and magnetic

fields, respectively. In the case of metamaterials, however, the mesoscopic particles

of complex form provide a magnetic response induced by the electric field of the

incoming wave. Thus, the development of an advanced effective medium theory for

the metamaterials was required.

The concept of a metamaterial acting as an artificial effective medium imposes

that it is structured on dimensions much smaller than the wavelength of light but

larger than the atomic sizes. Under this assumption, electromagnetic wave interac-

tion with the individual metaatom can be formulated in terms of the macroscopic

material properties of its constitutive elements, i.e. its electric permittivity. For

the definition of the macroscopic parameters of the metamaterial, in turn, a second

averaging procedure of Maxwell’s equations must be performed. An attempt to in-

troduce the macroscopic properties of metamaterials through the second averaging

procedure of the microscopic Maxwell’s equations was undertaken in Ref. [59]. To

account for the complex form of the metaatoms the authors of Ref. [59] used an ap-

proach based on the multipole expansion accepted in the classical electrodynamics

of complex media [93–95]. Though the authors of Ref. [59] introduced the averaging

procedure phenomenologically without a strict theoretical proof, the validity of the

procedure was established by numerous numerical simulations (see the thesis of J.

Petschulat [60]). As the multipole approach was used in this work for the description

and optimization of the effective properties of double wire MMs, the main points of

this theory will be presented here.

Firstly, the derivation of the macroscopic Maxwell’s equations for a media con-

sisting of complex atoms will be presented according to Ref. [96]1. In the second

step, the application of the multipole approach for MMs according to Ref. [59] will

be discussed.

2.3.1 Macroscopic fields and material equations

The starting point for the derivation of the macroscopic Maxwell’s equations is

the formulation of the microscopic Maxwell’s equations and the charge movement

equation. The microscopic Maxwell’s equations describing the electric field e(R, t)

and the magnetic field b(R, t) at the point with the coordinates R and at the time

t, generated by a group of point particles i = 1, 2..n with charges qi, positions Ri(t)

1The notations accepted in Ref. [96] are retained.
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and velocities Ṙi(t) are

rot e = −∂b

∂t
, (2.17)

rot b =
1

c2

∂e

∂t
+ μ0

∑
i

qiṘiδ(Ri −R), (2.18)

div e =
1

ε0

∑
i

qiδ(Ri −R), (2.19)

div b = 0. (2.20)

The microscopic Maxwell’s equations together with the equations of motion for a

set of charged particles

mR̈i = qi

[
e (Ri, t) + Ṙi × b (Ri, t)

]
(2.21)

form a self consistent system describing all microscopic fields. The fields e (Ri, t)

and b (Ri, t) affecting the particle i in Eq. (2.21) are the sums of the external field

and the field generated by the other particles. The interaction of a particle with the

magnetic field expressed with the second term in Eq. (2.21) can be neglected in the

non-relativistic case.

In natural materials, charged point particles (electrons and nuclei) are often

grouped into stable sets, like atoms or molecules. In this case, it is convenient

to express the position of a point particle in a stable group as

Rik = Rk + rki, (2.22)

where Rk is the position of some dedicated point of the stable group k, for instance

the center of mass, while rki (i = 1, 2, . . .) are the internal coordinates, which define

the offsets of the constituent particles ki from the dedicated point of the stable group

k.

If the atomic dimension |rki| is much smaller than the distance |Rk −R| from

the observation point R of the fields to the central point Rk of the atom, the

solutions e and b of the field equations can be considered as converging series of

expansions in |rki| / |Rk −R|. Accordingly, the coordinates and the velocities of

the charged particles in Eqs. (2.18) and (2.19) can be developed in powers of rki

around |Rk −R|. The number of terms in the expansion which have to be taken

into account depends on the material. In diluted systems, the observation point R

of the fields can easily be chosen at a distance |Rk −R| from the atom which is

large compared to the atomic dimension |rki|. As a result, the expansion parameter

|rki| / |Rk −R| is small compared to unity and only a few terms of the expansion
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have to be taken into account. Hereafter, for the sake of clarity, the consideration

will be restricted to the case of diluted systems only.

The system of equations obtained after the expansion of the fields (not presented

here) can be simplified introducing physical quantities characterizing the internal

atomic structure. Besides the total charge

qk =
∑

i

eki, (2.23)

the stable group is characterized with the electromagnetic multipole moments, which

are useful combinations of the internal atomic parameters. In the case of a diluted

system, it is necessary to consider only the electric moments of the first and second

orders and the magnetic moment of the first order [97]. The definitions of the

multipoles are the following: the electric dipole moment is

μ̄
(el)
k =

∑
i

ekirki, (2.24)

the electric quadrupole moment is

q̄
(el)
k =

1

2

∑
i

ekirkirki, (2.25)

and the magnetic dipole moment is

ν̄
(m)
k =

1

2

∑
i

ekirki × ṙki. (2.26)

Though the values of the multipole moments may depend on the choice of the

privileged point Rk, their forms will always be the same combinations of the internal

coordinates rki. Writing the charge and current densities as

ρ0 =
∑

k

qkδ (Rk −R), (2.27)

j0 =
∑

k

qkṘkδ (Rk −R), (2.28)

and introducing the atomic electric and magnetic polarization densities

p =
∑

k

(
μ̄

(el)
k −∇q̄

(el)
k

)
, (2.29)

m =
∑

k

ν̄
(m)
k , (2.30)
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the field equations become

rot e = −∂b

∂t
, (2.31)

rot b =
1

c2

∂e

∂t
+ μ0

(
j0 +

∂p

∂t
+ rot m

)
, (2.32)

div e = ρ0 − div p, (2.33)

div b = 0. (2.34)

To derive the macroscopic Maxwell’s equations from the atomic equations, an appro-

priate averaging procedure has to be applied. There are two approaches to conduct

an averaging procedure: statistical averaging [96, 97] and spatial averaging over a

volume [65, 98]. For solids, where the particles do not move much with respect to

their averaged positions, the use of spatial averaging to smooth out rapid fluctua-

tions is unavoidable [99]. With the notation for the macroscopic quantities, i.e. the

macroscopic fields

E = 〈e〉 , B = 〈b〉 , (2.35)

the macroscopic charge and current densities

ρ0 = 〈ρ0〉 , J0 = 〈j0〉 , (2.36)

and the macroscopic polarization vectors

Pfull = 〈p〉 , M = 〈m〉 , (2.37)

the macroscopic Maxwell’s equations read as

rot E = −∂B

∂t
, (2.38)

rot B =
1

c2

∂E

∂t
+ μ0

(
J0 +

∂Pfull

∂t
+ rot M

)
, (2.39)

div E = ρ0 − div Pfull, (2.40)

div B = 0. (2.41)

In optics the displacement vectors (D and H) are usually introduced as

D = ε0E + Pfull, H = μ−1
0 B −M . (2.42)

The introduction of the electric displacement D and the magnetic field H allows
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one to make use of the traditional boundary conditions, that is the continuity of the

tangential components of the fields E and H on the border between two media. As

a result, the field equations take the form:

rot E = −∂B

∂t
, (2.43)

rot H =
∂D

∂t
+ J0, (2.44)

div D = ρ0, (2.45)

div B = 0. (2.46)

The macroscopic electric dipole and quadrupole moment densities for a material

with a concentration of the atoms η are defined as

P = η
∑

i

eiri, Qi′,j′ =
η

2

∑
i

eirii′rij′ . (2.47)

The density of macroscopic electric dipole P is a vector and the density of macro-

scopic electric quadrupole moment Q is a symmetric tensor. The magnetic dipole

moment density, which is a vector, has the form

M =
η

2

∑
i

eiri × ṙi. (2.48)

Accordingly, the displacement vectors can be written as

D = ε0E + P −∇Q, H = μ−1
0 B −M . (2.49)

To introduce an explicit connection between the electromagnetic moments and the

fields, an appropriate model to describe a medium should be chosen. If the model

of a medium is known, the charge and current densities can be found using the

equation of motion

mr̈i = qi {E (Ri, t) + ṙi ×B (Ri, t)} , (2.50)

where the E (R, t) and B (R, t) are macroscopic fields. The macroscopic field equa-

tions supplemented with the material equations Eq. (2.49) form a self consistent

system for the description of light interaction with a material.

To connect the displacement vectors with the electric field and the magnetic in-

duction additional characteristics (electric permittivity and magnetic permeability)

of a material are introduced. In the general case, when spatial and time dispersion

are present, by applying the Fourier transformation, the electric permittivity and
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the magnetic permeability are defined as

Di(k, ω) = ε0εij(k, ω)Ej(k, ω), (2.51)

Hi(k, ω) = μ−1
0 μ−1

ij (k, ω)Bj(k, ω). (2.52)

Summarizing, a way to obtain the macroscopic Maxwell’s equations and material

equations for a medium consisting of complex molecules by introduction of the

electromagnetic moment densities has been shown.

2.3.2 The multipole approach for metamaterials

In the preceding section it was shown how the macroscopic material equations for

a material consisting of complex molecules can be introduced accounting for the

electromagnetic multipoles.

According to the definition of MMs as materials consisting of complex metaatoms,

a homogenization procedure has to be conducted for MMs to derive the macroscopic

Maxwell’s equations describing light interaction with a metamaterial. The idea to

apply the averaging procedure to MMs using the multipole expansion for the charge

dynamics in analogy to natural materials was proposed in Ref. [59]. Using this

approach the material equations in the form expressed by Eq. (2.49) can be assigned

to a MM and consequently the dispersion relation can be derived by solving the

macroscopic Maxwell’s equations.

An important step done by the authors of Ref. [59] was the introduction of a

material model based on coupled linear harmonic oscillators. Using this model the

complex plasmonic dynamics in a metaatom can be described in terms of the linear

harmonic oscillators associated with the induced dipole moments in the system.

In the case of a metaatom based on double cut-wires the material model can be

introduced as follows. In the system of double cut-wires illuminated under a normal

angle of incidence as it is shown in Fig. 2.3(a), electrons in the wires driven by

the electric field shift relative to the positively charged ion frame. The induced

charge distribution can be represented with a system of four charges as shown in

Fig. 2.3(b), where the two upper and the two lower charges represent electric dipoles.

The system for the amplitudes x1 and x2 corresponding to the elongation of the

negatively charged carrier density driven by the electric field is

ẍ1(t) + γẋ1(t) + ω2
0x1(t)− σx2 (t) =

q

m
E1x (y − y1, t) ,

ẍ2(t) + γẋ2(t) + ω2
0x2(t)− σx1 (t) =

q

m
E2x (y + y1, t) ,

(2.53)

where ω0 is the eigenfrequency of the oscillators; γ is the damping constant; q is the
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Figure 2.3: (a) - Illustration of a double cut-wire system with an excited antisymmetric
mode and (b) - an oscillator model describing the dynamic of the system.

effective charge; m is the mass of the effective carrier; σ is the coupling constant

describing the interaction between the cut-wires; -y1 and y1 are the positions of the

carriers along the y coordinate. The solution of the equation system (2.53) gives the

amplitudes x1 and x2 describing the coordinates of the charges as functions of the

electric field. Using the derived coordinates the multipole moments (P ,Q, and M)

can be analytically described according to Eqs. (2.47) and (2.48).

The dispersion relation for the wave vector k(ω) in a metamaterial can be found

in a common way by plugging the material equations Eq. (2.49) into the Maxwell’s

equations Eqs. (2.43) - (2.46) and solving the self consistent system. The parame-

ters of the oscillator model, which can be used to describe the response of a real

metaatom, are supposed to be found from the comparison of the analytically derived

dispersion with the data obtained from rigorous simulations or experiments for the

specific material.

It should be emphasized that for a bulk MM the dispersion relation completely

describes the light propagation in the MM. Alternatively a MM can be characterized

with the effective refractive index k(ω) = neff(ω)k0. To solve a boundary problem,

however, the effective material parameters εeff(ω) and μeff(ω) can be introduced using

the electromagnetic multipoles (see Eqs. (2.51) and (2.49)).

There are two features of contemporary MMs that limit the generality of the

multipole approach. Firstly, as the size of the metaatoms is only a few times smaller

than the wavelength of light in the medium, the conduction of the second averaging

procedure in its classical meaning is questionable. Furthermore, most contemporary

MMs belong to the class of dense media, that is, the distance between metaatoms is

comparable to their sizes. In this case, the consideration of the multipoles of the first

order may be not sufficient to provide an accurate description of MMs. In chapter

5 of this thesis it is shown how the problem of densely packed metamaterials can be

overcome without resorting to multipoles of higher orders.
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Nevertheless, numerical and experimental works performed on different types of

MMs [100–102] have shown that the multipole theory provides a qualitatively and

quantitatively correct description of them. Moreover, it is probably the only theo-

retic model providing insight into the nature of the magnetic MMs and connecting

the internal dynamics in the metaatoms with the macroscopic optical properties of

MMs.

2.3.3 Retrieval of the effective parameters

In the preceding sections, it has been shown how the effective material parameters

can be introduced for metamaterials using the electromagnetic moments. However,

to access these parameters in the experiment, they have to be connected to quantities

which can be physically measured.

Commonly, the concept of a homogeneous medium is used to access effective

parameters from characteristics experimentally measured in the far field [103]. Ac-

cording to this concept, a MM layer of a thickness d is considered as a homogeneous

layer described with a pair of effective parameters, the effective refractive index

neff(λ) and the effective impedance zeff(λ) or the effective permittivity εeff(λ) and

the effective permeability μeff(λ). The effective parameters are derived by inverting

the analytical expressions for the complex transmission t(λ) and reflection coeffi-

cients r(λ) obtained from the common matrix method [104]. For the case of normal

incidence the corresponding equations for the effective refractive index and effective

impedance according to Ref. [105] are

k = k0neff = ±1

d

[
arccos

(
ks(1− r2) + kc (t/a)2

(t/a) [ks(1− r) + kc(1 + r)]
+ 2mπ

)]
, (2.54)

zeff = ±
√

k2
s (1− r)2 − k2

s (t/a)2

(r + 1)2 − (t/a)2 . (2.55)

Here the coefficient a depends on the polarization: a = 1 for the TE polarization, a =√
εsμc/εcμs for the TM polarization. k0 = 2π

λ0
, ks = 2π

λ0

√
εsμs, and kc = 2π

λ0

√
εcμc are

the wave vectors in vacuum, in the input medium and output medium, respectively.

λ0 is the wavelength of light in vacuum. The signs of neff and zeff are chosen to

satisfy the condition of a passive medium. This is the simultaneous positivity of

the imaginary part of neff and the real part of zeff. The ambiguity related to the

retrieval of the arccos function in neff (Eq. (2.54)) can be eliminated by starting the

retrieval in the limit λ → ∞ where m = 0. The effective electric permittivity and
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permeability, in turn, are defined as

εeff = neff/zeff , μeff = neffzeff . (2.56)

However, the validity of the assignment of the parameters obtained for a single

layer MM to a bulk MM has to be critically reviewed. Firstly, MMs available in

experiments contain only a few functional layers [106,107] and can not be considered

as a bulk material by definition. Secondly, numerical investigations performed on

bulk MMs [41,108–110] obtained by stacking the functional layers, revealed higher-

order Bloch modes in the dispersion relation. If the high-order Bloch modes prevail

over the fundamental mode, the introduction of bulk effective parameters fails in

general. Of course, in diluted MMs where the separation between the functional

layers is enough to prevent the interaction between the layers, the fundamental

Bloch mode predominates. Consequently, in this case the parameters retrieved for

a single layer can be assigned to the corresponding bulk material [37,110].

Nevertheless, even though the effective parameters obtained for a single layer with

Eq. (2.56) are valid only for the normal angle of incidence and can be hardly consid-

ered as material parameters, they turn out to have significant practical importance

as quantitative characteristics of structures in optimization problems.

Using Eqs. (2.54) and (2.55), the effective properties of MMs can be retrieved

from the complex transmission coefficient t(λ) = |t(λ)| exp[iφt(λ)] and reflection

coefficient r(λ) = |r(λ)| exp[iφr(λ)] measured in the experiment, for example, using

a method presented in chapter 4. Since simultaneous measurements of complex t(λ)

and r(λ) on thin films (d < 100 nm) are a challenging experimental problem, a

method based on the combination of experimental data and numerical simulations

is commonly applied to define neff(λ) and zeff(λ). This method, hereafter referred to

as the combined method, requires measurements of the transmittance T (λ) = |t(λ)|2
and reflectance R(λ) = |r(λ)|2 only, while the phase information is taken from the

numerical simulations. This is possible if the model used in the simulations provides

sufficient correspondence of simulated and measured T (λ) and R(λ). However, in

order to achieve a sufficient agreement between simulated and measured data, the

adjustment of the parameters of the simulated model is required, which is a time-

consuming procedure. Moreover computational requirements for some MMs such as

amorphous structures [111] are extremely demanding due to the lack of periodicity.

