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1 Recap: Quantum Optics 
This first chapter is basically a recap of quantum 
optics, or, if you so like, the quantized version of 
Maxwell’s equations. We shall glance over it in 
the lecture very briefly but, of course, it contains 
some of the basic physical concepts that we are 
making use of in quantum communication. The 
reason is simple: just as electromagnetic waves 
are the go-to-solution for the transmission of 
classic information so are their non-classic coun-
terparts, namely photons, the go-to-solutions for 
the transmission of quantum information (which 
is a bold claim, since we have neither introduced 
the concept of photons nor of quantum infor-
mation here). The reason is simple, however: be-
ing charge neutral and bosonic photons do not 
interact easily with each other. This means, they 
retain their quantum states, even when travel-
ling over the vast, empty spaces of the universe but also when travelling through a lot of ubiquitous 
matter, such as glass or air. Moreover, we have learned to manipulate them with quite a lot of preci-
sion, so…photons it is. 

But before digressing, let’s get back to the recap of quantum electrodynamics. There is basically three 
ways on how you can deal with this chapter: 

1) You could be a good student and go through the chapters. If you have already taken a class in 
wave electrodynamics, you will find that the first subchapter is nothing really new to you. If 
you have taken a course in quantum optics chapters 2 and 3 will also be a mere repetition. This 
will help you a lot in understanding the deeper connection between modes, field operators, 
and photons and in will make you a better person in general. 

2) You could just ignore this chapter altogether and start directly on the next one. This is not a 
bad solution either, as this will introduce they laws by which photons abide as axioms, that 
need no further proofs but have been derived from experimental observation (and which re-
quire constant re-evaluation!). Which is just as well, because it’s the way it is. If anyone of the 
students that went through the first chapter show’s off as a superior student, always keep in 
mind that chapter 1 does exactly the same thing, it just introduced the axioms on the level of 
the fields and not the photons directly. Nevertheless: had you taken the time to go through 
chapter one, you would have a better understanding on the connection of quantum and clas-
sical light. 

3) Is the most practical approach. You stick with the following summary: 
a. Quantum Electrodynamics relies on exactly the same mathematical apparatus to in-

troduce exactly the same modes as classical electrodynamics (e.g. plane wave with 
wavevector 𝒌𝒌 and a polarization index 𝜆𝜆 if you are in vacuum), including the same dis-
persion relation and scalar products. 
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b. However, the expansion coefficients of any given mode 𝒖𝒖𝜆𝜆(𝒌𝒌) are no longer numbers 
𝑎𝑎𝜆𝜆(𝒌𝒌) and 𝑎𝑎𝜆𝜆

∗(𝒌𝒌) but operators 𝑎𝑎�𝜆𝜆(𝒌𝒌) and 𝑎𝑎�𝜆𝜆
†(𝒌𝒌), which commute according to the 

commutations relations: 
�𝑎𝑎�𝜆𝜆(𝒌𝒌),𝑎𝑎�𝜆𝜆′

† (𝒌𝒌′)� = 𝛿𝛿𝜆𝜆𝜆𝜆′𝛿𝛿(𝒌𝒌 − 𝒌𝒌′ )
�𝑎𝑎�𝜆𝜆

†(𝒌𝒌),𝑎𝑎�𝜆𝜆′
† (𝒌𝒌′)� = 0

�𝑎𝑎�𝜆𝜆(𝒌𝒌),𝑎𝑎�𝜆𝜆′
 (𝒌𝒌′)� = 0

(1) 

c. As a consequence, the state of any classical mode 𝒖𝒖𝜆𝜆(𝒌𝒌) can be described as a super-
position |𝜓𝜓𝜆𝜆(𝒌𝒌)⟩ = ∑ 𝛼𝛼𝜆𝜆(𝒌𝒌)|𝑛𝑛𝜆𝜆(𝒌𝒌)⟩∞

𝑛𝑛=1  of mode specific number states |𝑛𝑛𝜆𝜆(𝒌𝒌)⟩. If a 
mode is in a number state |𝑛𝑛𝜆𝜆(𝒌𝒌)⟩ then we say, the mode is populated by 𝑛𝑛 photons. 
The mode’s energy is then 𝐸𝐸𝜆𝜆(𝒌𝒌) = 𝑛𝑛ℏ𝜔𝜔(𝒌𝒌), where 𝜔𝜔(𝒌𝒌) is the mode’s frequency ac-
cording to the specific dispersion relation of the system. Note that we have ignored 
the zero point energy here, because it does not generally play a role in quantum com-
munication. The energy is measured with the help of the photon number operator 
𝑛𝑛�𝜆𝜆(𝒌𝒌) = 𝑎𝑎�𝜆𝜆

†(𝒌𝒌)𝑎𝑎�𝜆𝜆(𝒌𝒌)  by calculating its expectation value ⟨𝑛𝑛�𝜆𝜆(𝒌𝒌)⟩ =
⟨𝜓𝜓𝜆𝜆(𝒌𝒌)|𝑛𝑛�𝜆𝜆(𝒌𝒌)|𝜓𝜓𝜆𝜆(𝒌𝒌)⟩. 

d. The number of photons can be increased by the application of the creation operator 
𝑎𝑎�𝜆𝜆

†(𝒌𝒌), e.g. 𝑎𝑎�𝜆𝜆
†(𝒌𝒌)|𝑛𝑛𝜆𝜆(𝒌𝒌)⟩~|(𝑛𝑛 + 1)𝜆𝜆(𝒌𝒌)⟩ and it can be decreased by the destruction 

operator 𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝑛𝑛𝜆𝜆(𝒌𝒌)⟩~|(𝑛𝑛 − 1)𝜆𝜆(𝒌𝒌)⟩. The so-constructed ladder of photon number 
states begins at the quantum vacuum state |0⟩. 

e. A common light source, such as a laser, is in a so-called coherent state, e.g. a Poisson-
distributed superposition of number states. It’s energy is thus ill-defined but it’s be-
haviour, when subject to optical operations is just as we classical expect. 

f. Optical elements and the passage of time are described by the Heisenberg equation’s 
of motions, i.e. by unitary operators, or equivalently by their Hamiltonian operators. 
If the number of modes are not mixed (e.g. the action of a beam splitter on an 𝑛𝑛 = 1 
number state) then the unitary operators may wittle down to simple matrix equations, 
just as we know and expect them from classical optics. 