The accuracies of the two methods for the effective index definition are compared

in chapter 4.

28



Chapter 2

2.4 Numerical methods

The numerical methods most often used for the study of metamaterial structures

are the Fourier Modal Method (FMM) [112–114] and the Finite Difference Time

Domain (FDTD) method [115]. The FDTD method is based on the numerical

solution of finite-difference equations obtained by discretizing Maxwell’s equations

in time and space. Though it gives the exact solution of Maxwell’s equations without

applying any approximation (except the ones occurring due to the discretization of

the equations), this method is highly demanding on the computational resources.

In the FMM, which is applicable to periodic structures, the solution of Maxwell’s

equations is reduced to the solution of an eigenvalue problem, which significantly

relaxes requirements on the computational resources. In general, a structure under

investigation is divided in layers where the dielectric function is periodic in the

transverse directions (x and y)

εi(x, y) = εi(x + Px, y + Py) (2.57)

and constant in the vertical (z) direction. Applying the Fourier expansion for the

dielectric function of each layer

εi(x, y) =
1

PxPy

∑
n

∑
m

εi(n, m)eikxnxeikymy (2.58)

and expanding the fields in Floquet-Fourier series [116]

A(x, y) =
1

PxPy

∑
n

∑
m

A(n, m)eiαxnxeiαymy, (2.59)

where kx = 2π
Px

, ky = 2π
Py

, and αx = k0x +nkx, αy = k0y +mky translates the periodic

boundary value problem in real space in an algebraic eigenvalue problem in the

Fourier space [117]. By matching the electromagnetic boundary conditions at the

boundaries of the layers the diffraction problem can be solved.

The accuracy of the FMM method is limited by the number of the Fourier orders

taken for the expansion of the dielectric function. In most calculations the number

of orders was 16, providing a good compromise between the time of calculations and

the accuracy.

Two implementations of the FMM were used for numerical simulations presented

in the thesis: a commercially available from RSOFT and a home-made Matlab

code originally written by Jari Turunen and modernized for parallel computing by

Thomas Paul.
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Chapter summary

In this chapter it was shown that according to the condition of a NIM the magnetic

response is necessary to realize a negative index material. In the optical spectral

range, the required magnetic response can be realized in MMs based on plasmonic

double-cut wires. The basics of the localized plasmon polaritons were introduced

to explain the functionality of plasmonic metaatoms. Employing the hybridization

model, it was shown that the double cut-wire system owes its magnetic response

to the excitation of the antisymmetric plasmon mode associated with a nonzero

magnetic moment.

In the third section of this chapter the introduction of the effective parameters

for metamaterials based on the multipole approach from Ref. [59] was presented. In

the framework of this theory, the derivation of the macroscopic Maxwell’s equations

and material equations for a MM is done in analogy to the classical electrodynamic

theory of media consisting of complex molecules by introduction of electromagnetic

moments [96].

For the experimental studies of MMs, a connection of the effective material pa-

rameters of MMs with measured quantities (transmission and reflection) is essential.

This connection can be established using the approach of the equivalent homoge-

neous layer. However, the retrieved parameters have to be carefully treated. Firstly,

the effective parameters can be derived for a MM only in the case of weak dispersion,

when the Bloch mode of the zeroth order dominates the dispersion of the material.

Secondly, the parameters derived for certain illumination conditions can be used to

describe the optical response of the material only for the same conditions.

The last section of the chapter gave a short overview of the Fourier Modal Method

applied in this thesis for the numerical analysis of MMs.
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Design and realization of a double

element NIM

From the condition of a negative index material (see Sec. 2.1), it follows that the

realization of a NIM requires either the real part of the effective permittivity or the

real part of the effective permeability of the NIM to be negative. In Sec. 3.1 of this

chapter it is demonstrated how the effective permittivity and permeability of a MM

can be engineered to fulfill the NIM condition using continuous wires and double

cut-wires. The design guidelines for the cut-wires are presented in Sec. 3.2. In this

section the results of the numerical investigations of the dependence of the plasmon

polariton resonances supported by the cut-wires on the geometry of the structure

and the material used for its elements are discussed.

The fabrication technology based on the electron-beam lithography applied for the

realization of NIMs is presented in Sec. 3.3 and is evaluated in Sec. 3.4. The results

of the investigations of the sensitivity of the plasmon resonances to the fabrication

errors are presented in Sec. 3.5.

In the last section of the chapter a double element NIM with a negative effective

index at λ = 2.1 μm based on a combination of cut-wires and continuous wires is

experimentally demonstrated.

3.1 Shaping the effective parameters of

metamaterials

To realize a NIM (Eq. (2.4)), either the real part of the effective permittivity or

the real part of the effective permeability has to be negative at the wavelength of

interest. A metamaterial with a negative ε′eff can be readily designed by introducing

metal in its unit cell. Commonly, in the experiment, metal is introduced in the unit
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Figure 3.1: (a) - A metamaterial layer consisting of continuous gold wires placed in air
(period of the structure is 500 nm, height and width of the wires are 20 nm and 250 nm,
respectively); (b) - effective refractive index, (c) - effective permittivity and (d) - effective
permeability of the corresponding effective layer.

cell in form of long wires [7], see Fig. 3.1(a). If the electric field of the incoming wave

is parallel to the wires, whose volume fill factor is fme, the effective permittivity of

the metamaterial is

εeff = fmeεme + (1− fme) εh. (3.1)

Here εh is the permittivity of the host medium. The effective material parameters

of an equivalent homogeneous layer corresponding to the structure in Fig. 3.1(a) are

presented in Figs. 3.1(b), (c), and (d). By varying the fill factor of the metal in the

unit cell the effective permittivity can be tuned between the value corresponding

to the permittivity of the host medium εh and the one of the metal εme. Hence, a

metamaterial composed of continuous metallic wires has the optical properties of a

diluted metal.

The control of the dielectric function of a composite material beyond the limits

of the averaged permittivities (Eq. (3.1)) is possible by using metallic nanoparticles

supporting localized plasmon polaritons discussed in Sec. 2.2.1. The excitation of a

Figure 3.2: (a) - Cut-wire metamaterial made of gold with the a period of 500 nm, a height
of 20 nm and a length of the wires of 250 nm. (b) - The corresponding effective refractive
index (c) - the effective permittivity, and (d) - the effective permeability.
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Figure 3.3: (a) - Double cut-wire metamaterial, (b) - corresponding transmittance (blue
line), reflectance (red line) and absorbance (black line). (c) - Effective refractive index,
(d) - effective permittivity and (e) - effective permeability of the double cut-wire structure
made of gold with a period, height and length of the wires of 500 nm, 20 nm, and 250 nm,
respectively.

plasmon resonance results in the rapid increase of the polarizability of the particle

and causes the appearance of a Lorentz-form resonance in the effective permittivity.

In Fig. 3.2(a) an example of a MM based on plasmonic cut-wires is presented.

The effective refractive index, permittivity, and permeability of the MM are shown

in Fig. 3.2. One can see that in the spectral range where the localized plasmon

resonance is excited (wavenumbers around 1.3μm−1) the permittivity of the effective

medium experiences a resonance, and the values of εeff deviate significantly from the

simple averaged ones of the constitutive media. The magnetic permeability of the

material, in turn, is not affected.

As it has been discussed in Sec. 2.2.2 a magnetic response in the optical spectral

range can be realized with a metaatom consisting of double cut-wires. The spectral

response of a layer consisting of double cut-wires is shown in Fig. 3.3(a). The ex-

citation of the symmetric and antisymmetric modes corresponds to the appearance

of two minima in the transmittance (marked by black arrows in Fig. 3.3(b)). The

excitation of the symmetric mode (wavenumbers around 1.62 μm−1), characterized

by strong in-phase dipole moments induced in the cut-wires, influences the effec-
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Figure 3.4: (a) - Double element NIM based on cut-wires and continuous wires, (b) -
fishnet NIM, which can be obtain by merging cut-wires and continuous wires in the unit
cell.

tive electric permittivity of the metamaterial (see Fig. 3.3(d)). The antisymmetric

mode (wavenumbers around 0.6 μm−1), associated with a strong magnetic moment

induced in the cut-wires, causes a Lorentz-shaped resonance behavior of the effec-

tive magnetic permeability (see Fig. 3.3(e)). The antiresonances appearing in the

permittivity at wavenumbers around 0.6 μm−1 and permeability at wavenumbers

around 1.62 μm−1 corresponding to the frequencies of the antisymmetric and sym-

metric resonances, respectively, are artifacts of the retrieval algorithm [118, 119].

These artifacts originate in the assumption of the homogeneity of a metamaterial

layer, which in the case of contemporary metamaterials holds in a weak sense only,

as the size of the metaatoms is only a few times smaller than the wavelength of

the incoming light. The appearance of the antiresonances can be considered as

the evidence that the resonances of the system are not purely symmetric and an-

tisymmetric. In the framework of the multipole model, this means that the charge

dynamics in both resonances is characterized with nonzero dipole, quadrupole and

magnetic moments.

From the previous discussion it follows that in order to realize a NIM based on

the combination of continuous wires and cut-wires (see Fig. 3.4(a)), the parameters

of the double cut-wires have to be optimized to provide the asymmetric resonance

at the target frequency. The parameters of the continuous wires, in turn, have to as-

sure negative values of the electric permittivity in the corresponding spectral range.

The following sections of this chapter are devoted to the design and experimental

realization of such double element NIMs. It should be noticed that the geometry

based on separated continuous wires and cut-wires has also been experimentally

and theoretically investigated in the microwave and far infrared domains [47–50].

In this thesis the design and realization of such a NIM in the near infrared spectral

range are presented. In the works of other groups [25, 26] it has been shown that,
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in terms of the figure of merit, the most effective combination of double cut-wires

and continuous wires is the fishnet structure (Fig. 3.4(b)), where these two compo-

nents merge into a single unit. Nevertheless, a structure with the double wires being

separated from the continuous wires is of interest due to the possibility to control

the geometry of both elements independently. This, together with a layer-by-layer

fabrication technology, allows the control of the symmetry of the NIM’s unit cell in

longitudinal direction. In chapter 5 it is shown how the magnetic response of double

wires can be controlled by breaking the symmetry of the cut-wires. Thus, the key

point of the NIM’s efficiency optimization is the technological ability to control the

unit cell geometry.

3.2 Design guidelines for a double element NIM

3.2.1 Choice of the materials

Commonly, the design of a NIM starts with the choice of a metal, which is dictated by

the targeted wavelength region of the negative refraction, the desired efficiency and

the manufacturing facilities. The efficiency of NIMs is usually described by the FOM

(see Eq. (2.5)), which is the absolute ratio of the real to the imaginary part of the

refractive index. According to Eq. (2.5), a significant improvement of the efficiency

of a NIM can be obtained by decreasing the imaginary part of the permittivity in

the frequency range of interest. This can be achieved by the appropriate choice

of the metal used in the unit cell of a NIM. In practice, gold and silver are the

most commonly used metals for the realization of NIMs in the optical region. The

parameters for the Drude model (see Eq. (2.13) in Sec. (2.2.3)) for gold and silver

from Ref. [75] are given in Tab. 3.1. In Fig. 3.5 the electric permittivities of the

metals are presented in the VIS and NIR spectral ranges. One can see that for silver,

Figure 3.5: Johnson and Christy data [75] for gold and silver. (a) - Real and (b) - imaginary
parts of the permittivities of gold (blue line) and silver (red line).
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due to the higher plasma frequency in the spectral range of interest (wavelengths

from 1 μm to 2 μm), the imaginary part of the permittivity is up to five times less

than for gold. Thus, for the realization of NIMs with a high FOM, silver should

be preferred. The fabrication of a low-loss silver-based NIM based on the fishnet

design was demonstrated by G. Dolling et al. [27]. Nevertheless, in the research

of this Thesis the preference was given to gold, because of its chemical stability

facilitating the longterm usage of the samples in the laboratory.

Regarding the choice of the dielectric spacer, isolating the two cut-wires, there are

no strict limitations, because the coupling between the cut-wires can be controlled

either by the refractive index of the spacer or its thickness.

3.2.2 Tuning of the localized plasmon polariton resonances

The design process of a NIM can be optimized if the dependence of the frequency

and the strength of the plasmon resonances on the geometry of the wires are known.

Since these dependencies can be derived in an analytical form only for particles of

spherical or ellipsoidal shapes (Eq. (2.9) and 2.11), resorting to numerical simula-

tions is unavoidable to obtain an accurate parameter set. From the spectra simulated

with FMM (see Sec. 2.4) for single layers of periodically arranged single cut-wires the

required dependencies can be derived. In Fig. 3.6 the dependencies of the position of

the plasmon resonance on the length L (Fig. 3.6(a)), width W (Fig. 3.6(b)), height

h (Fig. 3.6(c)) of the wire, and the refractive index of the surrounding medium n

(Fig. 3.6(d)) are demonstrated. While one parameter was varied, the others were

held constant at L = 250 nm, W = 150 nm, h = 40 nm, and n = 1. The period of

the structures was P = 500 nm. The positions of the plasmon resonances were as-

sumed to correspond to the minima of the transmittance presented in the diagrams.

According to the formula for a metallic ellipse, the resonance frequency increases

with a decrease of the aspect ratios L/W or L/h and decreases by increasing the

refractive index of the surrounding medium. Thus, the plasmon resonance of a

cut-wire can be tuned in a broad spectral region by changing its geometry and the

refractive index of the surrounding medium.

In the case of double cut-wires the critical parameter for the control of the reso-

metal εinf ωp [eV] γ [eV]
Gold 6.9 8.9 0.07
Silver 3.7 9.2 0.02

Table 3.1: Drude model parameters for gold and silver from Ref. [75]
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Figure 3.6: Transmittance of single layers of gold cut-wires as a function of the (a) -
length , (b) - width, (c) - height of the wires, and (d) - refractive index of the surrounding
medium. The electric filed of the exiting wave is parallel to the longest side of wires.

nance positions becomes the distance d between the cut-wires. This spacer thickness

defines the strength of the coupling and hence the splitting of the symmetric and an-

tisymmetric modes. The positions of the symmetric and antisymmetric resonances

can be identified taking into account their radiation properties in the transmit-

tance, reflectance, and absorbance spectra, which are shown in Fig. 3.7(a)-(c). The

excitation of the symmetric resonance (wavenumbers 1.4 μm−1 - 1.6 μm−1), associ-

ated with a charge distribution with a high dipole moment and as a result a high

radiation ratio [65], causes increased reflection of the MM. The antisymmetric res-

onance, in turn, appears as the maximum in absorption (wavenumbers 0.2 μm−1 -

0.8 μm−1) and the minimum in transmittance, which in this case results from the

high quadrupole moment of the charge distribution having a low-radiating char-

acter [60, 65]. The positions of the symmetric and antisymmetric resonances are

marked with white dots in the spectra in Fig. 3.7. One can see that the energy
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Figure 3.7: (a) - Transmittance, (b) - reflectance, and (c) - absorbance of the cut-wire
structures as functions of frequency and spacer thickness d. Positions of the symmetric
and antisymmetric resonances are marked with the white dots.

level splitting of the corresponding modes becomes smaller with the growth of the

distance d. This means that the coupling between the cut-wires becomes weaker.

However, the high absorbance at the antisymmetric resonance for the structures

with large d means that this resonance becomes stronger. Increasing the distance

between the cut-wires intensifies the asymmetry of the electric field exciting the plas-

mon oscillations in the cut-wires and thus causes the improvement of the excitation

condition for the antisymmetric mode.

The presented analysis of the resonance behavior of cut-wires has been done for

the configurations including only one constitutive element (single or double cut-

wire). Obviously, the combination of the elements (continuous wires and cut-wires)

in a unit cell can lead to an interaction between them [110, 120]. The simulations

show that for tightly packed unit cells the positions of the resonances slightly shift

relative to the ones calculated for single element configurations. This shift can be

explained by the change of the effective refractive index of the surrounding medium

for a cut-wire embedded in the effective medium composed of continuous wires.