Each of the photon number modes in any spatial mode behaves according to the laws of quantum 
physics, as is outlined in the next chapter. The same is true for any superposition of modes, e.g. any 
change of basis. 

You are now free to roam this chapter or skip to chapter 2. 

1.1 Classical Modes and the Electromagnetic fields 
In this chapter we will reiterate the fundamentals of quantum-electrodynamics (QET), i.e. the gener-
alization Maxwell's Equations, which naturally lead to the concept of the modes and then to photons, 
which populate these individual modes. The notion of photons as quantum physical entities is at the 
centre of quantum optics in general and its properties are the fundaments upon which quantum com-
munication is built upon. 

This chapter is only a brief overview over the most central concepts of the quantization of the field. 
For a more detailed analysis, see e.g. the lecture by Frank Setzpfandt on the “introduction to quantum 
optics”. 

This process of quantization if often termed the “construction of the laws of QET”. This term is some-
what misleading; in reality, the process is really educated guesswork, which combines three trains of 
thought: 
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• compatibility: the classical electrodynamic equations (i.e. Maxwell’s Equations) must re-
tain their validity as an approximation to the new governing equations of QET, 

• construction: we follow the same approach, that links classical with quantum mechanics; 
namely we first cast Maxwell's Equations into a canonical form, including a classic Hamil-
tonian and canonical position and momenta. These are then treated as operators. These 
classical quantities are constructed in a way, which leads to certain exchange rules, termed 
"Poisson Brackets {}", which carry over to the operator regime as commutation equations. 
This process automatically ensures the compatibility requirement. 

• Validation: Following the same approach as has been successful for quantum mechanics 
does by no means guarantee that we end up with theory, which describes reality. It’s va-
lidity has to be proven in experiments (or more precisely, it must withstand any attempt 
at falsification!). Spoiler alert: so far all experiments have validated this approach. Even to 
the point that we (as a scientific community) had to alter our understanding of the very 
nature of reality itself. This will be treated in later chapter. 

1.1.1 Maxwell's Equation in Canonical Formulation 
Maxwell's Equations can be written as the evolution equation to the Lagrangian density: 

ℒ�ϕ, ϕ̇, 𝐀𝐀, 𝐀̇𝐀� =
ϵ0

2 𝐄𝐄2(𝐫𝐫,t) −
1
2μ𝐁𝐁2(𝐫𝐫,t) (2) 

where we have assumed free space propagation, i.e. 

𝒋𝒋 = 0      𝜌𝜌 = 0 (3) 

and we have written the Lagragian density in terms of the scalar potential 𝜙𝜙 and the vector potential 
𝑨𝑨. For the sake of simplicity, we adopt Coulomb (or radiation gauge)  

∇ ⋅ 𝑨𝑨 = 0   𝜙𝜙 = 0 (4) 

Then the relation between the potentials 𝑨𝑨 and 𝜙𝜙 and the field 𝑬𝑬 and 𝑩𝑩 take the simple form 

𝐄𝐄 =
−𝜕𝜕𝑨𝑨(𝒓𝒓,𝑡𝑡)

𝜕𝜕𝜕𝜕      𝑩𝑩 = ∇ ×  𝑨𝑨(𝐫𝐫,t) (5) 

Maxwell's Equations can be obtained from the Lagrangian density by application of the Euler-Lagrange-
Equations 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿ℒ
𝛿𝛿𝜙̇𝜙

−
𝛿𝛿ℒ
𝛿𝛿𝛿𝛿 = 0    

𝑑𝑑
𝑑𝑑𝑑𝑑

𝛿𝛿ℒ
𝛿𝛿𝐴̇𝐴𝑗𝑗

−
𝛿𝛿ℒ
𝛿𝛿𝐴𝐴𝑗𝑗

= 0 (6) 

where the derivates in front of the time derivates are defined as the canonical momenta Π𝜙𝜙 and 𝚷𝚷𝑨𝑨 of 
the fields 𝜙𝜙 and 𝑨𝑨 

Π𝜙𝜙 =
𝛿𝛿ℒ
𝛿𝛿𝜙̇𝜙

= 0      𝚷𝚷𝑨𝑨 =
𝛿𝛿ℒ
𝛿𝛿𝑨̇𝑨

= 𝜖𝜖0𝑨̇𝑨 (7) 

One interesting side note is, that, due to a smart choice in the gauge freedom we get Π𝜙𝜙 = 0 and 𝜙𝜙 =
0, this we basically only need to worry about 𝑨𝑨 and its momentum. This again has a physical interpre-
tation: in free space (and in fact in all non-magnetic material), we only need worry about either the 
electric field 𝐸𝐸 or the magnetic field 𝐵𝐵; the other one is connected by a simple transformation. 
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By this construction, the canonical coordinates and canonical momenta automatically fulfil the classical 
commutation relations, termed Poisson-Brackets: 

�𝐴𝐴𝑘𝑘(𝒓𝒓,𝑡𝑡), 𝐴𝐴𝑗𝑗(𝒓𝒓′,𝑡𝑡)� = 0
� Π𝑨𝑨

𝑘𝑘(𝒓𝒓,𝑡𝑡),Π𝑨𝑨
𝑗𝑗 (𝒓𝒓′,𝑡𝑡)� = 0

� 𝐴𝐴𝑘𝑘(𝒓𝒓,𝑡𝑡),Π𝑨𝑨
𝑗𝑗 (𝒓𝒓′,𝑡𝑡)� = Δ𝑘𝑘𝑘𝑘(𝐫𝐫 − 𝐫𝐫 ′ )

. (8) 

We can now construct the classical Hamiltonian Density by executing a Legendre transformation with 

respect to the dynamical variables 𝜕𝜕Φ
𝜕𝜕𝜕𝜕

 and𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

. We arrive at: 

ℋ = Π𝜙𝜙 𝜙̇𝜙 + 𝚷𝚷𝑨𝑨 𝑨̇𝑨 − ℒ
= 𝚷𝚷𝑨𝑨 𝑨̇𝑨 − ℒ

=
𝜖𝜖0

2 𝑨̇𝑨2 +
1

2𝜇𝜇0
(∇ × 𝐀𝐀)2

=
𝜖𝜖0

2 𝑬𝑬2 +
1

2𝜇𝜇 0
𝑩𝑩2

 (9) 

Which is (somewhat unsurprisingly) the energy density of the electromagnetic field, which we could 
have guessed right away. But, we would have not gotten the definition of the canonical momenta and 
positions from just guessing the Hamiltonian density. This is however an important ingredient in the 
quantization process, as they are crucial in the definition of observables to the system. 