Therefore, an additional tuning of the geometry of the constitutive elements is re-

quired for the final optimization of the unit cell of a NIM with continuous wires and

cut-wires.

3.2.3 Design procedure

The general rules for the design of a double element NIM can be formulated as

follows. The amount of metal in the unit cell has to provide a negative ε′eff at the

wavelength of interest. By tuning the height and the width of the continuous wires,
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the required value of ε′eff can be achieved. However, the more metal is present in the

unit cell, the higher are the losses and the lower is the FOM of the NIM.

To increase the FOM of the NIM, μ′
eff should be possibly negative in the spectral

range of interest. Therefore, the strength of the antisymmetric resonance should

be maximized. This can be realized by improving the excitation condition for the

resonance, that is increasing the distance d between the cut-wires. Additionally, as

the host medium possesses μ = 1, the concentration of the cut-wires should be high

enough to provide μ′
eff < 0.

The design of a double element NIM at a certain wavelength λn in the NIR spectral

range begins with the configuration of an initial layout, which is further optimized

using numerical simulations. The development of the initial design includes the

following steps.

1. The choice of the metal for the continuous and cut-wires using the instructions

summarized in Sec. 3.2.1.

2. The initial parameters of the cut-wires should be chosen according to the

general considerations. Taking into account the quality of the thin metallic

films, the start height h of the cut-wires can be taken to be about 20 nm.

As the typical period of the structures for NIR range is several hundreds of

nanometers, the start width W can be about 150 nm. The material of the

dielectric spacer for the double cut-wires should be chosen according to the

fabrication facilities. The thickness of the dielectric spacer d should be large

enough to provide the excitation of the antisymmetric mode of the system.

However, it should be small enough to ensure the fulfillment of the condition

of the effective medium. For a dielectric with a refractive index of 1.5 the start

value of d can be 30 nm according to calculations presented in Sec. 3.2.2.

3. The length L of the cut-wires has to be estimated to provide the antisymmetric

resonance at λn. This can be done using the results presented in Sec. 3.2.2.

4. The width of the long wires has to be enough to provide ε′eff < 0 at λn.

5. After the length of the cut-wires is fixed, the period of the structure can be

determined. The smaller the period of the structure the higher the concen-

tration of the double cut-wire elements can be. In the direction along the

cut-wires, to prevent an interaction between the cut-wires of the neighboring

cells, the distance between them should be kept at about 100 nm. This, in

turn, determines the minimal period in this direction. The main criterion for

the period in the other direction is the sufficient concentration of the metal in

the form of continuous wires. The larger the period the wider the wires can
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be, and a more negative εeff can be realized. However, the period should be

small enough to prevent diffraction effects at λn.

6. After a preliminary configuration of the unit-cell is designed, the numerical

optimization process can be started. Using a scan of all the parameters the

optimal design providing the negative refractive index at λn with the maximal

FOM can be realized.

The optimization of the geometry of the unit-cell of a NIM requires the knowledge

of the facilities and limitations of the fabrication process, which is discussed in the

following section.

3.3 MM sample fabrication

The process for MM fabrication involves electron-beam lithography, vacuum evap-

oration, a lift-off process, and ion-beam etching. The double element NIMs were

produced using a layer-by-layer technology, where each layer of the structure was

fabricated within one lithographic step1 [121]. This technique allowed for the fab-

rication of structures with variable lateral geometries in each layer and therefore

was used to realize the asymmetric double cut-wire structures discussed in Sec. 5.

However, the fabrication of a metal-dielectric-metal stack in one run is free of align-

ment errors and a more efficient approach in the case of symmetric metamaterials.

Such a “one-step” technique with one lithographic step [122] was employed for the

realization of the symmetric fishnet NIMs 2 used for the verification of experimental

technique presented in chapter 4.

In Fig. 3.8 the main steps of the layer-by-layer fabrication process are presented.

All investigated samples were fabricated on 4” SiO2 wafers with a typical sample

size of 2 mm x 2 mm. The fabrication started with the spin-coating of a thin two

layer lift-off resist (85 nm ARP671 on 85 nm ARP610). To avoid charging effects

during the electron-beam exposure, a gold film (2 nm thick) was evaporated on the

top of the resist. The exposure of the resist was done with the shaped electron

beam writer SB350 OS (50 keV, Vistec Electron Beam GmbH). After exposure and

removal of the thin gold layer the resist was chemically developed (30 s in MIBK:

IPA = 1:1). A gold film with a thickness according to the design was evaporated

on the resist mask. Performing the lift-off procedure, the first layer of a NIM was

1The sample fabrication using the layer-by-layer technology was conducted by Dr. Uwe Hübner
from the Institute of Photonic Technology, Jena.

2The sample fabrication using the “one-step” technique was performed by Dr. Christian Helgert
from the Institute of Applied Physics, FSU Jena.
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Figure 3.8: Fabrication of a double cut-wire based metamaterial with the layer-by-layer
technology.
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realized. To provide the lateral alignment of this layer relative to the ones deposited

in the following processing steps, alignment marks were written in the first layer.

Further, a spacer layer made of MgO on top of the first structured Au layer

was fabricated with a vacuum evaporation process. The second structural Au layer

was fabricated in analogy with the first one using the alignment marks for the

arrangement. The measured lateral alignment error between the first and second

structural Au layers was less than 20 nm within the 2 mm x 2 mm area of the samples.

The used manufacturing process imposed limitations of the lateral geometry of the

structures. To provide the mechanical stability of the resist mask, the minimal

distance between double wires and cut-wires was limited to 120 nm.

In contrast to the layer-by-layer technology, in the “one-step” approach the three

layers of a structure (metal - dielectric - metal) were processed simultaneously in one

lift-off process. The steps 1-4 were conducted in analogy to the previously described

method. In step 5, the three layers were evaporated one by one and after the lift-off

procedure the complete structure was realized. As a result the perfect alignment

of both gold layers could be achieved. However, the anisotropy of the evaporation

process caused a trapezoidal form of the walls of the mask. For the stack consisting

of 20 nm gold, 40 nm MgO, and 20 nm gold, the resulting angle in the profile of the

fishnet structure was about 11◦.

3.4 Evaluation of the experimental technique

3.4.1 Topographical characterization of the fabricated

structures

After the fabrication, the geometry of the samples was controlled by means of atomic

force microscopy (AFM) and scanning electron microscopy (SEM). The SEM top

view images (an example is shown in Fig. 3.9(a) and (b)) were used for the measure-

ments of the lateral dimensions of structures. The accuracy of the lateral parameter

definition was about 6 nm. The lateral alignment of the layers and their quality

could be controlled by “cutting” the structure with a focused ion beam (FIB) and

imaging of the profile with the SEM (see Fig. 3.9(c) and (d)).

The surface roughness and the thickness of the layers were controlled with AFM

measurements with an accuracy of about 1 nm - 2 nm. An AFM image of the surface

of a double element MM is shown in Fig. 3.10(a), the profile curves corresponding to

the lines marked in Fig. 3.10(a) are shown in Fig. 3.10(c). Though AFM is the most

precise method to measure the layer thickness, the profile scans obtained for the
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Figure 3.9: The SEM images of the double element metamaterials: (a) - top view, (b) -
tilted view, (c) - tilted view of the focused ion beam cut, (d) - the same as in (c), zoomed.

Figure 3.10: AFM images of a double element metamaterial: (a) - top view, (b) - 3D
reconstruction of the surface, (c) - height profiles along the lines marked with (1), (2), (3),
(4) in the top view.
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Figure 3.11: (a) - a top view of a reference field on a MM sample, (b) - step profile of the
second gold layer.

double continuous and cut-wire structures required careful interpretation. A small

period of the structure and nanoscale feature sizes prevented the AFM tip to resolve

the profile. The measured height of the structure consisting of 40 nm gold, 40 nm

MgO, and 40 nm gold layers was only 40 nm. Accounting for the MgO layer forming

the ground level, the measured thickness had to be about 80 nm. Therefore, to

ensure accurate measurements of the layer thicknesses, reference fields were created

using spacial masks during the fabrication (see Fig. 3.11).

3.4.2 Characterization of the MgO layers

To investigate the homogeneity of the MgO layers fabricated with the electron beam

evaporation process, a set of samples was produced. MgO layers with thicknesses of

dini = 500 nm, 400 nm, 100 nm, 50 nm, 40 nm, 30 nm were arranged on two wafers as

it is shown in Fig. 3.12(a) and (b). The thicknesses of the layers (di) were measured

with AFM at the edges formed by the MgO layers and the substrate in the points

marked with the black strokes (see Fig. 3.12) separated by a distance of 2.5 mm.

Figure 3.12: (a), (b) - layout of the test MgO layers.
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The averaged thicknesses of the layers

davg =
1

6

N=6∑
i=1

di (3.2)

are presented in the second column of Tab. 3.2. For thin layers the deviations

ds = dini − davg were below 4 nm. The random deviation of the layer thicknesses

from the average values along the measured direction

dr =
100

davg

N=6∑
i=1

|davg − di|/6 (3.3)

were below 5 % which is the state-of-the-art for the evaporation process.

In Fig. 3.13(a) and (b) the measured transmittance and reflectance for the MgO

layer with dini = 400 nm are shown with the red curves. The spectra for the layer

with dini = 500 nm are presented in Fig. 3.13(c) and (d). According to Ref. [123]

the transmittance and reflectance through a thin film (n2) on a substrate (n3) in a

homogeneous environment (n1) (the arrangement is shown in Fig. 3.13(e)) are

Tth =
|t123|2 |t31|2 exp(−2Im[δS])

1− |r321|2 |r31|2 exp(−4Im[δS])
, (3.4)

Rth = |r123|2 +
|t123|2 |r31|2 |t321|2 exp(−4Im[δS])

1− |r321|2 |r31|2 exp(−4Im[δS])
, (3.5)

t123 =
t12t23 exp(iδ)

1 + r12r23 exp(2iδ)
(3.6)

r123 =
r12 + r23 exp(2iδ)

1 + r12r23 exp(2iδ)
(3.7)

δ(S) =
2π

λ
d(S)

√
n2

(S) − sin2φ, (3.8)

where tij and rij are Fresnel’s coefficients for transmission and reflection on the

dini davg ds dr

500 nm 561 nm 61 nm 8%
400 nm 460 nm 60 nm 9.3%
100 nm 109 nm 9 nm 7.5%
50 nm 47.6 nm 2.4 nm 4.8%
40 nm 37.5 nm 2.5 nm 3.2%
30 nm 31.5 nm 1.5 nm 2.8%

Table 3.2: Systematic and random deviations of the thicknesses of MgO layers
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Figure 3.13: (a),(b) - Transmittance and reflectance of the MgO layer with dini=400 nm.
(c),(d) - Transmittance and reflectance of the MgO layer with dini=500 nm. The red
curves show the measured data and the blue the simulated ones done using measured di

and refractive index for MgO from [76]. (e) - An arrangement of a thin film on a substrate.

interface between media i and j and φ is the angle of incidence. The transmittance

and reflectance spectra, calculated with Eqs. (3.5) and (3.6) using the refractive

index of MgO from Ref. [76] and measured di are shown in Fig. 3.13 with blue lines.

Comparison between the measured and calculated spectra leads to the conclusion

that the refractive index of the fabricated layers differs from the one published in

Ref. [76].

To assess the refractive index of the fabricated MgO layers, two methods were

applied. The first method (“T method”) is based on the measurements of the

transmittance from thick MgO layers (dini = 500 nm and dini = 400 nm) placed on a

thick substrate and the definition of the refractive index nMgO by the wavelengths of

the interference minima [124]. The basic equation for interference fringes occurring

in a layer of thickness d and a refractive index n2 is

2n2d = mλ, (3.9)

where λ is a wavelength and m is an integer number. The transmittance of the

system at the wavelengths of the interference minima, under the assumption of

coherent interaction of the light with the MgO film and incoherent interaction with

the thick substrate, according to Ref. [124] is

Tm =
4n2

2n3

n4
2 + n2

2(n
2
3 + 1) + n3

. (3.10)
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Figure 3.14: Refractive index of MgO.

where n3 is the refractive index of the substrate. The transmittance at the wave-

lengths of the interference maxima is

TM =
2n3

n2
3 + 1

(3.11)

and can be used to calculate the refractive index of the substrate. The refractive

index n2, in turn, can be found as

n2 = [M + (M2 − n2
3)

1/2]1/2, (3.12)

where

M =
2n3

Tm

− n2
3 + 1

2
. (3.13)

The expression for the refractive index does not contain the thickness of the layer d.

Thus, the advantage of the method lies in the fact that the accuracy of the refractive

index definition depends only on the accuracy of the transmittance measurements,

which was ±0.3%. Correspondingly, the accuracy of the refractiv index definition for

nMgO shown in Fig. 3.14 with black stars was Δn = ±0.005. However, the refractive

index of MgO could be defined only for a few discrete wavelengths corresponding

to the interference minima. Measurements on thicker samples, in turn, would be

inconsistent, due to the difference of the optical properties of thin and thick layers.

The second method (“T,R method”) [125,126] used for the refractive index definition

is based on the measurements of the transmittance (Texp) and reflectance (Rexp)
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of a MgO layer and calculation of the refractive index by solving the following

optimization problem

Tth(n, d, λ)− Texp = 0, (3.14)

Rth(n, d, λ)−Rexp = 0, (3.15)

where Tth and Rth are theoretically calculated transmittances and reflectances

(Eqs. (3.5) and (3.6)) at the wavelengths λ and d is the thickness of the layer.

In the case of normal incidence (φ = 0), simultaneous optimization of the re-

fractive index n and the layer thickness d fails for a transparent material because

these two parameters enter as the combination dn in all analytical formulas for Tth

and Rth (see Eq. (3.5)). Using di measured with the AFM, the fitting of the re-

fractive index could be conducted (see the blue curve in Fig. 3.14). Using the error

calculation formula for n from Ref. [125] the accuracy of the refractive index mea-

surements was ±0.007. The comparison of the refractive indices obtained by the two

presented methods with the one from Ref. [76] has shown that the refractive index

of MgO is influenced by the fabrication process. The measured difference between

the measured and literature data was about 2%. Therefore, in the design of NIMs

the measured refractive index of MgO from the “T,R method” were used.

3.4.3 Characterization of the gold layers

The characterization of the dielectric functions of the thermally evaporated thin

gold films was conducted firstly for unstructured thin gold films. A set of thin

gold films with thicknesses dAu = 10 nm, 25 nm, 35 nm, and 45 nm was produced

using a thermal evaporation process. Measurements with AFM have shown that

the roughness of the layers was between 2 nm and 4 nm and the thickness of the

films were met with an accuracy of ±1 nm. The comparison of the measured and

simulated transmittance and reflectance spectra using εAu from Ref. [75] have shown

an agreement within 2%. In Fig. 3.15 an example is presented where the measured

spectra for a gold layer with the nominal thickness d = 25 nm are shown with black

lines and the spectra for a gold layer with a thickness of 26 nm (providing the best

agreement of the spectra) calculated using εAu(ω) from Ref. [75] are presented by

the red lines.

The material properties of the structured films were investigated on single layers

of structures consisting of continuous wires and cut-wires. Such a single layer struc-

ture, on the one hand, is a rather simple object for the numerical and experimental

characterizations. On the other hand, it bears all characteristic traits of the man-
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Figure 3.15: (a) - Transmittance and (b) - reflectance of a gold layer with d = 25 nm.
Black and red curves show the measured and simulated spectra, respectively.

ufacturing process which causes imperfectness of the crystallographic structure and

the increase of the surface roughness. For the numerical simulations, the geometry

of the manufactured structures was reconstructed using the SEM images.

As it was discussed in Sec. 2.2.3, the effects of the imperfectness of the structured

surfaces can be taken into account by increasing the imaginary part of the dielectric

function for an unstructured thin layer εAu = ε′Au + igε′′Au from Ref. [75]. Simulated

spectra of a single layer structure for different values of the multiplication factor

(g = 1, 3, 4) for the imaginary part of the dielectric function ε′′Au are shown in

Fig. 3.16(a),(b), and (c). The comparison between the measured and simulated

spectra has shown that for wavelengths above the resonance the best agreement

between measured and simulated spectra is achieved for the case of g = 2. In

the resonance (wavelengths around 1 μm), in turn, simulated spectra done using

g = 4 provide the best correspondence to the measured ones. The best fitting of

the measured spectra achieved by a variation of g with the wavelength in the range

from 1 to 4 is shown in Fig. 3.16(d),(e), and (f). Thus, the effect of the roughness

and crystallographic structure imperfectness can be approximately accounted for by

introducing a multiplying factor for ε′′Au which in general depends on the wavelength.