1.1.2 Plane Waves as Classical Eigenmodes 
The resulting Maxwell-Equation can be reformulated as the wave equation 

∇2𝑨𝑨 −
1
𝑐𝑐2

𝜕𝜕2𝑨𝑨
𝜕𝜕𝑡𝑡 2 = 0       𝜖𝜖0𝜇𝜇0 = 𝑐𝑐−2 (10) 

Each solution to this equation (i.e. each EM-field) can then be written as a superposition of plane waves 
𝑢𝑢(𝒌𝒌) 

𝑨𝑨(𝒓𝒓,𝑡𝑡) = � � 𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦𝑑𝑑𝑘𝑘𝑧𝑧𝑎𝑎𝜆𝜆(𝒌𝒌)
1

�(2𝜋𝜋)32𝜔𝜔𝒌𝒌
𝝐𝝐𝜆𝜆(𝒌𝒌)𝑒𝑒𝑖𝑖(𝒌𝒌𝒌𝒌−𝜔𝜔𝒌𝒌 𝑡𝑡) + 𝑐𝑐. 𝑐𝑐

ℝ3𝜆𝜆

= � � 𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦𝑑𝑑𝑘𝑘𝑧𝑧𝑎𝑎𝜆𝜆(𝒌𝒌)𝝐𝝐𝜆𝜆(𝒌𝒌)𝑢𝑢(𝒌𝒌)
ℝ3𝜆𝜆

+ 𝑐𝑐. 𝑐𝑐

𝒖𝒖𝜆𝜆(𝒌𝒌) = 𝝐𝝐𝜆𝜆(𝒌𝒌)
𝑒𝑒𝑖𝑖(𝒌𝒌𝒌𝒌−𝜔𝜔𝒌𝒌 𝑡𝑡)

�(2𝜋𝜋)32𝜔𝜔𝒌𝒌
= 𝝐𝝐𝜆𝜆(𝒌𝒌)𝑢𝑢(𝒌𝒌)

(11) 

With the dispersion relation 

𝜔𝜔𝑘𝑘
2

𝑐𝑐2 = 𝑘𝑘𝑥𝑥
2 + 𝑘𝑘𝑦𝑦

2 + 𝑘𝑘𝑧𝑧
2      𝜔𝜔𝑘𝑘 = ±�𝑘𝑘𝑥𝑥

2 + 𝑘𝑘𝑦𝑦
2 + 𝑘𝑘𝑧𝑧

2 (12) 

and a polarization state 𝝐𝝐𝜆𝜆(𝒌𝒌) with |𝝐𝝐𝜆𝜆(𝒌𝒌)|2 = 1, which is constant over space for a given mode and 
orthogonal to 𝒌𝒌, such that 𝒌𝒌 ⋅ 𝝐𝝐𝜆𝜆(𝒌𝒌). Thus 𝝐𝝐𝜆𝜆(𝒌𝒌) spans a two-dimensional vector space with the basis 
vectors 𝝐𝝐1(𝒌𝒌) and 𝝐𝝐2(𝒌𝒌), which are mutually orthogonal 𝝐𝝐1(𝒌𝒌) ⋅ 𝝐𝝐2(𝒌𝒌). 

An important note here are the expansion coefficients 𝑎𝑎𝜆𝜆(𝒌𝒌) and 𝑎𝑎𝜆𝜆
∗(𝒌𝒌), which are a set of complex 

numbers, that give amplitude and phase of the electric field in each mode 𝒖𝒖𝜆𝜆  (𝒌𝒌) . Herein lies the most 
profound difference to quantum optics. 
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1.1.3 The Scalar Product 
To calculate the expansion coefficients 𝑎𝑎(𝒌𝒌) and 𝑎𝑎𝜆𝜆

∗(𝒌𝒌) from a given field distribution 𝑨𝑨(𝒓𝒓,𝑡𝑡) we re-
quire a scalar product. This has the form 

�𝝓𝝓(𝒓𝒓,𝑡𝑡), 𝝍𝝍(𝒓𝒓,𝑡𝑡)� = 𝑖𝑖 � 𝑑𝑑𝑑𝑑 �𝝓𝝓(𝒓𝒓,𝑡𝑡)∗ ⋅ 𝜕𝜕𝑡𝑡𝝍𝝍(𝒓𝒓,𝑡𝑡) − �𝜕𝜕𝑡𝑡𝝓𝝓(𝒓𝒓,𝑡𝑡)�∗
⋅ 𝝍𝝍(𝒓𝒓,𝑡𝑡)�

ℝ3

�𝝓𝝓(𝒓𝒓,𝑡𝑡; 𝜔𝜔1), 𝝍𝝍(𝒓𝒓,𝑡𝑡; 𝜔𝜔2)� =  (𝜔𝜔1 + 𝜔𝜔2) �  𝑑𝑑𝑑𝑑𝝓𝝓(𝒓𝒓)∗𝝍𝝍(𝒓𝒓)
ℝ3

(13) 

Where the second lines holds only for time-harmonic fields such that 𝝓𝝓(𝒓𝒓,𝑡𝑡;𝜔𝜔1) = 𝝓𝝓(𝒓𝒓)exp (−𝑖𝑖𝜔𝜔1𝑡𝑡) 
and 𝝍𝝍(𝒓𝒓,𝑡𝑡; 𝜔𝜔1) = 𝝍𝝍(𝒓𝒓)exp (−𝑖𝑖𝜔𝜔2𝑡𝑡). Also note that by virtue of their nature as a basis set the set of 
planes waves are mutually orthogonal: 

�𝒖𝒖𝜆𝜆  (𝒌𝒌),𝒖𝒖𝜆𝜆′ (𝒌𝒌′)� = 𝛿𝛿𝜆𝜆𝜆𝜆′ 𝛿𝛿3(𝒌𝒌 − 𝒌𝒌′ ). (14) 

Now we can calculate the expansion coefficients of the field 𝑨𝑨(𝒓𝒓,𝑡𝑡) (or any other function) according 
to: 

 𝑎𝑎𝜆𝜆(𝒌𝒌) = �𝒖𝒖𝜆𝜆(𝒌𝒌),𝑨𝑨(𝒓𝒓,𝑡𝑡)�
 𝑎𝑎𝜆𝜆

∗(𝒌𝒌) = −�𝒖𝒖𝜆𝜆
∗(𝒌𝒌),𝑨𝑨(𝒓𝒓, 𝑡𝑡)�

(15) 

Note that planes waves are modes of the unstructured media and free space. In a structured medium, 
e.g. in a photonic crystal or a waveguide, the wave equation takes a different form and thus we get a 
different dispersion relation, a different set of eigenmodes and a different scalar product. The overall 
role of the modes and the nature of the scalar product1 nevertheless remains totally unchanged. The 
same is true for the quantization, as to basically “stick a hat on the expansion coefficients”. Which we 
will get to later. 

The dispersion relation states that there is an infinite number of plane waves  𝒖𝒖𝜆𝜆
(0)(𝒌𝒌), which belong 

to the same frequency 𝜔𝜔(𝒌𝒌) = 𝜔𝜔0. Thus any linear combination of such modes 𝒖𝒖𝜆𝜆
(0)(𝒌𝒌) is also a mode 

𝒗𝒗𝜆𝜆
(0)(𝒌𝒌) of the system. In fact, all such eigenmodes 𝒖𝒖𝜆𝜆

(0)(𝒌𝒌) form a vector space in which any number 
of bases may be constructed from superpositions of plane waves. Some examples are cylindrical 
waves, Gauss-Laguerre-Waves, Legende-Waves, Bessel- and Matthieu-waves, etc. 

1.1.4 Non-Plane-Wave Fields 
In this chapter we will see how the decomposition into planes waves can then help us to decompose 
the field into other basis set of modes. These are useful in many theoretical and experimental scenar-
ios. From an experimental point of view, they may match the symmetries of the system (e.g. circular 
optics), the nature of the available light sources, and the non-infinite size of the setup. From a theo-
retical point of view, they are oftentimes, nice as they have a more benign mathematical properties 
than plane waves. They are not infinitely extended in space and time and thus more therefore easier 
to make calculations with. 

Note that for notational brevity we will ignore the vectorial nature of plane waves, these can be easily 
integrated, if required. 

Any non-plane wave basis set 𝒗𝒗𝜇𝜇 (𝜿𝜿,𝒓𝒓, 𝑡𝑡) can be constructed from a superposition of planes wave 
modes 𝑢𝑢(𝒌𝒌). 

 
1 An in-depth treatment can be found in Saleh Teich “Fundamentals of Photonics” and Synder/Love “Optical 
Waveguide Theory” 
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𝒗𝒗𝜇𝜇 (𝜿𝜿;𝒓𝒓,𝑡𝑡) = � 𝑑𝑑𝒌𝒌 𝑉𝑉𝜇𝜇
𝜆𝜆(𝒌𝒌,𝜿𝜿)𝒖𝒖𝜆𝜆(𝒌𝒌;𝒓𝒓, 𝑡𝑡) (16) 

Note that 𝜿𝜿 is now any set of indices, which enumerates the new basis set and 𝑉𝑉(𝒌𝒌,𝜿𝜿) is a unitary 
matrix, i.e. 𝑉𝑉∗ = 𝑉𝑉−1 . The unitarity of 𝑉𝑉 dictates, that the orthogonality of the plane wave modes car-

ries over to the orthogonality of the new modes, i.e. �𝒗𝒗𝝁𝝁(𝜿𝜿), 𝒗𝒗𝝁𝝁′ (𝜿𝜿′)� = 𝛿𝛿𝜇𝜇𝜇𝜇′ 𝛿𝛿 3(𝜿𝜿 − 𝜿𝜿′). 

Using these definitions the field under description will then have the form: 

𝑨𝑨(𝒓𝒓,𝑡𝑡) = � � 𝑑𝑑3𝜅𝜅 𝑏𝑏(𝜿𝜿)𝒗𝒗𝜇𝜇(𝜿𝜿) + 𝑐𝑐. 𝑐𝑐
ℝ3𝜇𝜇

 

And the modal expansion coefficients for the basis set 𝑣𝑣(𝒌𝒌) may be derived from the field as 

 𝑏𝑏𝜇𝜇(𝜿𝜿) = �𝒗𝒗𝜇𝜇 (𝒌𝒌),𝑨𝑨(𝒓𝒓,𝑡𝑡)�

 𝑏𝑏𝜇𝜇
∗(𝜿𝜿) = −�𝒗𝒗𝜇𝜇

∗ (𝒌𝒌),𝑨𝑨(𝒓𝒓,𝑡𝑡)� .
(17) 

One also can often approximate the light to belong exclusively to a certain range of harmonics with 
𝜔𝜔 ∈ [𝜔𝜔0 − Δ𝜔𝜔, 𝜔𝜔0 + Δ𝜔𝜔]   and 𝜔𝜔0 ≫ Δ𝜔𝜔. If modal dispersion is also neglected. i.e. if the spatial modes 
essentially look the same for all of those 𝜔𝜔 we end up in the regime of the a slowly-varying envelope 
(SVEA). This makes the introduction of puled beams much simpler. 

1.1.5 Example 1: Gaussian Modes 
For the introduction of Gaussian modes, we will also assume paraxiality, i.e. the beam diameter is 
much larger than the wavelength of light. We will also assume that its propagation direction is centred 
along the z-axis. Thus 

𝑘𝑘𝑧𝑧 ≈ 𝑘𝑘 �1 −
𝑘𝑘𝑥𝑥

2 + 𝑘𝑘𝑦𝑦
2

𝑘𝑘2 �            𝑘𝑘(𝜔𝜔) =
𝜔𝜔
𝑐𝑐           𝜔𝜔0 ≫ Δ𝜔𝜔. (18) 

We also assume a slowly varying envelope (SVEA). We shall also assume that all modes are only excited 
with one type of polarization and thus ignore the vectorial nature of the fields and the 𝜇𝜇 subscripts. 
Under these assumptions, the Gaussian field 𝐴𝐴(𝑟𝑟,𝑡𝑡) takes the form: 

𝐴𝐴(𝑟𝑟, 𝑡𝑡) = � 𝑑𝑑𝑑𝑑�𝑏𝑏(𝜔𝜔)𝑣𝑣Ga(𝜔𝜔;𝒓𝒓) + 𝑐𝑐. 𝑐𝑐�

𝑣𝑣 Ga(𝜔𝜔;𝒓𝒓, 𝑡𝑡) =
4𝜋𝜋

𝑠𝑠2(𝑧𝑧)exp�𝑖𝑖𝑖𝑖(𝜔𝜔)𝑧𝑧 −
𝑥𝑥2 + 𝑦𝑦2

𝑠𝑠2(𝑧𝑧) �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠2(𝑧𝑧) = 𝑤𝑤0
2 +

2𝑖𝑖𝑖𝑖
𝑘𝑘

(19) 
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Fig. 1: Sketch of the diffraction properties of a Gaussian beam. 