However, a fine tuning of the wavelength dependence of the imaginary part of

the dielectric function εAu in the numerical simulations is time consuming. Addi-

tionally, the effects of geometry deviations are more pronounced, which was also

demonstrated in investigations done by other groups [89, 90, 127, 128]. Hence, for

the sake of simplicity, in the simulations the dielectric function for gold was taken

from Ref. [75], while the imaginary part of gold was assumed to be 2ε′′Au.
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Figure 3.16: (a),(d) - Transmittance, (b),(e) - reflectance, and (c),(f) - absorbance of a
layer of continuous and cut-wires. The measured spectra are shown with red lines. In
(a)-(c) - simulated spectra obtained using different values of the multiplication factor g
for the imaginary part of the electric permittivity are shown with gray lines. In (e)-(f) -
the simulated spectra were obtained using g(λ).

3.5 Influence of fabrication inaccuracies

Since the fabrication of nanostructures is still a challenging technological task, the

investigation of the sensitivity of the MM’s optical properties to distortions of the

unit cell geometry is essential for the development of a realizable design. Addition-

ally, as it was discussed in Sec. 2.3.3, the effective parameters of a produced MM

can be obtained from the numerical simulations, if the simulated and measured far

field spectra show a good agreement. The achievement of a good agreement, in

turn, requires a fitting of the unit cell geometry, which can be facilitated by the

investigation of the accuracy with which the geometry can be realized.

The most pronounced deformation of the structure occurring during the fabrica-

tion and revealed with SEM images is the rounding of the edges of the cut-wires.

In Fig. 3.17 the effect of the rounding on the resonance position and the effective

permittivity is demonstrated for a structure with a period P = 500 nm, a length

L = 250 nm, a width W = 150 nm, and a height h = 40 nm. The rounding causes

damping and a blue shift of the order of 150 nm of the resonance.

Further imperfections occurring due to the technological inaccuracy are devia-
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Figure 3.17: (a) - Transmittance, (b) - reflectance, (c) - absorbance of a layer of cut-wires
of rectangular and rounded shapes. (d) - The real and (e) - the imaginary parts of the
effective permittivity of the effective medium.

tions of the spacer thickness d, the lateral dimensions of the structures L and the

misalignment of the layers s. Information on the technological tolerances were col-

lected from SEM and AFM images of a series of structures and summarized in

Tab. 3.3. The dependencies of the spectral positions of the symmetric and antisym-

metric resonances on the slight deviations of d, s, and L are presented in Fig. 3.18.

The positions of the symmetric and antisymmetric resonances were associated with

the maximum of the reflectance and the absorbance, respectively. The symmetric

resonance appears as a broad spectral feature, due to high radiation losses, which

makes its localization ambiguous. Maximal deviations of the geometry, within the

limits of the technological tolerances, result in a shift of the antisymmetric resonance

of up to 100 nm. According to the data in Fig. 3.18, the symmetric resonance reacts

Δd ΔS ΔL
±2.5 nm ±20 nm ±10 nm

Table 3.3: Tolerances of the fabrication process
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Figure 3.18: Dependency of the spectral positions of the symmetric and antisymmetric
resonances of a double cut-wire as a function of the technological tolerances of (a) - the
spacer thickness, (b) - the lateral alignment, and (c) - the length of the wires.

less sensitive to the geometry variation. However, this is the consequence of the low

accuracy of the definition of the resonance position.

The analysis of the influence of the refractive index of the dielectric spacer on the

resonance position of the antisymmetric resonance λ0 has shown that the refractive

index has to be known with precision of 0.02 to provide localization of the resonance

better than 10 nm.

In short, numerical simulations reveal that the spectral position of the antisym-

metric resonance may experience a shift of up to 100 nm due to deformation of the

geometry of the unit cell within the limits of the technological tolerances. It is

important to note that variations of different parameters may result in the same

spectral behavior of the resonances (see Fig. 3.18). This ambiguity complicates the

appropriate fitting of the geometry of the unit cell in the numerical simulations.

3.6 Double-element metamaterial with negative

index

Due to technological reasons, the NIM samples based on continuous wires and cut-

wires were designed for the near infrared region. The technological limitations

forced the minimal distance between the cut-wires and continuous wires to be about

120 nm. This distance corresponds to the mechanical stability limit of the resist

mask defined by the minimal width of the corresponding elements of the mask.

Taking into account the limitations on the period of the structure, in order to sat-

isfy the effective medium condition for the target wavelength of about 2 μm, the

following structure was designed. The periods of the structure were Px = 500 nm
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Figure 3.19: (a) - Top-view SEM image of the sample, the white rectangle shows the unit
cell; (b) - unit cell geometry, top and side view in the upper and lower picture, respectively.
(c) - Transmittance (black lines) and reflectance (gray lines) for the resonant polarization.
Solid and dashed lines represent the measured and simulated spectra, respectively

and Py = 600 nm. The width of the continuous wires was W1 = 130 nm and of the

cut-wires W2 = 100 nm, the length of the cut-wires was L = 430 nm, the thickness of

the metal layer dMe = 40 nm and of the dielectric spacer dS = 40 nm. The geometry

of the unit cell with the respective parameters is shown in Fig. 3.19(a) and (b).

To a large extent the optical response of the double-element structures is de-

termined by the plasmonic properties of the cut-wires. Resonances in the spectral

domain of interest are only excited for an electric field polarization parallel to the

cut-wires (“resonant” polarization).

In Fig. 3.19(c) the measured transmittance and reflectance of the realized struc-

ture are shown. The good quantitative agreement between simulated and measured

spectra allowed us to calculate the effective material parameters of the fabricated

samples using the combined method, taking advantage of the numerically simulated

complex reflection and transmission coefficients. Resorting to the numerical simu-

lations was required as the developed setup for the experimental measurements of

the effective parameters of MMs was designed for the VIS and NIR spectral ranges

(from λ = 0.65 μm to λ = 1.7 μm) and did not provide an access to the spectral

range of interest. The retrieved effective parameters are presented in Fig. 3.20.

The main features of the transmission and reflection spectra for the resonant po-

larization can be interpreted using the calculated effective permittivity and effective

permeability. In Fig. 3.19(c) it can be seen that the first minimum in transmission

around λ = 1.2 μm is caused by the permittivity resonance (see Fig. 3.20(c)). In

turn, a strong impedance mismatch causes a high reflection. The increase of trans-

mission towards λ =1.9 μm is caused by the fact that impedance and refractive
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Figure 3.20: (a) - Impedance, (b) - refractive index, (c) - electric permittivity, (d) -
magnetic permeability of the sample derived from the reflection and transmission spectra
presented in Fig. 3.19(c).

index approach those of air. At λ = 1.9 μm where the impedance is matched, the

transmission reaches its maximum. The following decrease of transmission is caused

by the excitation of the magnetic resonance. The transmission minimum near λ =

2.2 μm corresponds to the maximum of the anti-symmetric resonance. The simu-

lations show that a refractive index of n = −0.5 + 1.9i at λ = 2.1 μm and FOM

= 0.26 has been achieved. The negative refractive index obtained with the double-

element structure is a so called “single-negative” refractive index, which means that

only the real part of the permittivity is negative. Even though the real part of the

permeability remains positive, the NIM condition is met.

An improvement of the FOM of the NIM could be achieved by further tuning

the unit cell geometry. In order to increase the strength of the anti-symmetric

resonance, the period in Px direction could be decreased or the width of the cut-

wires could be increased. However, pushing the parameters of the structure to the

technological limits results in decreasing the quality of the structures. Moreover,

the simulations have shown that the real part of the permeability of the double-

element structure optimized for a wavelength of about 1.5 μm and made of gold

remains positive. In this case the metamaterial is single-negative and the FOM

dose not exceed 0.8. A significant enhancement of the structure’s FOM at the

telecommunication wavelength could be achieved by using silver instead of gold [27]

due to silver’s higher plasma frequency. Additionally, the geometry of the unit

cell with separated elements offers the advantage that further optimization of the

magnetic response can be achieved by breaking the vertical symmetry of the cut-

wires (see chapter 5).
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Chapter summary

In this chapter the design of the effective material parameters of NIMs using plas-

monic nanostructures was discussed. It was demonstrated how the dielectric function

of a NIM can be designed by adding metal in the form of continuous wires in its unit

cell. The magnetic permeability of a NIM, in turn, can be affected by implementa-

tion of plasmonic double cut-wires supporting the antisymmetric mode associated

with a magnetic moment. As a result, the combination of these two elements in the

unit cell of a MM allows for the fulfillment of the NIM condition. Using numerical

simulations, it has been shown how the frequency of the plasmonic resonances and

as a result the target frequency where neff < 0 can be tuned by varying the geometry

of the plasmonic structures.

Further, the fabrication technology based on the electron-beam lithography and a

lift-off process was presented and the main limitations of the processes were revealed.

The study of thin MgO and gold layers was conducted to evaluate the fabrication

accuracy regarding the thicknesses of the layers. The refractive index of fabricated

MgO layers was determined using two approaches and the refractive index obtained

by the “T,R method” was used for the further numerical simulations of NIMs. Addi-

tionally, it was shown that the dielectric function of fabricated gold nanostructures

depends on the fabrication process. This dependence was accounted for by tuning

the damping coefficient in the Drude-Sommerfeld model.

Using numerical simulations the sensitivity of the symmetric and antisymmet-

ric resonances of a double-cut wire structure on the inaccuracy of the fabrication

process was investigated. It was found that a variation of the parameters of the

structure within the limits of the fabrication accuracy can cause a spectral shift of

the antisymmetric resonance of up to 100 nm. Furthermore, simulations have shown

that similar spectral shifts of the resonances can be caused by the variation of dif-

ferent parameters of the structure. As a result, this ambiguity prevents an accurate

determination of the geometry of a fabricated structure using the comparison of

the simulated and measured spectra. This, in turn, impairs the accuracy of the

combined method for the determination of the MM’s effective parameters.

The realization of a double-element metamaterial based on a combination of con-

tinuous wires and cut-wires has been demonstrated in the infrared region. The ef-

fective refractive index of the fabricated NIM, evaluated with the combined method,

was n = −0.5 + 1.9i at λ = 2.1 μm [129].
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Experimental method for the

characterization of metamaterials

In this chapter an original experimental method for the measurements of complex

transmission and reflection coefficients of a MM, required to evaluate its effective

refractive index, is presented. The theoretical background of the white-light interfer-

ometric technique used for the phase measurements and the experimental setup are

presented in the first section of the chapter. The experimental method was evalu-

ated on two typical MMs: a plasmonic MM consisting of gold nanodisks (Sec. 4.2.1)

and a fishnet NIM (Sec. 4.2.2).

Using the phase measurements a negative effective refractive index of a fishnet

structure was experimentally verified. Furthermore, the experimental access to the

phases of t(λ) and r(λ) allowed for the evaluation of the combined method usually

used for the definition of neff(λ). The accuracy of the methods is discussed in

Sec. 4.2.3.

4.1 Experimental method

Spatial dispersion is the principal feature of MMs preventing the measurement of

their optical properties using well established and precise methods developed for the

characterization of thin films made of natural materials [123,130]. Due to the spatial

dispersion inherent in MMs, their effective material parameters depend strongly on

the angle of incidence. As a result, employing such a method as ellipsometry [130],

combining the measurements of the far field response of a material performed under

different angles of incidents, is prevented. Consequently, the development of an

original method for the characterization of the effective material properties of MMs

was necessary.
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Figure 4.1: (a) - Illustrations of a MM and (b) - a reference sample arrangements in an
interferometer during sample and reference measurements, respectively.

The general approach to assign effective parameters to the experimentally avail-

able MM films is similar to the one used for films made of conventional materi-

als [131]. This approach described in Sec. 2.3.3 is based on the consideration of

a single MM layer as an effective homogeneous one characterized by two complex

effective parameters, namely the effective refractive index neff(λ) and the effective

impedance zeff(λ). According to Eq. (2.54) neff(λ) for normal incidence can be

retrieved from corresponding complex transmission t(λ) = |t(λ)| exp [iφt(λ)] and

reflection r(λ) = |r(λ)| exp [iφr(λ)] coefficients.

While the measurements of the transmittance T (λ) = |t(λ)|2 and reflectance

R(λ) = |r(λ)|2 can be realized using commercially available spectrometers, the phase

measurements in transmission and reflection on thin films (d < 100 nm) is still a

challenging experimental problem. Therefore, an original experimental setup was

developed for the phase measurements in transmission and reflection in the broad

wavelength range from λ = 0.65 μm to λ = 1.7 μm.

4.1.1 White-light spectral interferometry

The developed experimental method for the phase measurements is based on the

white-light Fourier-transform spectral interferometric technique [132]. In this type

of interferometric experiments a time delay τ is introduced between two beams of

an interferometer using different geometrical lengths of its two arms (see Fig. 4.1).

The complex transmission coefficients of the sample tsam(ω) and reference tref(ω)

arms of an interferometer can be written as

tref(ω) = Aref(ω) exp[iφref(ω)],

tsam(ω) = Asam(ω) exp[i(φsam(ω) + φMM(ω) + ωτ)], (4.1)

where Aref(ω) and Asam(ω) are the amplitudes of the transmission coefficients.

φref(ω) is the phase delay in the reference arm induced by dispersive optical ele-
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ments placed in the arm. The phase delay in the sample arm is divided into three

contributions: the term φsam(ω) corresponding to the phase delay due to the disper-

sive optical elements, the term φMM(ω) describing the phase delay in a MM sample,

and the term ωτ accounting for the geometrical length difference between the two

arms. Therefore, the fields in each arm of the interferometer can be written as

follows

Eref(ω) = Aref(ω) exp[iφref(ω)]Ein(ω),

Esam(ω) = Asam(ω) exp[i(φsam(ω) + φMM(ω) + ωτ)]Ein(ω), (4.2)

where Ein(ω) is the complex amplitude of the incident field. The interference of the

fields Eref(ω) and Esam(ω) gives rise to the measured optical signal in the frequency

domain

I(ω) = |Esam(ω) + Eref(ω)|2 =

= |Esam(ω)|2 + |Eref(ω)|2 +

+ 2 |Esam(ω)| |Eref(ω)| cos(i(φsam(ω) + φMM(ω) + ωτ − φref(ω))). (4.3)

An example of the interference signal measured in the experiment (as a function

of the wavelength) is shown in Fig. 4.2(a). The argument of the cosine function

in the interference term contains the phase delay due to the MM sample φMM(ω).

Extraction of this interference term can be easily realized in the time domain. The

signal in the time domain S(t) obtained by Fourier transformation of I(ω) is

S(t) = FT [I(ω)] =

= Esam(t)⊗ E∗
sam(−t) + Eref(t)⊗ E∗

ref(−t)+

+ Esam(t + τ)⊗ E∗
ref(t) + E∗

sam(t− τ)⊗ Eref(t), (4.4)

where ⊗ denotes the operation of convolution. In Eq. (4.4) the first two terms are

the autocorrelation functions of the individual fields appearing as peaks at t = 0

in S(t), which is shown in Fig. 4.2(b). The third and the fourth term in Eq. (4.4)

are the correlation functions of two fields corresponding to the peaks at t = τ and

t = −τ in Fig. 4.2(b). If the time delay τ is sufficiently large, the correlation

and autocorrelation terms do not overlap and one of the correlation terms can be

extracted by applying a finite time window. In the experimental realization of the

method, the maximum value of the time delay τ is restricted, because τ is inversely

58



Chapter 4

Figure 4.2: Intensity of the interference signal (a) - in the wavelength and (b) - in the
time domain. The red rectangle in (b) represents a numerical filter used to separate the
desired correlation term.

proportional to the period of the interference pattern

Δν =
1

cτ
. (4.5)

Here c is the light velocity in vacuum. Accordingly, large time delays correspond

to small periods of the interference pattern and can make it impossible to fulfill the

criterion of the Nyquist – Shannon sampling theorem [133] for the data sampling.