A Gaussian mode is defined for any single frequency 𝜔𝜔 by one parameter, its waist diameter 𝑤𝑤0  and 
there is a set of fancy relations 

𝑧𝑧𝑅𝑅 =
𝜋𝜋𝑤𝑤0

2

𝜆𝜆        𝑤𝑤(𝑧𝑧) = 𝑤𝑤0�1 + �
𝑧𝑧
𝑧𝑧𝑟𝑟

�
2

     𝑁𝑁𝑁𝑁 =
𝑤𝑤0

𝑧𝑧𝑅𝑅
=

𝜆𝜆
𝜋𝜋𝑤𝑤0

, (20) 

which link this waist diameter to the way the beam diverges. 

One can further show, that these transverse modal fields are minimum uncertainty localized trans-
verse modes, i.e. they are the modes which for a given diameter have the least possible divergence 

Δ𝑘𝑘Δ𝑥𝑥 =
1

4𝜋𝜋
� 𝑑𝑑𝒌𝒌|𝑓𝑓(𝒌𝒌)|2 → 𝑤𝑤0𝑁𝑁𝑁𝑁 =

𝜆𝜆
𝜋𝜋 . (21) 

They are therefore well suited for long-range communication, as they require the smallest telescopes. 
Moreover, most lasers and optical fibers operate on modes, which are typically very close to Gaussian 
modes. 

Note that the Gaussian modes, as presented here, is not a complete set of Eigenmodes. A possible 
completion will be given in the following example. 

1.1.6 Example 2: Gauss-Laguerre Modes 
We can extend the Gaussian Modes onto a complete set of Eigenmodes with rotational symmetry, 
allowing them to describe any kind of transversal field distribution. We here focus on Gauss-Laguere-
Modes, because they are experimentally most relevant as rationally symmetric modes and carriers of 
orbital angular momentum. We introduce 

𝑥𝑥 = 𝑟𝑟 cos 𝜑𝜑      𝑦𝑦 = 𝑟𝑟 sin 𝜑𝜑     𝜎𝜎 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖. (22) 

The field 𝐴𝐴(𝑟𝑟,𝑡𝑡) can be composed from the Gauss-Laguerre with the relation 

𝐴𝐴(𝑟𝑟, 𝑡𝑡) = � � � 𝑑𝑑𝑑𝑑 𝑏𝑏𝑙𝑙𝑙𝑙(𝒌𝒌)
∞

𝑚𝑚=∞

∞ 

𝑙𝑙=0

𝑣𝑣𝑙𝑙𝑙𝑙
LG (𝝎𝝎;𝒓𝒓,𝑡𝑡) + 𝑐𝑐. 𝑐𝑐

𝑣𝑣𝑙𝑙𝑙𝑙
LG (𝜔𝜔;𝒓𝒓, 𝑡𝑡) =

4𝜋𝜋(−1)𝑙𝑙+𝑚𝑚𝑙𝑙!
𝑠𝑠2(𝑙𝑙+𝑚𝑚+1)(𝑧𝑧) 𝑟𝑟 |𝑚𝑚|𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑙𝑙

𝑚𝑚 �
𝑟𝑟 2

𝑠𝑠2(𝑧𝑧)� 𝑒𝑒
𝑖𝑖𝑖𝑖(𝜔𝜔)𝑧𝑧− 𝑟𝑟2

𝑠𝑠2 (𝑧𝑧) 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐. 𝑐𝑐

(23) 

Note that 𝑠𝑠(𝑧𝑧) was defined above. The 𝜑𝜑-dependency is in the phase term ~ exp(~𝑖𝑖𝑖𝑖𝜑𝜑). Thus one 
can easily see that these modes are eigenfunctions to the operator, which measures the z-coordinate 

of the angular orbital momentum 𝐿𝐿𝑧𝑧� = 𝑥𝑥� 𝑝𝑝𝑦𝑦� − 𝑦𝑦� 𝑝𝑝𝑥𝑥� = ℏ
𝑖𝑖

𝜕𝜕
𝜕𝜕𝜕𝜕

 with the Eigenvalue ℏ𝑚𝑚: 
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𝐿𝐿�𝑧𝑧𝑣𝑣𝑙𝑙𝑙𝑙
LG (𝜔𝜔;𝒓𝒓,𝑡𝑡) = 𝑚𝑚ℏ𝑣𝑣𝑙𝑙𝑙𝑙

LG(𝜔𝜔;𝒓𝒓, 𝑡𝑡). (24) 

These beams thus carry a quantized and measurable orbital angular momentum. As this is a discrete 
quantity it can be used to conveniently transport information. Also note that this information transfer 
is quite robust: the angular momentum is a compatible measurable to both the direction 𝒌𝒌 of the 
beam, its frequency 𝜔𝜔 as well as its overall impulse 𝑙𝑙. Propagation through air typically induces pertur-
bations along 𝒌𝒌 and 𝑙𝑙 but very little on 𝑚𝑚. Information encoded in these modes is thus also robust. 

 
Fig. 2: Image of Gauss-Laguerre-Modes (in our notation l=OAM, n=radial Number) 

1.1.7 Temporally localized wave packets 
In the last chapters we have introduced two particular sets of non-plane wave modes and have taken 
this opportunity to briefly introduce the SVEA-approximation, which allows us to describe pulsed, i.e. 
temporally varying waves. In fact, it is often the case, that the spatial distribution of light is fixed to a 
certain number of well-known modes, whereas the temporal structure is where “the physics is hap-
ping”. For example, in or after a single mode fiber a laser pulse will always propagate in the mode 
dictated by the fiber geometry. As another example we can think of an atom or quantum dot emitting 
light: the light will always be fixed to a certain radiation mode, most likely a dipole mode.  

All of these wavepackets do have a typical temporal structure, some common ones are noted ere: 

Type Typ. Emitter Temporal Structure 
Lorentzian Atom / Quantum Dot 

𝑏𝑏(𝜔𝜔) =
1

√𝜋𝜋
√𝛾𝛾

𝛾𝛾 + 𝑖𝑖(𝜔𝜔𝒌𝒌 − 𝜔𝜔0)  

Gaussian Laser Pulse 
𝑏𝑏(𝜔𝜔) =

1

√2𝜋𝜋𝜎𝜎24 exp�−
(𝜔𝜔𝒌𝒌 − 𝜔𝜔0)2

4𝜎𝜎2 � 

Rect. Time Bin Encoder 
𝑏𝑏(𝜔𝜔) =

1
√Δω

sinc �
𝜔𝜔𝒌𝒌 − 𝜔𝜔0

Δ𝜔𝜔
�

1/2
 

These wavepackets can also be used for time-bin encoding in Quantum Communication. 

1.1.8 Polarization modes 
So far, we have pretty much ignored the polarization aspects of the modes. We shall now have a closer 
look at these. As with classical EM-theory these can be represented with Jones Vectors 
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𝝐𝝐(𝒌𝒌) = �
𝜖𝜖1(𝒌𝒌)
𝜖𝜖2(𝒌𝒌)

0
� (25) 

Where we have assumed, without loss of generality, that 𝒌𝒌 = 𝑘𝑘𝑧𝑧𝒆𝒆𝒛𝒛. Then we can find a few single 
basis-vector systems, in which we can describe the polarization state of light: 

linear HV:    𝜖𝜖 = ℎ �1
0

� + 𝑣𝑣 �0
1

� = ℎ|ℎ⟩ + 𝑣𝑣|𝑣𝑣⟩

linear diagonal:   𝜖𝜖 = 𝑢𝑢 �1 √2⁄
1 √2⁄

� + 𝑑𝑑 � 1 √2⁄
− 1 √2⁄

� = 𝑢𝑢|𝑢𝑢⟩ + 𝑑𝑑|𝑑𝑑⟩

linear:    𝜖𝜖 =  𝑙𝑙1�cos 𝜑𝜑
sin 𝜑𝜑� + 𝑙𝑙2 �−sin 𝜑𝜑

cos 𝜑𝜑 � = 𝑙𝑙1�𝑙𝑙1𝜑𝜑 � + 𝑙𝑙2�𝑙𝑙2𝜑𝜑 �

circular:    𝜖𝜖 = 𝑙𝑙
1

√2
�1
𝑖𝑖
� + 𝑟𝑟

1
√2

� 1
−𝑖𝑖

� = 𝑙𝑙|𝑙𝑙⟩ + 𝑟𝑟|𝑟𝑟⟩

(26) 

 
equally well. We are once getting ahead of ourselves and we are adapting braket-notation instead of 
vectors – this will come in handy later on. In many of the classic implementations of QKD these basis 
sets are used heavily and thus they are important. 

1.1.9 Summary 
• Maxwell’ equations can be cast into a classical Hamiltonian form, where the energy density 

is the Hamiltonian and both the vector field and its time derivative are conjugate coordi-
nates and momenta will fulfil classical versions of the commutation relations. 

• Plane waves are the classical eigenmodes of the electromagnetic field in free space. They 
are complete, meaning that every field can be constructed from and decomposed into a 
superposition of plane waves. Plane waves are thus a complete basis set; they are orthog-
onal with respect to a scalar product. There is a dispersion relation, which links the plane 
wave’s spatial structure to their temporal frequency. 

• The expansion coefficients of the plane wave modes are complex numbers of unit 
Vs1/2m2 (in more general terms: square root of generalized2 energy per unit frequency), 
whereas the field has a unit of Vs/m (in more general terms: square root of generalized 
energy per unit frequency and unit wavenumber volume). The modes functions them-
selves are of unit s1/2. 

• There is an infinite set of non-plane wave modes, into which any field can be decomposed, 
as well. The properties of the scalar products does not change with the specific choice of 
the basis set. Basis functions of different basis sets are related by a unitaritan transfor-
mation. 

• The non-plane-wave basis sets can be used to introduce basis sets, in which typical pro-
cesses can be described particularly easy. These may capture particular spatial (e.g. Gauss-
ian), polarization (e.g. linear or circular pol.) and temporal properties (Gaussian, Lo-
rentzian) of light. 

1.2 The Quantization of the Fields and Modes 
In this chapter we will carry out the second quantization and see what kind of effects it has on the 
eigenmodes of the system. We will see that the main difference is the replacement of the complex 

 
2 Generalized means that a proper energy density is achieved by multiplication with 𝜀𝜀0 and division by a time-
squared. 
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expansion coefficients with operator-valued quantities and that these operators each and by them-
selves behave exactly like a quantum harmonic oscillator. We will then see, how this finding gives rise 
to the concepts of photons, i.e. quantized excitations of the modes and how the excitations states of 
these modes are actually related to observable states of light. 

1.2.1 Field Quantization in Space 
We quantize the electromagnetic field by adding a "hat" to the vectorial fields and their momenta. In 
other words: we promote them from scalar (or vectorial) fields to operator fields. As their classical 
counterparts obey Poisson-Bracket relations, we postulate that these operator fields obey certain 
commutation relations: 

�𝐀𝐀�j(𝐫𝐫,t), 𝐀𝐀�k(𝐫𝐫′,t)� = 0
�𝚷𝚷�𝐀𝐀

j (𝐫𝐫,t), 𝚷𝚷�𝐀𝐀
k(𝐫𝐫′,t)� = 0.

(27) 

These relations have a physical meaning beyond a pure postulate of mathematics. They state that at a 
certain fixed point in time 𝑡𝑡 one can measure the state of the quantum field 𝑨𝑨�  at any two different 
points in space 𝒓𝒓 and 𝒓𝒓′, without mutual influence. The same is true for the field’s momentum 𝚷𝚷� . In 
terms of physical interpretations this means that Physics allows one to measure the instantaneous 𝑬𝑬-
field in all of space. The same is true for the 𝑩𝑩-field. 

However, nothing is stated here about what exactly one can learn at each point in space, i.e. if one can 
measure phase and amplitude at the certain point without mutual influence (which one cannot) and 
nothing is also stated about if one can measure 𝑬𝑬- and 𝑩𝑩-field at the same time. These questions are 
answered by the mixed commutation relation (also carried over from the classical Poisson-Brackets): 

�𝐀𝐀�i(𝐫𝐫, t),𝚷𝚷�𝐀𝐀
j (𝐫𝐫′,t)� = iℏΔij(𝐫𝐫 − 𝐫𝐫 ′ )

𝐀𝐀� i = −𝐀𝐀�i

Δij(𝐫𝐫) = �
d3k

(2π)3 ei𝐤𝐤𝐤𝐤(δij −
kikj

k2 )

(28) 

Where the second equations comes into play, due to the relativistic nature of the fields and the third 
term is basically an ordinary 𝛿𝛿-function, which is corrected for the divergence-free nature of the EM-
field (i.e. that we have only two-polarizations for three spatial degrees of freedom). 