An example of a rectangular filter applied to S(t),

rect(t, τ, δτ) =

⎧⎪⎨⎪⎩
0, t < τ − δτ

1, τ − δτ ≤ t ≤ τ + δτ

0, t ≥ τ + δτ

(4.6)

is shown in Fig. 4.2(b). The inverse Fourier transformation of the signal after filtering

gives the interference term in the frequency domain

Eint(ω) = FT−1 [rect(t, τ, δτ)S(t)] . (4.7)

The argument of the interference term is

arg [Eint(ω)] = φsam(ω) + φMM(ω)− φref(ω) = Δφ. (4.8)

and represents the phase delay between the signals passing the two arms of the in-

terferometer. The phase difference as given in Eq. (4.8) contains φMM(ω) and the

phase difference introduced by the dispersive elements in the arms of the interferom-

eter. Therefore, a reference measurement is required for the extraction of φMM(ω).

For the reference measurement the MM sample is replaced with a reference sample

(see Fig. 4.1(b)), for instance air in the case of transmission measurements or a
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mirror in the case of reflection measurements. If φref.sam. is the phase delay due to a

known reference object, the phase difference measured and retrieved in the reference

measurement is

Δφref = φsam(ω) + φref.sam.(ω)− φref(ω). (4.9)

If the dispersion and thickness of the reference sample are known, φMM(ω) can be

extracted from Eqs. (4.8) and (4.9) as

φMM(ω) = Δφ−Δφref(ω). (4.10)

In the general case the retrieved phase bears an ambiguity of 2π and additional

information is required to obtain the absolute phase delay. The measured phase

φMM of a single layer MM with thicknesses d less than 100 nm can be safely assumed

to be −π < φMM < π at the wavelength of interest. For the retrieval of the effective

parameters as outlined in Eq. (2.54) this implies that the assumption m = 0 is made.

However, for thicker MMs made of a larger number of functional layers, cases where

m �= 0 have to be considered. Here, the choice of an appropriate value of m is made

according to the knowledge of the refractive index at lower frequencies, where no

resonances occur and a MM can be characterized with εeff(ω) and μeff(ω) = 1. In

this spectral range, one of the standard techniques developed for natural materials

can be used [123] to determine the refractive index of the MM.

The presented approach for measurements of φMM can be implemented if the

multiple reflection at the surfaces of a thin film is negligible, which is the case of

MMs possessing strong absorption. If a material with weak absorption is under

investigation additional interference terms due to the multiple reflection in a film

have to be accounted for [134].

4.1.2 Interferometric setup

The developed interferometric setup was based on the Jamin-Lebedeff scheme [135].

The original interferometer was modified to provide simultaneous measurements in

transmission and reflection [136]. The interferometric measurements were performed

with a supercontinuum light source SuperK Versa from NTK Photonics (operating

spectral range is from λ = 0.4 μm to λ = 1.7 μm). The broad band generation of

this source is based on the supercontinuum generation in an optical fiber [137].

The principal scheme of the interferometer is presented in Fig. 4.3. The linear

polarizer P1 (operating spectral range is from λ = 0.65 μm to λ = 2 μm) served
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Figure 4.3: (a) - Interferometric setup. F - Low pass filter. P1, P2, P3 - Polarizers.
B1, B2 - Beam displacers. D1, D2 - Delay elements. F1 - Filter. A - Aperture. (b) -
Sample layout. (c) and (f) - The arrangement of the beams for measurements in reflection
and transmission, respectively. (d) and (g) - Position of the aperture during sample
measurements in reflection and transmission, respectively. (e) and (h) - Position of the
aperture during reference measurements in reflection and transmission, respectively.

to control the polarization state of the input light. In the first birefringent beam

displacer B1 (operating spectral range from λ = 0.35 μm to λ = 2.3 μm) linear

polarized light was split into two orthogonally polarized beams forming the two

arms of the interferometer. The intensity distribution between the sample and

reference arms was controlled by the rotation of the linear polarizer P1. The second

beam displacer B2, which served to recombine the two beams, was followed by

the linear polarizer P2, providing interference of the sample and reference beams.

The recombined beam was coupled into a photonic crystal fiber (single mode for

λ > 0.6 μm). The analysis of the interference signal was performed with an optical

spectral analyzer (OSA) Yokogawa AQ6370B, which was a grating spectrometer.

The OSA provided a spectral resolution up to 20 pm in the spectral range from

λ = 0.6 μm to λ = 1.7 μm. The optical spectrum analyzer used the first diffraction
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order in the spectral range from λ = 0.6 μm to λ = 0.8 μm and the second

diffraction order in the range from λ = 0.8 μm to λ = 1.7 μm. To avoid spatial

overlapping of the higher diffraction orders of smaller wavelengths with the second

diffraction order of larger wavelengths, an optical low pass filter F was used during

the measurements in the VIS spectral range.

Measurements of the phase in reflection were realized with the beam splitter BS

(operating spectral range is from λ = 0.42 μm to λ = 1.7 μm). The sample and

reference beams reflected from the sample were recombined in the first calcite beam

displacer B1 and were guided to the part of the setup for the reflection measurements

with a polarizing beam splitter BS.

The mirror symmetrical arrangement of the beam displaceres caused an optical

path difference of about 4 mm between the interferometer arms. The very small

period of the interference pattern (0.25 nm around λ = 1 μm) corresponded to this

path difference. Therefore, the optical length difference between the arms was de-

creased to a value of 1 mm to enable a high sampling rate of the interference signal.

This was realized by placing compensating plates D1 and D2 made of BK7, each

2.3 mm thick, in the sample arm of the interferometer. The period of the corre-

sponding interference pattern was about 2 nm at λ = 1 μm.

4.1.3 The measurement procedure

Above, it was shown that two types of measurements (sample and reference) are

required to define the phases of t(λ) and r(λ). As experimental MM films have typ-

ical thicknesses of about 100 nm, any misalignment of the sample on the nanometer

scale between the sample and reference measurements would cause a critical er-

ror in the resulting absolute phase [136, 138]. Therefore, the sample and reference

measurements were performed as follows. Instead of moving the sample between

the measurements a movable aperture A placed in front of the sample was used

(see Fig. 4.3(a)) [139]. The position of the aperture was controlled with a camera

collecting the light reflected from the filter F1 placed after the sample. A sample

containing reference fields (see Fig. 4.3(b)) was adjusted as it is shown in Figs. 4.3(c)

and (f) for the measurements in reflection and transmission, respectively. During

the sample measurements the aperture was arranged to screen one half of either of

the two beams. The corresponding positions of the aperture for the reflection and

transmission measurements are shown in Figs. 4.3(d) and (g). During the reference

measurements the aperture blocked the other half of the beams as it is shown for

reflection and transmission in Figs. 4.3(e) and (h), respectively.

Additionally, a normalization of a parasitic phase delay between the sample and

62



Chapter 4

reference measurements occurring due to the diffraction of the beams on the aperture

had to be performed. For this purpose, two measurements without any sample were

performed while the aperture was blocking the left and the right halves of the beams,

respectively. Without a sample the two measured phases (φ1(λ) and φ2(λ)) had to

be equal. However, due to the diffraction of the beams on the aperture the measured

phases were different φ1(λ) �= φ2(λ). Subtraction of the phases obtained from the

two measurements gave the normalization value φn(λ) = φ1(λ) − φ2(λ) which was

later subtracted from the phases measured on the samples (φMM).

4.1.4 Numerical treatment of the signal

In Sec. 4.1.1 it was described how the phase of the interference signal can be re-

trieved using the Fourier transformation of the registered interference signal and

the subsequent filtering of the correlation term in the time domain. As the mea-

surements of signals were done in the wavelength domain, the measured signal had

to be transformed to the frequency domain (ω = 2πc/λ) and regularly sampled.

The influence of the data interpolation, required to transform the spectra, on the

accuracy of the phase definition was investigated in Ref. [140]. It was shown that,

if the sampling rate of a signal is close to the Nyquist limit, linear interpolation of

the signal causes a noisy background in the retrieved phase. In the experiment, in

the VIS spectral range the period of the interference pattern was about 0.5 nm at

λ = 0.7 μm. To provide an appropriate signal to noise ratio, the signal acquisition

was done with a resolution of 0.1 nm. To increase the sampling rate a so-called

zero-fitting procedure [140] was applied to the signal. This technique is based on

the Fourier transformation of the spectra from the wavelength space to an inverse

space γ. Then the window size N is increased by adding additional points with

zero amplitudes. In the experiments the window size was increased by a factor 4N .

The backward Fourier transformation gives the initial spectrum with an increased

sampling rate. In Fig. 4.4(a) several periods of a test interference pattern are shown.

The spectral phase retrieved for this data set is presented in Fig. 4.4(b) with a green

line, while the original spectral phase is shown with a blue line. For a better vi-

sualization the curves were vertically shifted by Δ. It is seen that increasing the

data set with the zero shift method allows for decreasing the noise in the spectral

phase, which is shown in Fig. 4.4(b) with a red curve. Thereafter, the spectrum was

linearly interpolated and the Fourier transformation could be performed.
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Figure 4.4: (a) - Several periods of a test signal with a low sampling rate. (b) - The
spectral phases. The original, retrieved for a low sampling rate (N), and for the sampling
rate 4 ∗N are shown with the blue, green, and red curves, respectively.

4.1.5 Transmittance and reflectance measurements

Transmittance and reflectance measurements were performed with a commercially

available Perkin Elmer Lambda 950 spectrometer (double beam, double monochro-

mator spectrophotometer with accessible spectral range from λ = 0.17 μm to

λ = 3 μm). As a light source a halogen lamp for the VIS/NIR and a deuterium

lamp for the UV spectral range were used. The registration of the signal was re-

alized with a photomultiplier and an InGaAs detector in the UV/VIS and NIR

spectral ranges, respectively. The polarization state of the light was controlled with

a Glan Thompson Polarizer. The measurements in transmission were performed in

the sample chamber of the spectrometer under 0◦ angle of incidence using a home

made sample holder.

The standard accessory for the reflection measurements was a 150 mm integration

sphere, where the measurements under an angle of incidence of 8◦could be performed.

The measurements under normal incidence were realized with a specially designed

setup, which could be integrated in the spectrometer. A home made aperture with

a diameter of 1.5 mm was used for the measurements on MMs, having a typical area

of 2 x 2 mm. To provide an appropriate signal to noise ratio, the measurements on

MM samples were performed in the VIS spectral range with a spectral resolution of

2 nm and in the NIR with a spectral resolution of 5 nm.
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Figure 4.5: (a) - Top view image of an array of nanodisks. (b) - The side view of the
nanodisks geometry with the period P = 500 nm, the diameter D = 350 nm, and the
height dAu = 30 nm .

4.2 Verification of the methods for

the characterization of NIMs

4.2.1 Gold nanodisk structure

The verification of the experimental and combined methods was done firstly with a

simple plasmonic structure representing a layer of periodically arranged gold nan-

odisks. An SEM top view image of the structure is shown in Fig. 4.5(a). The period

P of the nanodisks was 500 nm, the diameter D and height dAu of the disks were

350 nm and 30 nm, respectively (see Fig. 4.5(b)). Based on the SEM images, a

model accounting for the true size of the disks was constructed to be used in the nu-

merical simulations. The optimization of the model was performed by fine tuning of

the geometry to provide the best agreement of the measured and simulated spectra.

However, it should be noted that in FMM simulations only periodic structures con-

sisting of identical elements can be treated. Thus, effects such as an inhomogeneous

broadening of the plasmon resonances occurring due to a slightly different form of

the disks can not be reproduced in the simulations. A similar spectral response,

however, can be achieved by varying the geometry of an ideally shaped disk.

The simulated and measured transmittance and reflectance spectra are presented

in Fig. 4.6(a). The simulated and measured data have the indices “FMM” and

“Exp.”, respectively. In Fig. 4.6(b) and (c) the simulated and measured phases of

the transmission and reflection coefficients are presented. The investigated nanodisk

structure shows a plasmon resonance at the wavelength λ = 0.95 μm corresponding

to a minimum in the transmittance and a maximum in the reflectance. The phase

of the transmission coefficient undergoes a phase jump close to π at the wavelengths
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Figure 4.6: (a) - The measured and simulated transmittance and reflectance of the layer
of nanodisks shown in Fig. 4.5. (b) - The phase of transmission and (c) - the phase
of reflection coefficients. The measured and simulated data have the index “Exp.” and
“FMM”, respectively.

Figure 4.7: (a) - Real and (b) - imaginary parts of the effective refractive index of the
nanodisk layer. The solid and dotted lines show results obtained using the experimental
and combined methods, respectively.

around λ = 0.95 μm, where the amplitude of the transmission coefficient has a

minimum. An effective refractive index can be assigned to this layer and calculated

according to Eq. (2.54). In Fig. 4.7 the effective refractive indices calculated using

the simulated and experimental data are shown. The real and imaginary parts of the

refractive indices are presented in Figs. 4.7(a) and (b), respectively. In Fig. 4.6(a)

on can see that even for such a simple plasmonic MM a perfect agreement of the

simulated and measured spectra could not be achieved. The comparison of the

measured and simulated spectra shows that the position of the plasmon resonance

is shifted in the simulations by about Δλ = 20 nm relative to the measured one. The

difference in the width at half maximum of the resonance was estimated to be about

40 nm. One can see that these slight deviations in the resonance position and the

resonance width between the measured and simulated spectra result in a difference
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Figure 4.8: (a) - Top view image of the fishnet structure with Wx = 180 nm and Wy =
380 nm; the vector E shows the resonant polarization. (b) - The side view of the unit cell
geometry with a thickness of the Au layers dAu = 19 nm and the MgO layer dMgO = 35 nm.

of the phases, which reach values up to Δφ = 0.5 rad at a wavelength around

λ = 1 μm. As a result the effective refractive index obtained from experimental and

simulated data deviates up to 30% in the real part at the wavelegth around the

plasmon resonance.

4.2.2 Negative index metamaterial

A fishnet based NIM was designed to realize a negative effective refractive index at

λ = 1.4 μm. An SEM top view image of the fabricated structure and the side view

of the unit cell are shown in Figs. 4.8(a) and (b). To obtain the best agreement

between the simulated and measured structure, a fine tuning of the geometry of the

structure in the simulations was undertaken. The obtained resulting parameters of

the structure were as follows: Px = Py = 500 nm, Wx = 180 nm, Wy = 380 nm,

dAu = 19 nm, dMgO = 35 nm. In Fig. 4.9, the measured and simulated spectra

and phases are presented for the polarization state of the incident light shown in

Fig. 4.8(a). Under these illumination conditions, the symmetric and antisymmetric

resonances at the wavelengths around λ = 0.8 μm and λ = 1.4 μm are excited. At

the wavelengths of the antisymmetric resonance a dip in the phase of the transmis-

sion appears that evidences that the effective refractive index decreases. Indeed,

at these wavelengths the real part of the effective refractive index becomes nega-

tive as it is seen in Fig. 4.10(a). At the wavelengths around 1.1 μm, where n′(ω)

approaches unity the reflectance passes the zero point and the phase of the re-

flection undergos a phase jump close to π. Results of the comparison of the pure

experimental and combined methods are presented in Fig. 4.11. In Figs. 4.11(a)
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Figure 4.9: (a) - The measured and simulated transmittance and reflectance of the fishnet
structure shown in Fig. 4.8. (b) - The phase of transmission and (c) - the phase of
reflection coefficients. The measured and simulated data have index “Exp.” and “FMM”,
respectively.

and (b) the difference between measured and simulated data is shown for trans-

mittance |ΔT | = |TExp. − TFMM| and reflectance |ΔR| = |RExp. −RFMM|. The dif-

ferences in the transmission phase |Δφt| = |φt,Exp. − φt,FMM| and reflection phase

|Δφr| = |φr,Exp. − φr,FMM| are shown in Fig. 4.11(c) and (d). The resulting errors

in the real |Δn′| =
∣∣n′

Exp. − n′
FMM

∣∣ and imaginary |Δn′′| =
∣∣n′′

Exp. − n′′
FMM

∣∣ parts of

the effective refractive index are presented in Fig. 4.11(e) and (f). It is seen, that at

λ = 1.38 μm the deviations in the real and imaginary parts of the effective refractive

index reach values up to 0.6. However, as one can see in Fig. 4.10, the dramatic

difference at λ = 1.38 μm is caused by a relative shift of the curves, while their

shapes generally match.

4.2.3 Accuracy of the experimental and combined methods

A complex effective refractive index n(λ) = n′(λ)+ in′′(λ) is an indirectly measured

quantity depending on the modulus of the transmission coefficient |t(λ)|, the phase of

the transmission coefficient arg t(λ), the modulus of the reflection coefficient |r(λ)|,
and the phase of the reflection coefficient arg r(λ). Following the definition of the

root mean square error of an indirectly measured quantity f(x)

σ =

√√√√ n∑
i=1

(
∂f(x)

∂xi

σxi

)2

, (4.11)
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Figure 4.10: (a) - Real and (b) - imaginary parts of the effective refractive index of the
fishnet MM. The solid and dotted lines show results obtained using the experimental and
combined methods, respectively.

Figure 4.11: Difference between the measured and simulated (a) - transmittance, (b) -
reflectance, (c) - transmission phase, (d) - reflection phase, (e) - real and (f) - imaginary
parts of the effective refractive index.
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the root mean square error can be calculated for the real and the imaginary parts

of the effective refractive index obtained from measured data. The quantities σ|t|,

σarg t, σarg r, σ|r| are the root mean square errors of the measured parameters

σx =

√
n∑

i=1

(x− xi)
2

n
, x ∈ {|t| , arg t, |r| , arg r} , (4.12)

which all depend on the wavelength. In Tab. 4.1 the values of σ|t|, σarg t, σarg r, σ|r|
at λ = 1.38 μm obtained in the measurements of the fishnet NIM are given.

The partial derivatives of n′
eff(λ) and n′′

eff(λ) with respect to |t(λ)|, arg t(λ), |r(λ)|,
and arg r(λ) for the fishnet NIM are shown in Fig. 4.12. The real parts of the

respective derivatives are depicted by blue lines, and the imaginary parts by red

lines. The values of the partial derivatives for the fishnet structure at a wavelength of

1.38 μm where n′ has its minimum are given in Tab. 4.2. The values in Tab. 4.1 were

obtained from the experimental data. Taking the accuracy of the transmittance

and reflectance measurements from Tab. 4.1 and the experimental values for the

derivatives we obtain σn′ = 0.04 and σn′′ = 0.07 for the fishnet structures at λ =

1.38 μm.

To estimate the accuracy of the combined method, let us consider the derivatives

of n with respect to |t| , |r|, arg t, and arg r presented in Fig. 4.12. Here one can

see that in the region where the negative refractive index becomes negative (around

λ = 1.38 μm) the real part of the effective refractive index depends strongly on

the phases of the transmission and reflection coefficients. The dependence on the

absolute values of t and r, in turn, is weak. On the contrary, the imaginary part of

the effective refractive index depends mainly on the absolute values of t and r and

not on their phases. This means that if the simulated and measured transmittance

and reflectance have a good agreement at λ = 1.38 μm, no conclusions can be

made about the accuracy of determination of n′
eff at this wavelength. This issue,

namely the neccessity of phase measurements for the correct effective refractive

index retrieval was discussed in Ref. [24]. Nevertheless, the combined method can be

applied to define neff(λ) if a good agreement between measured and simulated T (λ)

σ|t| σ|r| σarg t σarg r

0.01 0.007 0.02 0.02

Table 4.1: Root mean square errors
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Figure 4.12: Partial derivatives of the real and imaginary parts of the effective refractive
index with respect to (a) - |t|, (b) - |r|, (c) - arg t, and (d) - arg r. The partial derivatives
of the real and imaginary partes are represented by blue and red lines, respectively.

and R(λ) is achieved in a broad spectral range. Indeed, it is known that the phase

shift in transmission or reflection of a thin film is related to the transmittance and

reflectance in the whole spectral range [141]. For a complex transmission coefficient

t(λ) = |t(λ)| exp [iφt(λ)] one can write

ln t(λ) = ln |t(λ)|+ iφt(λ). (4.13)

According to Ref. [141] the Kramers-Kronig relation for the real and imaginary parts

of the function ln t(λ) gives

φt(ω) =
−2ω

π
P

∫ ∞

0

ln |t(ω′)|
ω′2 − ω2

dω′, (4.14)

λ [μm] ∂n′
∂|t|

∂n′
∂|r|

∂n′
∂ arg t

∂n′
∂ arg r

∂n′′
∂|t|

∂n′′
∂|r|

∂n′′
∂ arg t

∂n′′
∂ arg r

λexp=1.38 μm 0.14 0.17 2.52 0.69 4.88 2.18 0.06 0.05

Table 4.2: Partial derivatives for the fishnet structure
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where P signifies the principle value of the integral and ω = 2πc/λ. The same

relation can be written for the reflection coefficient r = |r| exp [iφr]. The Kramers-

Kronig transformation method based on the relation expressed with Eq. (4.14) is

widely used for the determination of the material parameters of thin films [141–145].

Direct implementation of the Kramers-Kronig transformation method for MMs is

prevented, because at high frequencies the MMs can not be considered as homoge-

neous media and the integration in Eq. (4.14) can not be conducted for ω → ∞.

The development of an appropriate model which would extend neff(ω) for higher

frequencies would eliminate this limitation.

However, the general statement that the phase shift in transmission or reflection

at a certain wavelength is connected with the amplitude of the respective coefficient

(transmission or reflection) holds for MMs. Thus, only the good agreement of simu-

lated and measured transmittances and reflectances in a broad spectral range allows

for using simulated phases of t and r to determine neff(λ).

In Sec. 4.2.2 it was demonstrated that it is difficult to introduce an adequate

quantitative criterion for the accuracy of the combined method relying on spec-

tral differences of measured and simulated transmittances and reflectances. Con-

sequently, the combined method can be used only for a preliminary estimation of

the effective refractive index of a MM, and resorting to the experimental method is

required to determine neff(λ) precisely.

Chapter summary

In this chapter an experimental method for the characterization of the effective re-

fractive index of MMs was presented [136]. The phases of the complex transmission

and reflection coefficients required for the calculations of neff(λ) were measured using

the developed interferometric technique based on the white-light spectral interfer-

ometry. The interferometric setup was a modified Jamin-Lebedeff interferometer

for measurements in transmission and reflection. Using this method phase measure-

ments in the spectral range from λ = 0.65 μm to λ = 1.7 μm with an accuracy of the

phase definition of ±0.02 rad in transmission and reflection were enabled. The mea-

surements of the transmittance and reflectance were performed with a commercially

available Lambda 950 spectrometer.

Verification of the experimental and combined methods was conducted with a

MM consisting of gold nanodisks and a fishnet NIM. It was demonstrated that

the combined method can be used to determine neff(λ) only if a good agreement

between the measured and simulated spectra in a broad spectral range is achieved.

However, even in the case of MMs with a simple geometry of the unit cell, a perfect

agreement between the measured and simulated spectra is hard to achieve. Thus,
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the combined method is suitable only for the preliminary estimation of the effective

refractive index and the implementation of the experimental method is required to

determine neff(λ) precisely.

The developed method allows for the characterization of effective parameters of

MMs in the spectral range from λ = 0.65 μm to λ = 1.7 μm under normal incidence.

Using this method a negative effective refractive index neff = −0.97±0.04+ i(1.76±
0.07) at λ = 1.38 μm was experimentally demonstrated for a fishnet NIM.
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Magnetic properties of

asymmetric double-wire structures

In the previous chapters it was shown that the excitation of the antisymmetric

mode in a plasmonic double cut-wire structure gives rise to the charge dynamics

in the system, associated with a non-zero magnetic moment. Additionally, it has

been demonstrated how the magnetic response of double cut-wires can be designed

by tuning the geometry of symmetric metaatoms. It is evident, however, that the

symmetry of the structure itself can be a powerful tool for the design of magnetic

properties of MMs. In this chapter the influence of asymmetry on the magnetic re-

sponse of double cut-wires is considered. The investigations of the magnetic response

of asymmetric double cut-wires were conducted experimentally and theoretically us-

ing numerical simulations and the analytical multipole model from Ref. [59]. The

system under investigation was the double cut-wire elongated infinitely in one of the

directions. Such a two dimensional geometry is further referred to as a double-wire

system. The asymmetry was introduced into the system by varying the length of the

cut-wires in the direction where the plasmonic resonances are excited. To provide

the analytical description of the systems, an extension of the theoretical multipole

model [59] to the case of asymmetric double-wire structures has been undertaken.

The extended model is presented in Sec. 5.1. For the further development of the

analytical approach, the description of the coupling between double-wires based on

a model of two interacting point dipoles was considered (Sec. 5.1.2). The extended

analytical model was used to investigate the magnetization of systems of double-

wires with different degrees of asymmetry. The charge and current dynamics as well

as the magnetic properties of the system are discussed in Sec. 5.3. The chapter is

closed with Sec. 5.4, where results of experimental investigations on the magnetic

properties of asymmetric double-wires are presented.
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Figure 5.1: (a) - Arrangement of the structure used in the analytical model. (b) - Single-
wire structure. (c) - Double-wire structure.

5.1 Multipole model for asymmetric structures

In this study, the general case of double cut-wires, which are infinitely extended in

the z direction (Fig. 5.1.) was considered. The two dimensional configuration was

chosen to relax the requirements on the computational resources for the numerical

simulations of the system. The obtained results, however, can be easily transferred

to the case of wires of finite length.

To control the asymmetry of the structure, the length L1,2 of the wires in x direc-

tion (see Fig. 5.1(a)) was used. This type of asymmetry can be easily realized using

the step-by-step lithographic technology presented in Sec. 3.3. To characterize the

asymmetry of the structures quantitatively, the parameter ΔL = L1−L2 was intro-

duced. The length of the first wire ranged from Lmin
1 = 200 nm to Lmax

1 = 300 nm,

while the length of the second one ranged from Lmax
2 = 300 nm to Lmin

2 = 200 nm pro-

viding the conservation of the amount of metal in the structure (L1+L2 = constant).

For the simulations, the wires were placed in air with a separation distance of 40 nm

between them. This was a simplification compared to the common experimental

arrangement, where structures are placed on a substrate and are separated with a

dielectric. The presence of a substrate breaks the symmetry of the structure even for

wires of the same length [146, 147]. Therefore, to concentrate on the effects caused

by the asymmetry of the wires only, the systems were considered in a symmetric

environment. Nevertheless, the simplified model qualitatively describes the effects

observed in the experimental system as will be shown in Sec. 5.4.

As it was shown in Ref. [59] and discussed in Sec. 2.3.2, the system of double-wires

can be described by a set of two coupled oscillators, each of which is associated with

the fundamental dipole mode of a wire

ẍ1(t) + γ1ẋ1(t) + ω2
01x1(t)− σx2 (t) =

q1

m
E1x (y − y1, t) ,

ẍ2(t) + γ2ẋ2(t) + ω2
02x2(t)− σx1 (t) =

q2

m
E2x (y + y1, t) ,

(5.1)
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where the amplitudes x1 and x2 correspond to the elongations of the negatively

charged carrier densities driven by the electric field; ω01, ω02 are the eigenfrequencies

of the oscillators; γ1, γ2 are the damping constants; q1, q2 are the effective charges;

m is the mass of the effective carrier; σ is the coupling constant; -y1 and y1 are the

positions of the carriers along the y coordinate.

The solution of the system (5.1) can be easily found in the Fourier domain under

the assumption that x1,2 (t) = x̃1,2 (ω) exp (−iωt)

x̃1(ω) =
a1 (ω2

02 − ω2 − iγ2ω) Ẽ1x (y − y1, ω) + σa2Ẽ2x (y + y1, ω)

(ω2
01 − ω2 − iγ1ω) (ω2

02 − ω2 − iγ2ω)− σ2
, (5.2)

x̃2(ω) =
a2 (ω2

01 − ω2 − iγ1ω) Ẽ2x (y + y1, ω) + σa1Ẽ1x (y − y1, ω)

(ω2
01 − ω2 − iγ1ω) (ω2

02 − ω2 − iγ2ω)− σ2
, (5.3)

a1 =
q1

m
, a2 =

q2

m
. (5.4)

The interaction of a EM wave with the material is described with the electric polar-

izability P̃ (y, ω), the quadrupole tensor Q̃ (y, ω), and the magnetization M̃ (y, ω),

whose non-zero elements can be written as

P̃x (y, ω) = −2η [q1x̃1 (ω) + q2x̃2 (ω)] , (5.5)

Q̃xy (y, ω) = y1η [q2x̃2 (ω)− q1x̃1 (ω)] , (5.6)

M̃z (y, ω) = iωy1η [q2x̃2 (ω)− q1x̃1 (ω)] , (5.7)

where η is the density of the metaatoms (double-wires). The electromagnetic mo-

ments were introduced in Sec. 2.3.1, see Eqs. (2.47) and (2.48). Having calculated

the dipole, quadrupole and magnetic dipole contributions, the wave equation

∂2Ẽx(y, ω)

∂y2
= ω2μ0

[
ε0Ẽx(y, ω) + P̃x(y, ω)− ∂Q̃xy(y, ω)

∂y

]
+ iωμ0

∂M̃z(y, ω)

∂y
(5.8)

can be solved, and the dispersion relation k(ω) is

k2
y(ω) = 2

ω2

c2

R1R2 − σ2 + A
(
a1R2 + a2R1 − 2σ

√
a1a2

)
2 (R1R2 − σ2)− ω2

c2
Ay2

1

(
a1R2 + a2R1 − 3σ

√
a1a2

) , (5.9)

where

R1 =
(
ω2

01 − ω2 − iγ1ω
)
, R2 =

(
ω2

02 − ω2 − iγ2ω
)
. (5.10)

In order to connect the model with the simulated system, the characteristic param-

eters of the oscillators (ω01, ω02, γ1, γ2, a1, a2) have to be found. For this purpose,
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Figure 5.2: In the columns (a), (b), (c) - are the data for the structures with ΔL = 100 nm,
ΔL = 0 nm, and ΔL = −100 nm, respectively. Red curves represent wave vectors obtained
from the rigorous numerical simulations. Black lines represent wave vectors obtained from
the fitting procedure.

the complex transmission and reflection coefficients of corresponding layers of MMs

were calculated using FMM. The dispersion relations were found with the modified

retrieval algorithm from Ref. [148], which was developed to treat MMs with strongly

inhomogeneous unit cells. Then the parameters of the oscillators were found from

the fitting of the numerically and analytically calculated dispersion relations.

In this section, the angular frequency representation ω was used in all formulas

to derive the dispersion relation of a MM based on asymmetric double-wires. In the

following diagrams the wavenumber representation (ν̃ = 2πc/ω) of the spectral data

is used to facilitate the conversion of the data to the wavelength domain.

5.1.1 Parameters of harmonic oscillators

For the analytical description of the double-wire structure the parameters of the

oscillators (ω0i, γi, ai) and the coupling constant (σ) corresponding to the systems

under consideration have to be defined. This problem is reduced to finding the

connection between ω0i, γi, ai and the length L of a wire. This dependence is the

same for the two wires. Additionally, σ has to be found for each asymmetric system

(for each value of ΔL). The parameters of the oscillators can be found from the

simulations of single-wire (Fig. 5.1(b)) and double-wire (Fig. 5.1(c)) structures. To

demonstrate the accuracy of the fitting procedure, the wave vectors obtained from

the fitting procedure (black curves) and from rigorous numerical calculations (red

curves) for double-wire structures are shown in Fig. 5.2. The wave vectors from the

numerical simulations were calculated with the retrieval algorithm from Ref. [148],
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Figure 5.3: (a), (b), and (c) - Parameters of the oscillators as functions of the length L of
the corresponding wire (L reads as L1 for the first oscillator and as L2 for the second one).
Blue triangle marks and red diamond marks correspond to the parameters obtained from
the single-wire configurations and double-wire configurations, respectively. In (d) - the
red line represents coupling constant obtained from the theoretical expression Eq. (5.18),
the green triangles show the results of the fitting to the rigorous numerical results.

using complex transmission and reflection coefficients from the FMM simulations.

The parameters providing the best fit of the analytically calculated disper-

sions to the numerically calculated ones for the single-wire structures are shown

in Fig. 5.3(a)-(c) with blue triangle marks. The eigenfrequency of the oscillator

(Fig. 5.3(a)) is inversely proportional to the length of the wire, the amplitude

(Fig. 5.3(c)) is proportional to the length, while the damping constant (Fig. 5.3(b))

in a first approximation does not depend on the length of the wire.