This means that we cannot measure the same components of the 𝑨𝑨�  -field and its momentum 𝚷𝚷�  inde-
pendently at the same point in space and time. If you measure both, its result will depend on the order 
of the measurement. This carries over to the 𝑬𝑬-field and 𝑩𝑩-field being mutually dependent. Again, this 
is not a mere postulate but can be verified experimentally. 

Also note that the commutator relations are scaled differently from their classical counterpart in that 
they have an ℏ. This also means that the units of the classical field 𝑨𝑨 and operator field 𝐀𝐀� are not quite 
the same anymore, they are no longer square roots of energy density but of action density. 

1.2.2 Introduction of Quantum Plane Waves Modes 
We can, of course decompose each quantum field into quantum plane waves, because the wave equa-
tion still holds. We will later see that due to the construction of the quantum fields, these quantum 
plane waves are eigenstates of the Hamiltonian-Operator of the system and thus remain shape invar-
iant (expect for a phase term) under the evolution of time. Note that it is convenient to integrate the 
change of units into the definition of the plane wave decomposition, so this now changes to. 
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𝑨𝑨�(𝒓𝒓,𝑡𝑡) = �
ℏ
𝜖𝜖0

� � 𝑑𝑑𝒌𝒌
𝜆𝜆

{𝑎𝑎�𝜆𝜆(𝒌𝒌)𝒖𝒖𝜆𝜆(𝒌𝒌;𝑟𝑟, 𝑡𝑡) + 𝑐𝑐. 𝑐𝑐. } (29) 

Neither the shape of the eigenmodes 𝒖𝒖𝜆𝜆(𝒌𝒌;𝑟𝑟, 𝑡𝑡), nor their dispersion relation, nor the nature and re-
sult of their scalar product has changed in the slightest way. More specifically this means we can carry 
over from classical wave physics any wave property of the mode. 

As we will later mostly just look into plane waves, it now makes sense to derive commutation relations 
for their operators. These can be found by plugging in the last equation into the commutations rela-
tions above. The calculation is tedious but straightforward. They read as: 

�𝑎𝑎�𝜆𝜆(𝒌𝒌),𝑎𝑎�𝜆𝜆′
† (𝒌𝒌′)� = 𝛿𝛿𝜆𝜆𝜆𝜆′𝛿𝛿(𝒌𝒌 − 𝒌𝒌′ )

�𝑎𝑎�𝜆𝜆
†(𝒌𝒌),𝑎𝑎�𝜆𝜆′

† (𝒌𝒌′)� = 0
�𝑎𝑎�𝜆𝜆(𝒌𝒌),𝑎𝑎�𝜆𝜆′

 (𝒌𝒌′)� = 0

(30) 

Which means that the state of any plane wave can be determined independently from the state of any 
other plane wave, expect for the state of a plane wave and its own conjugate. To move ahead some-
what: you cannot determine the state of a mode and its phase, or in other words the electric and the 
magnetic field of one mode (think about measuring currents and voltages in Electronics, where both 
measurements necessarily influence each other). From a mathematical point of view this means that 
𝑎𝑎�𝜆𝜆(𝒌𝒌) and 𝑎𝑎�𝜆𝜆

† (𝒌𝒌) take the role of canonical conjugate variable and thus mathematically play the role 
of conjugate positions 𝑞𝑞� 𝜆𝜆(𝒌𝒌) and momenta 𝑝̂𝑝𝜆𝜆(𝒌𝒌). 

Using the modal scalar product (𝑓𝑓, 𝑔𝑔) we can invert the equation between 𝑨𝑨�  and 𝑎𝑎�𝜆𝜆(𝒌𝒌) , namely:  

𝑎𝑎�𝜆𝜆(𝒌𝒌) = �
𝜖𝜖0

ℏ �𝒖𝒖𝜆𝜆(𝒌𝒌;𝒓𝒓, 𝑡𝑡),𝑨𝑨�(𝒓𝒓, 𝑡𝑡)� (31)  

This equation gives us a recipe on how we can decompose any field into plane wave modes. Note that 
this is the exact same relation as the classical counterpart expect for a different scaling and the fact 
that the field itself is an operator-valued function. 

As the nature of the scalar product has not changed, there is also no change in the introduction of non-
plane-wave modes, i.e. the three equations above hold for 𝑏𝑏�  𝜇𝜇(𝜿𝜿), which are the quantum states of 
any arbitrary different set of modes 𝒗𝒗𝜇𝜇 (𝜿𝜿, 𝒓𝒓,𝑡𝑡), related to the plane wave modes 𝒖𝒖𝜆𝜆(𝒌𝒌;𝒓𝒓, 𝑡𝑡) via a uni-
tarian transformation matrix 𝑉𝑉𝜇𝜇

𝜆𝜆(𝒌𝒌,𝜿𝜿). 

1.2.3 The Quantum Eigenmode Hamiltonian 
Now that we have introduced the quantum modal operators 𝑎𝑎�𝜆𝜆(𝒌𝒌), we can also derive the structure 
of the Hamiltonian operator ℋ�  in terms of the modal operators.  This is achieved by the replacement 
of the expressions for 𝑨𝑨 with 𝑨𝑨�  in the definition of the Hamilton-Operator in chapter 1.1.1 and by the 
subsequent expansion of 𝑨𝑨�  into quantum plane wave modes as defined in chapter 1.2.2. The ensuing 
differential operator act only on the structure of the modes and after some tedious albeit straightfor-
ward calculation we can show that the QED analogue of the Hamilton-Operator is: 

ℋ� = � � 𝑑𝑑𝑑𝑑
ℏ𝜔𝜔(𝒌𝒌)

2 �𝑎𝑎�𝜆𝜆
†(𝒌𝒌)𝑎𝑎�𝜆𝜆(𝒌𝒌)+ 𝑎𝑎�𝜆𝜆(𝒌𝒌)𝑎𝑎�𝜆𝜆

†(𝒌𝒌)�
𝜆𝜆

= � � 𝑑𝑑𝑑𝑑 ℋ�𝜆𝜆(𝒌𝒌)
𝜆𝜆

(32) 
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This result in and by itself if quite noteworthy. The Hamiltonian of the quantized fields is nothing but 
the sum of individual Hamiltonian’s contributed from each mode. The individual Hamiltonian’s for each 
mode are formally equivalent to harmonic oscillator Hamiltonian’s, with the eigenfrequency identical 
to the frequency of the related mode. 