The same set of parameters extended by σ was calculated for the double-wire

configuration in a similar manner from the fitting of the theoretical dispersion rela-

tions to the numerical ones. The parameters obtained from the double-wire system

(shown in Fig. 5.3, red diamond marks) have the same dependence on the length

of the wire, however the eigenfrequencies and amplitudes are shifted relative to the
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Figure 5.4: Arrangement of the point dipoles associated with the double-wire system.

values obtained for the single-wire configuration. This deviation appears due to the

interaction of the wires with the neighbors in the lateral direction, which is different

for the single- and double-wire configurations. This interaction is not included in

the theoretical model, however unavoidably appears in the FMM simulations and

in the experiment, where the wires have a periodical arrangement with a small pe-

riod. Hence, the results obtained from the simulations of single-wire structures can

be used only for a qualitative estimation of the parameters. Nevertheless, the ef-

fect of the interaction can be taken into account by assuming that the oscillators

have a larger effective mass in the double-wire arrangement in comparison with the

single-wire configuration.

5.1.2 Analytical model for the coupling constant

The coupling between the double-wires can be qualitatively described using the hy-

bridization model (see Sec. 2.2.2). For the quantitative description of the interaction,

an analytical expression for the coupling constant σ as a function of the parameter

of asymmetry ΔL has to be known. Resorting to such an analytical model would

allow for a significant reduction of the number of numerical calculations required to

match the oscillator model with the real structure. A simple approximation of the

wire system providing the analytical description of the interaction is a system of

two point dipoles. The two dipoles are placed in the points with coordinates (0, y1)

and (0,−y1), shown in Fig. 5.4, and have dipole moments d1 = q1x1 and d2 = q2x2.

According to the results of the numerical simulations presented in Fig. 5.3(c), the

charge of each dipole can be assumed to be proportional to the length of the corre-

sponding wire q = αL.

The coupling constant σ can be expressed as a function of the dipole moments d1

and d2, by taking into account that the interaction term in each equation of motion

in the system presented in Eq. (5.1) is the force acting on one oscillator from the

other one. Based on the assumption of dipole character of the interaction between

the wires, this force can be derived from the potential energy U of two dipoles [149].
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For the first oscillator the force is

F1 = − ∂U

∂r1

= − ∂U

∂x1

(5.11)

and for the second one it reads

F2 = − ∂U

∂r2

= − ∂U

∂x2

. (5.12)

The potential energy of two point dipoles with dipole moments d1 and d2 at a

distance R [65] is

U =
d1d2R

2 − 3(d1R)(d2R)

R5
. (5.13)

As the considered dipoles are arranged parallel to the x-axis the potential energy

takes the form

U =
−2(d1d2)

R3
=
−2q1x1q2x2

R3
. (5.14)

Eqs. (5.11) and (5.12) can be written as

F1 = − ∂U

∂x1

=
−2q1q2x2

R3
= −σx2, (5.15)

F2 = − ∂U

∂x2

=
−2q1q2x1

R3
= −σx1, (5.16)

where the coupling constant σ is introduced as

σ =
−2q1q2

R3
. (5.17)

Now, using the assumption that the charge of each dipole is proportional to the

length of the wire (q = αL), we obtain an analytical expression for the coupling

constant

σ =
−α2

R3

(S2 −ΔL2)

2
, (5.18)

S = L1 + L2. (5.19)

The coupling constant depends on the parameter of asymmetry ΔL and on the total

length of the wire system. The coefficient of proportionality α can be defined using

σ obtained from the fitting procedure for the symmetric case (ΔL = 0). Comparison

of σ from Eq. (5.18) (Fig. 5.3(d), red line) with the coupling constant from the fitting

procedure (Fig. 5.3(d), green triangles) shows that the model of two coupled dipoles
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Figure 5.5: (a) - Transmittance, (b) - reflectance, and (c) - absorbance spectra in depen-
dence on the structural asymmetry (ΔL) calculated using rigorous numerical simulations.

qualitatively describes the interaction between the wires. However, a more realistic

model is required to provide an accurate description of the interaction between the

wires.

5.2 Eigenmodes of asymmetric double-wire

structures

A symmetric double-wire structure possesses two modes with frequencies separated

due to the interaction between the wires [22, 71, 129]. One of the modes has a

symmetric field profile and the other an antisymmetric one. In a system of two

different wires the field profiles of the corresponding modes are no longer purely

symmetric or antisymmetric. Nevertheless, for the sake of conciseness, the notation

of “symmetric” and “antisymmetric” mode for asymmetric structures is used further

in the text.

According to the coupled mode theory, the stronger the wires couple, the larger

is the frequency splitting of the modes. Obviously, the coupling between wires is

maximal if the wires have the same lengths and it becomes weaker if the length

difference increases. The dependence of the frequency splitting on the length differ-

ence ΔL can be extracted from the spectra presented in Fig. 5.5(a)-(c), where the

resonances corresponding to the excitation of the two modes can be easily identi-

fied. Both resonances appear in the spectra as minima of the transmittance - see

Fig. 5.5(a). The antisymmetric mode is associated with a carrier distribution having

a pronounced quadrupole moment. Therefore, excitation of the antisymmetric mode

is accompanied by an increase of absorption, which is enhanced by its non-radiating

character - see Fig. 5.5(c). The symmetric mode, in contrast, has the radiating
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property of a dipole and appears as high reflectance in the spectra - see Fig. 5.5(b).

Thus, we observe that the resonances in Fig. 5.5 indeed have the largest spectral

separation in the symmetric case (ΔL = 0 nm) and approach the eigenfrequencies

of the uncoupled wires if the difference of their lengths increases.

5.3 Magnetic response of double-wire systems

5.3.1 Dynamics of currents

To understand the influence of the asymmetry on the orientation of the magnetic

moment of the double-wires, the dynamics of the currents in the system have to be

analyzed. Further the dynamics of the system will be considered in the two limiting

cases ΔL = 100 nm and ΔL = −100 nm.

Data corresponding to the system with ΔL = 100 nm are presented in Fig. 5.6(a)-

(g), where the phase information for the amplitudes x1,2 (Fig. 5.6(b)) and the cur-

rents j1 = q1ẋ1 and j2 = q2ẋ2 (Fig. 5.6(d)) are given with respect to the phase of the

electric field in the center of the unit cell. It is seen, that at frequencies around the

eigenfrequency of the antisymmetric mode (0.9 μm−1 - 1.1 μm−1, see Fig. 5.6(a)),

the first oscillator x1 has a larger amplitude than the second one x2. The reasons

are the larger size and the top position of the first wire, which is affected by the

incoming wave first. In this case, according to Eq. (5.1), the first oscillator, which is

the largest one, dominates over the second one, whereas the influence of x2 on the

dynamics of x1 is negligible. Indeed, out of the resonance, at frequencies lower than

the eigenfrequency of the antisymmetric mode (1.05 μm−1) the first oscillator fol-

lows the electric field almost in phase (Fig. 5.6(b)). The second oscillator is mostly

driven by the first one and acquires a phase shift of about π with respect to x1 at

frequencies close to the eigenfrequency of the antisymmetric mode. In the resonance

both oscillators undergo a phase jump close to π; as a result for frequencies higher

than the resonance frequency, x1 oscillates out of phase and x2 oscillates in phase

with the electric field. The currents j1 and j2 associated with these oscillations are

presented in Figs. 5.6(c) and (d).

For the structure with ΔL = −100 nm (see Fig. 5.6(h)-(n)) the situation should

be inverse, as the larger oscillator is x2, which is below the first one. However,

the excitation conditions for x2 are not optimal, due to the first oscillator, which

screens the lower one from the exciting electric field. As a result, the amplitudes of

oscillators x1 and x2 are of the same order and smaller than in the case ΔL = 100 nm.

Nevertheless, the phase of the larger oscillator x2 is closer to the phase of the electric
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Figure 5.6: In the left column - plots (a)-(g) are the data for the structure with ΔL =
100 nm, in the right column - plots (h)-(n) are the data for the structure with ΔL =
−100 nm. (a), (h) - Absolute values and (b), (i) - phases of the amplitudes of the oscillators.
(c), (j) - Absolute values and (d), (k) - the phases of the currents. (e), (l) - Absolute
values, the real, and the imaginary parts and (f), (m) - phases of the parameter χ. (g),
(n) - Absolute values, real and imaginary parts of the effective magnetic permeability.
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Figure 5.7: (a) and (b) - The electric field distributions for the structures with ΔL =
−100 nm and ΔL = 100 nm at the eigenfrequency of the antisymmetric mode (1.05 μm−1).
(c) and (d) - The spatial distribution of x component of the electric fields for the structures
with ΔL = −100 nm and ΔL = 100 nm, respectively.

field than the phase of the smaller one x1, however, it deviates from the phase of

the electric field, due to the stronger influence of the oscillator x2. As a result,

at frequencies below the frequency of the magnetic resonance, the loop current

orientation is reversed with respect to that of the structure with ΔL = 100 nm.

The electric field distributions obtained in the rigorous numerical simulations

confirm the results on the carrier dynamics derived with the oscillator model. In

Fig. 5.7 the electric field distributions for the structures with ΔL = −100 nm

and ΔL = 100 nm at the frequency of the antisymmetric mode (1.05 μm−1) are

shown. The real parts of the electric fields are presented in Figs. 5.7(a) and (b).

In Figs. 5.7(c) and (d) the real parts of the x components of the electric fields are

shown. One can see that the field distributions in both cases correspond to the ones

of two dipoles oscillating out of phase. The orientations of the dipoles correspond

to those predicted by the oscillator model.
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Figure 5.8: In the columns (a),(b),(c) - absolute values (in normalized unites) and phases
of the magnetization for structures with ΔL = −100 nm, ΔL = 0 nm, and ΔL = 100 nm,
respectively.

5.3.2 Magnetization of the double-wire MMs

The magnetizations for the structures with ΔL = −100 nm, ΔL = 0 nm, and ΔL =

100 nm calculated according to Eq. (5.7) are shown in Fig. 5.8. The phase of the

magnetization is given relative to the phase of the electric field of an incoming wave.

It is seen that the absolute values and the phases of the magnetizations strongly

depend on the asymmetry of the structure. The magnetization of the structure with

ΔL = −100 nm is smaller than the one of the structure with ΔL = 100 nm and

oscillates almost out of phase with respect to the electric field. The magnetization

of the structure with ΔL = 100 nm, in turn, oscillates almost in phase with the

electric field.

Though, the magnetic response of the double-wire structures is caused by the

electric field of the incoming wave, it is reasonable to consider the magnetization with

respect to the magnetic field of an incoming wave. This relation can be expressed

introducing a complex coefficient χ (ω) = χ′ (ω) + iχ′′ (ω) which defines the relation

between the magnetic field of the wave and the magnetization of a MM

M̃z (y, ω) = χ (ω) B̃z (y, ω) . (5.20)

The coefficient χ(ω) can be easily derived from Eq. (5.7) using Eqs. (5.2) and (5.3)

where the electric field is substituted with the expression

Ẽx (y, ω) = − ω

ky(ω)
B̃z(y, ω), (5.21)
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Figure 5.9: Phase relation between the electric field (blue), magnetic field (red), mag-
netization (green), current j1 (black), and current j2 (gray) are presented at the fre-
quency 0.9 μm−1 in the left column (a)-(c), at 1.08 μm−1 in the central column (d)-(f),
and at 1.2 μm−1 in the right column (g)-(i). Presented data is for the structure with
ΔL = 100 nm.

describing the relation between the electric and magnetic fields in a plane wave.

The absolute value and the phase of χ for the structure with ΔL = 100 nm are

shown in Figs. 5.6(e) and (f). In the resonance the phase of χ is π (see Fig. 5.6(f)),

i.e. the equivalent microscopic loop currents (Figs. 5.6(c) and (d)) produce a magne-

tization oscillating out of phase with the magnetic field. The phase relations between

the fields, the magnetization and the currents at the frequencies below (0.9 μm−1),

at (1.08 μm−1) and above (1.2 μm−1) the resonance are illustrated in Fig. 5.9, where

the normalized real parts of these quantities are shown. In Figs. 5.9(c),(f), and (i)

the phase relations between the fields, the magnetization, and the currents are illus-

trated in phase diagrams. The absolute value and the phase of χ for the structure

ΔL = −100 nm is shown in Figs. 5.6(i) and (m). One can see that the microscopic

currents of the structure with ΔL = −100 nm produce a magnetization which is

almost in phase with the magnetic field (−π/2 < arg(χ) < π/2), and only at fre-

quencies above the resonance frequency the phase shift between the magnetization

and the magnetic field becomes larger than π/2. The phase relations between the
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Figure 5.10: The same data as in Fig. 5.9 for the structure with ΔL = −100 nm. Phase
relation between the electric field (blue), magnetic field (red), magnetization (green), cur-
rent j1 (black), and current j2 (gray) are presented at the frequency 0.9 μm−1 in the left
column (a)-(c), at 1.08 μm−1 in the central column (d)-(f), and at 1.2 μm−1 in the right
column (g)-(i).

fields, the magnetization and the currents at the frequencies below (0.9 μm−1), at

(1.08 μm−1) and above (1.2 μm−1) the resonance are shown in Fig. 5.10.

5.3.3 Effective magnetic permeability of the double-wire

structures

The magnetic properties of materials are commonly described with the effective

magnetic permeability μeff(ω). The common definition of an effective magnetic per-

meability by

H̃z (ω) =
1

μ0

B̃z (ω)− M̃z (ω) =
1

μeff (ω) μ0

B̃z (ω) , (5.22)

μeff (ω) =
B̃z (y, ω)

B̃z (y, ω)− μ0M̃z(y, ω)
(5.23)

for plasmonic MMs has formal character only, because the magnetization of the

structures is mainly caused by the electric field. The effective magnetic permeabil-

ities calculated according to Eq. (5.23) for the structures with ΔL = 100 nm and
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ΔL = −100 nm are shown in Fig. 5.6(g) and (n), respectively. It is seen that the

larger the wire on the top, the lower the absolute value of the effective permeabil-

ity. This may appear contradictory to the behavior of the magnetization shown in

Fig. 5.8, where one can see that the absolute value of the magnetization grows with

increasing the length of the upper wire. However, a thorough consideration of the

relation between μeff(ω) and the magnetization clears up this seeming discrepancy.

According to Eq. (5.20) and Eq. (5.23) the absolute value of the permeability can

be written as

|μeff (ω)|2 =
1

(1− μ0χ′ (ω))2 + (μ0χ′′ (ω))2 (5.24)

and the real part as

Re [μeff (ω)] =
(1− μ0χ

′ (ω))

(1− μ0χ′ (ω))2 + (μ0χ′′ (ω))2 . (5.25)

Now one can see that, if the real parts of χ(ω) increases, the sign of χ(ω), i.e.

the phase of the magnetization with respect to the magnetic field, defines whether

μeff(ω) increases or decreases.

Indeed, when the magnetization is in phase with the magnetic field (χ′(ω) > 0)

and grows, the absolute value of μeff(ω) increases, as the denominator in Eq. (5.24)

decreases. This is the case for structures with a negative ΔL, for which the phases

of χ(ν̃) lie between −π/2 and π/2 (Fig. 5.6(m)). Further, if the magnetization

increases and is out of phase with the magnetic field (χ′(ω) < 0), μeff(ω) decreases,

as the denominator in Eq. (5.24) increases. This is the case for structures with

positive ΔL, for which the phases of χ(ω) lie between π/2 and −π/2 (Fig. 5.6(f)).

The real part of μeff(ω) becomes negative if χ′(ω) exceeds 1/μ0, which means that

the magnetization oscillates in phase with the magnetic field and is strong enough.

Furthermore, if the magnetization is out of phase with the magnetic field the real

part of μeff(ω) is always positive.

5.4 Experimental verification

For experimental investigations of the magnetic properties of asymmetric double-

wire structures, a set of samples was produced using the electron-beam lithography

technique described in Sec. 3.3. An SEM image of one of the samples is shown in

Fig. 5.11(a). The wires were made of gold (dAu = 20 nm) and separated by a MgO

dielectric layer (dMgO = 30 nm) (see Fig. 5.11(b)). The period of the structure was

500 nm. Because of technological reasons, only the length L1 of the upper wire was
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Figure 5.11: (a) - SEM image of the realized structure with ΔL = −40 nm, (b) - arrange-
ment of the structure in the experiment.

Figure 5.12: Measured transmittance, reflectance, and absorbance of a set of asymmetric
double-wires. The wire at the bottom had the constant length (L2 = 260 nm), whereas
the length of the wire on the top ranged from 160 nm to 260 nm.

varied in the range from L1 = 160 nm to L1 = 260 nm, while the length of the wire

L2 on the bottom was kept at L2 = 260 nm for all samples.

As the geometrical parameters of the structures can slightly vary along a wafer

(due to technological inaccuracy), a set of ten samples on a compact area of 1 mm

by 0.5 mm was produced, where the size of each sample was 1 mm x 50 μm. Such a

compact arrangement of the samples assured that the observed effects were caused

by the variation of the wire length only. The measurements of transmittance and

reflectance spectra were performed using a Bruker Vertex 80 spectrometer combined

with a Hyperion 2000 microscope. The light was focused on the set of the samples

with an objective with NA = 0.4 and a certain sample was selected by an appropriate

aperture setting.

The measured transmittance, reflectance, and absorbance spectra are shown in

Fig. 5.12. As it was discussed in Sec. 5.2, symmetric and antisymmetric modes can be

identified in the spectra by the maxima of reflectance and absorbance, respectively.

In the absorbance the resonance corresponding to the excitation of the antisymmetric

mode appears as a minimum at about 0.8 μm−1 and the symmetric mode as a
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Figure 5.13: In the columns (a),(b),(c) - absolute values and phases of the polarization for
structures with ΔL = −100 nm, ΔL = 0 nm, and ΔL = 100 nm, respectively.

minimum at about 1.1 μm−1. The difference in the absolute values of the resonance

positions in the numerical simulations and in the experiment is due to the different

refractive indices of the spacer and slightly different lengths of the wires. In addition,

in the presence of the substrate the wire on the bottom becomes effectively longer.

As a result, the spectral separation of the resonances for ΔL = 0 nm is smaller for

the experimental system with a substrate than for the system without a substrate

considered earlier. Nevertheless, according to the predictions of the theory, splitting

of the symmetric and antisymmetric modes becomes weaker when ΔL tends to

−100 nm. It is interesting to note that in both experiment and simulation the

absorption of the metamaterial at the antisymmetric resonance is maximal (Fig. 2(c)

and Fig. 5.12(c)) for negative ΔL and decreases when ΔL becomes zero, whereas the

reflectance of the metamaterial (Fig. 2(b) and Fig. 5.12(b)) increases. This behavior

can be explained by the increase of the electric dipole moment of the double-wire

structure as ΔL becomes positive (the length of the wire on the top increases). The

polarization of the theoretically considered structures are shown in Fig. 5.13. Indeed,

in the antisymmetric resonance, the polarization, which is proportional to the dipole

moments of the double-wires, is larger for the structure with ΔL = 100 nm than for

the structure with ΔL = −100 nm.

To access the effective magnetic permeabilities of the MM’s layers, the combined

method was employed. The experimental method based on the phase measurements

could not be used, as the area of the samples was too small. Since the simulated

transmittances and reflectances showed good agreement with the experimental ones,

the effective parameters could be retrieved from the simulated complex transmission

and reflection coefficients.
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Figure 5.14: Absolute values and phases of χ for the experimental structures with ΔL =
−100 nm and ΔL = 0 nm.

The coefficients χ characterizing the magnetic moment of the structures can be

expressed as a function of the effective magnetic permeability using Eq. (5.20) and

Eq. (5.23). The absolute values and phases of the parameters χ for the structures

with ΔL = 0 nm and ΔL = −100 nm are presented in Fig. 5.14. An interpretation

of the absolute values of χ can be misleading, because the amount of metal in the

experimental systems was not conserved (L2=constant for all structures). Accord-

ingly, the phase of the coefficients χ is a more appropriate parameter in this case. It

is seen that for the structure with ΔL = −100 nm the magnetic moment oscillates

almost in phase with the magnetic field (arg[χ] ≈ 0) at the eigenfrequency of the

antisymmetric mode (0.85 μm−1). The phase delay increases when the length of the

wire on the top becomes larger. For the structure with ΔL = 0 nm the phase delay

is about π/4 at the frequency 0.65 μm−1. Thus, the orientation of the magnetic

moment relative to the magnetic field in the experimental system corresponds to

the predictions of the analytical model.

Chapter summary

In this chapter theoretical and experimental investigations of the influence of the

asymmetry on the magnetic properties of double-wire structures were presented

[102]. The analytical description of the structures required the extension of the

multipole model presented in Ref. [59] to the asymmetric case. The connection be-

tween the parameters of the oscillators in the analytical model and the real geometry

was found through fitting of the analytically obtained dispersions to the numerically

calculated ones. The comparison of the parameters obtained from the simulations

91



Chapter 5

of the single-wire and double-wire structures revealed an interaction between the

neighboring wires in the lateral direction. This interaction is not directly included

in the model. Nevertheless, it can be taken into account by increasing the effective

mass of the oscillators in the double-wire configuration in comparison to that for the

single-wire configuration. It was also shown that the interaction between the wires

in a double-wire structure can be qualitatively described as the interaction of two

coupled dipoles.

The investigation verified that the magnitude of the magnetization and the phase

shift relative to the magnetic field depends strongly on the configuration of the sys-

tem. In general, the dynamics of the system is dominated by the larger wire, where

plasmon oscillations follow the external electric field. This defines the orientation

of the effective micro currents in the double-wire structure and, as a result, the

orientation and strength of the magnetic moment. In the system where the larger

wire has the top position the magnetic moment of the system oscillates almost out

of phase relative to the magnetic field of the exciting wave. In the system where

the larger wire is on the bottom the resulting magnetic moment oscillates almost in

phase relative to the magnetic field. In this case, the effective magnetic permeability

of the MM becomes negative. These results obtained using the theoretical model

were verified by the experiment.
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Conclusions and outlook

The main aim of this thesis was the design, realization, and characterization of opti-

cal NIMs. Due to the nanometer dimensions of the constitutive elements of optical

MMs, their realization is a challenging technological task. Therefore, in the first

years of the work the main efforts were dedicated to the establishment of the tech-

nological process for the sample fabrication. The contribution to the development

of the fabrication process was made by providing the design, the optical character-

ization and the analysis of the optical properties of the MM samples. During this

work the main design guidelines for the realization of double element NIMs using the

electron-beam lithography incorporated in the layer-by-layer fabrication technique

were formulated.

In the framework of the effective medium approach the optical response of the

investigated NIMs is described using effective electric permittivity and permeability.

Consequently, the condition of a negative index material derived for the permittivity

and permeability of homogeneous materials can be used as a criterion for the NIM

design. According to the condition of a NIM either the real part of the permittivity

or permeability has to be negative. A negative real part of the effective permeabil-

ity of fabricated NIMs was realized using continuous metallic wires possessing the

EM response of a diluted metal. An effective magnetic permeability satisfying the

condition of a NIM was designed employing plasmonic double cut-wires supporting

an antisymmetric mode characterized with a nonzero magnetic moment in the unit

cell of MMs.

Commonly, the main ideas about the layout of the unit cell are drawn from

the analysis of the dependence of the localized plasmon polariton resonances on the

geometry of the metallic particles of simple shapes. The eigenmodes of the cut-wires

are qualitatively described employing the hybridization model for localized plasmon

polaritons. Nevertheless, for a long time, the main tool to design metaatoms was the

rigorous numerical modeling, since an analytical model describing the functionality
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of plasmonic metaatoms has only been developed recently.

In this thesis rigorous numerical simulations based on FMM were used for the

design and analysis of NIM’s optical properties. The detailed study of the accu-

racy of the technological process and the sensitivity of the metaatom resonance to

the precision of the geometry realization resulted in the design and fabrication of

a double-element NIM at a wavelength of 2.2 μm. Additionally, it was found that

tuning different geometrical parameters of the structures may result in a quite sim-

ilar spectral behavior of the plasmonic resonances. This ambiguity complicates the

fitting of the geometry assumed for the numerical simulations to reproduce the real

fabricated structures. As a result, a good agreement of the simulated and mea-

sured spectra, required to employ the combined method for the determination of

the effective refractive index of a NIM, is hard to achieve.

This was the motivation for the development of an experimental method en-

abling the characterization of the effective refractive index without resorting to

simulations. The developed method allowed for measurements of the phases and

amplitudes of the complex transmission and reflection coefficients of a MM film. An

experimental technique based on the white-light spectral interferometry was real-

ized and enabled phase measurements in transmission and reflection of MMs with

an accuracy of ±0.02 rad. In parallel, the transmittance and reflectance measure-

ments were conducted with a commercially available spectrometer. In comparison

to the techniques developed by other groups to verify the effective refractive index,

the developed method can be used as a routine technique for the determination of

the effective refractive index in a broad spectral range from 0.65 μm to 1.7 μm. The

experimental method allows for the determination of the effective refractive index

with an accuracy of ±0.04 in the real part.

Additionally, the experimental access to the complex transmission and reflection

coefficients enabled the verification of the combined method based on the combina-

tion of the simulated and measured data to determine the effective refractive index

of a MM. It was shown that the combined method provides accurate values of the

effective refractive index only when a good agreement between the measured and

simulated spectra in a broad spectral range is achieved.

The later development of the multipole model providing insight into the internal

dynamics of plasmonic metaatoms took the design of metaatoms to a qualitatively

new level. The analytical model, providing a description of the cut-wire dynam-

ics and facilitating its analysis, was employed to investigate magnetic properties of

asymmetric double-wires. To perform this analysis, the multipole model was ex-

panded to the case of an asymmetric system. The investigations have shown that

the structural asymmetry influences the magnetic response of the double-wires sig-
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nificantly. The magnetic response of a double-wire system is connected with the

excitation of the antisymmetric resonance, where the carriers in each wire oscillate

out of phase. In a system of double-wires of different lengths the carrier oscillations

in the larger wire follow the electric field of the excitation. As a result, depending

on the position of the large wire with respect to the exciting wave, the effective loop

current in the system has different orientations. In the configuration where the larger

wire has the top position, the effective loop current produces a magnetic moment

that is opposite to the magnetic field of the exciting wave. In this configuration, the

excitation conditions for the antisymmetric mode are optimal, which causes a strong

magnetic moment. In the configuration where the larger wire lies on the bottom

the resulting loop current gives rise to a magnetic moment which is almost parallel

to the magnetic field of the exciting wave. However, the magnetic moment is weak,

as the excitation conditions are not optimal. The effective permeability, in turn,

becomes negative only in the case when the magnetization oscillates in phase with

the magnetic field. Thus the configuration with the larger wire on the bottom is

preferable for the realization of a NIM. The results obtained for the magnetization

of the asymmetric double-wires were proved experimentally.

According to the results produced in this thesis, the following directions for further

research can be formulated.

New designs of metaatoms should be developed to overcome the main drawbacks

of the contemporary MMs, namely the inhomogeneity and high absorption. Im-

proving the homogeneity of the MMs is connected to the reduction of the sizes of

the metaatoms relative to the operating wavelength. For the metaatoms based on

cut-wires, one of the possible ways to increase the homogeneity of the system would

be decreasing the spacer thickness down to the nanometer scale. This will result in

the decreasing of the eigenfrequency of the antisymmetric resonance, which can be

tuned to a certain extend towards the operating frequency by the variation of the

linear dimensions of the wires. The magnetic response of the system can be addi-

tionally improved by introducing asymmetry into the geometry of the system. The

establishment of new fabrication techniques like atomic layer deposition (ALD) will

allow the realization of spacer layers of several nanometers with atomic precision.

To improve the efficiency of the MMs several strategies can be followed. One of

them is the reduction of the absorption in the metals by improving the quality of

the crystallographic structure of thin metallic films. Also using plasmonic materials

with high plasma frequency would increase the efficiency of NIMs. The other way

to improve the efficiency of MMs is the use of active materials to compensate the
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losses [45].

Regarding the experimental methods for the characterization of the optical prop-

erties of MMs, the work should be continued to provide experimental characteriza-

tion of the complete dispersion relation of MMs. This, in turn, requires realization

of angle resolved phase measurements in a broad spectral range. Furthermore, as

the technological progress allows for the realization of complex three dimensional

metaatoms providing new functionality of MMs, the development of new experi-

mental techniques is urgent. The realization of chiral materials [150], for example,

requires the development of methods for measurements of the complex Jones ma-

trix [151]. The development of the experimental method for cross polarization phase

measurements based on the technique presented in this work is ongoing.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit künstlichen nanostrukturierten optischen

Materialien - Metamaterialien, welche optische Eigenschaften besitzen, die in

natürlichen Materialien nicht vorkommen. Die Metamaterialien bestehen aus

Elementarzellen deren Gröe kleiner als die Wellenlänge des Lichtes ist und können

demzufolge als effektive Medien betrachtet werden. Dementsprechend werden die

optischen Eigenschaften eines Metamaterials mit effektiven Parametern wie effektive

Brechzahl und Impedanz oder effektive elektrische Permittivität und magnetische

Permeabilität beschrieben. Die effektiven optischen Parameter vom Metamaterialien

werden, in Analogie zu natürlichen Materialien, durch die elektromagnetischen

Eigenschaften der Elementarzellen oder ”Metaatome” bestimmt und können durch

angepasstes Design gezielt verändert werden.

Das Ziel dieser Arbeit war die Formulierung von Designgrundsätzen für Meta-

materialien mit einer negativen Brechzahl im optischen Spektralbereich und die

Entwicklung experimenteller Methoden für die Charakterisierung ihrer optischen

Eigenschaften. Die Designstrategien für doppelt-elementige Metamaterialien wur-

den anhand der Evaluierung der auf Elektronstrahllithographie basierenden Her-

stellungsmethode erarbeitet. In Rahmen dieser Arbeit wurde die Abhängigkeit der

optischen Eigenschaften von Metamaterialien von Herstellungsungenauigkeiten ex-

perimentell und mittels rigoroser Simulationen untersucht. Dabei wurden alle durch

den Herstellungsprozess bedingte Limitierungen berücksichtigt. Als Ergebnis wurde

ein Metamaterial im nahinfraroten Spektralbereich mit einer negativen Brechzahl

erfolgreich realisiert.

Die Möglichkeit zur weiteren Optimierung der optischen Eigenschaften der Meta-

materialien durch Symmetriebrechung der Geometrie der Metaatome, wurde ana-

lytisch anhand eines Multipol-Modells und experimentell erforscht. Es konnte

gezeigt werden, dass die Asymmetrie einen erheblichen Einfluss auf die magnetischen

Eigenschaften der Metaatome hat und die Steuerung der effektiven magnetischen

Permeabilität von Metamaterialien in weiten Bereichen erlaubt.

Für die vollständige und präzise Bestimmung der Brechzahl von Metamaterialien

im optischen Spektralbereich wurde eine experimentelle Methode entwickelt, welche

auf der interferometrischen Bestimmung der Transferfunktion eines optischen Meta-

materials beruht. Für diesen Zweck wurde ein Aufbau für Phasenmessungen in

Transmission und Reflexion im sichtbaren und nahinfraroten Spektralbereich ent-

wickelt.
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and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at

Optical Metamaterials,” Phys. Rev. Lett. 104, 253 902 (2010).

[151] C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the

classification of periodic metamaterials,” Phys. Rev. A 82, 053 811 (2010).

XIII



B. Acknowledgment

This work would have never been possible without several people supporting me

during the years of my work. I would like to thank

• Prof. Thomas Pertsch and Prof. Andreas Tünnermann for the opportunity to
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stuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamate-

rial with negative index at near-infrared wavelengths,” Opt. Lett. 34, 1678–1680

(2009).
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and T. Pertsch, “Optical properties of metamaterials based on asymmetric double-

wire structures,” Proc. SPIE 8070, 80 700P (2011).

• E. Pshenay-Severin, A. Chipouline, J. Petschulat, U. Hübner, F. Eilenberger,
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C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Analytical modelling of linear

and nonlinear properties of metamaterials based on multipole expansion,” Proc.

SPIE 7353, 73 530D (2009).

XVIII



Appendix D

• C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, J. Üpping, E.-B. Kley,
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