The Hamiltonian has the following commutation relations with the modal operators: 

�ℋ� ,𝑎𝑎�𝜆𝜆(𝒌𝒌)� = −ℏ𝜔𝜔𝑎𝑎�𝜆𝜆(𝒌𝒌)
�ℋ� , 𝑎𝑎�𝜆𝜆

†(𝒌𝒌)� = ℏ𝜔𝜔𝑎𝑎�𝜆𝜆
†(𝒌𝒌)

(33) 

This means, that you cannot measure the state of a single mode, without interfering with the energy 
of this state and vice versa. Moreover, you cannot measure the energy of the total radiation field, 
without messing with all the modes. 

At this point we have not yet discussed the role of the Hamilton-Operator. Some of its aspects will 
(hopefully) become clearer in later chapter of this script but one aspect can be instantly carried over 
from classical mechanics. The Hamiltonian ℋ�  completely determines the equations of motion of any 
system (in the Heisenberg picture) it describes, if the canonical coordinates and momenta a known 
(which are 𝑎𝑎�𝜆𝜆(𝒌𝒌) and 𝑎𝑎�𝜆𝜆

†(𝒌𝒌), see above). The system in question here is the state of the 𝑨𝑨�   field in free 
space and the way it evolves.  

In classical electrodynamics the equations of motion are derived, by application of the Possion-brack-
ets. In quantum electrodynamics we have to use the Commutator with a −𝑖𝑖/ℏ scaling to get the equa-
tions of motions in the Heisenberg-picture. A detailed derivation and some more insights into the man-
ifold consequences of which are discussed in chapters 1.3 and later. Here we shall just use this equation 
to derive the equations of motion for the quantum modal operators: 

𝜕𝜕𝑎𝑎�𝜆𝜆(𝒌𝒌)
𝜕𝜕𝜕𝜕 = −

𝑖𝑖
ℏ

�𝑎𝑎�𝜆𝜆(𝒌𝒌),ℋ� �

=
𝑖𝑖
ℏ ℏ𝜔𝜔𝑎𝑎�𝜆𝜆(𝒌𝒌)

= 𝑖𝑖𝜔𝜔(𝒌𝒌)𝑎𝑎�𝜆𝜆(𝒌𝒌)
𝑎𝑎�𝜆𝜆(𝒌𝒌;𝑡𝑡) = 𝑎𝑎�𝜆𝜆(𝒌𝒌;𝑡𝑡 = 0) exp(𝑖𝑖 𝜔𝜔(𝒌𝒌)𝑡𝑡)

(34) 

Which is the expected result: the state of any mode evolves with an exp(𝑖𝑖 𝜔𝜔) phase term, just as we 
are used to in classical electrodynamics. In other words: the quantum modes interact with free space 
by the acquisition of a phase, which is proportional to the mode’s frequency and the interaction dura-
tion. 

1.2.4 Photons as Eigenstates of the Quantum Hamiltonian 
So we have replaced the expansion coefficient with modal operators but have not yet made much 
progress in the understanding of its meaning or behaviour. As an operator is a highly abstract concept, 
it is always helpful to investigate its eigenstates and eigenvalues. Let's thus assume that we have found 
such an eigenstate |𝜓𝜓𝑛𝑛⟩ for the entire Hamiltonian: 

ℋ� |𝜓𝜓𝑛𝑛⟩ = 𝐸𝐸𝑛𝑛|𝜓𝜓𝑛𝑛⟩ (35) 

Now we can take this eigenstate of the Hamitonian and let the modal expansion operators 𝑎𝑎�𝜆𝜆(𝒌𝒌) and 
𝑎𝑎�𝜆𝜆

†(𝒌𝒌) act on them. Using the commutation equations from the last chapter we find: 
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ℋ� 𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩ = 𝑎𝑎�𝜆𝜆(𝒌𝒌)ℋ� |𝜓𝜓𝑛𝑛⟩ − ℏ𝜔𝜔𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩
= (𝐸𝐸𝑛𝑛 − ℏ𝜔𝜔)𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩

ℋ� 𝑎𝑎�𝜆𝜆
†(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩ = (𝐸𝐸𝑛𝑛 + ℏ𝜔𝜔)𝑎𝑎�𝜆𝜆

†(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩
(36) 

This means that as 𝑎𝑎�𝜆𝜆(𝒌𝒌) acts on the Hamiltonian’s eigenstate |𝜓𝜓𝑛𝑛⟩ it produces a new state 𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝜓𝜓𝑛𝑛⟩. 
This new state is still an eigenstate to the Hamilton-operator, albeit with a by ℏ𝜔𝜔 reduced eigenvalue 
(i.e. energy). The same is true for 𝑎𝑎�†

𝜆𝜆(𝒌𝒌) just that it increases the eigenvalue (i.e. energy). The same 
is, of course, true for consecutive applications 𝑎𝑎�𝜆𝜆(𝒌𝒌) or applications of 𝑎𝑎�𝜆𝜆(𝒌𝒌) and 𝑎𝑎�𝜆𝜆′ (𝒌𝒌′). We can thus  
use the modal expansion operators to generate entire arrays of eigenstates of the Hamiltonian if a 
single eigenstate is known. 

Without loss of generality we can assume that the Eigenvalues of  ℋ�  must be bound from below (it's 
an energy after all and negative energy is kind of hard to come by!). Thus, there should be a ground 
state |𝜓𝜓0⟩ for which 

𝑎𝑎�𝜆𝜆(𝒌𝒌)|𝜓𝜓0⟩ = 0     ∀𝜆𝜆, 𝒌𝒌 (37) 

This is called the quantum-vacuum state and is will be denoted as |0⟩. However, if one calculates its 
energy one gets: 

ℋ� |0⟩ = �
∫ 𝑑𝑑𝑑𝑑 ℏ𝜔𝜔(𝒌𝒌)

2 �𝑎𝑎�𝜆𝜆
†(𝒌𝒌)𝑎𝑎�𝜆𝜆(𝒌𝒌) + 𝑎𝑎�𝜆𝜆(𝒌𝒌)𝑎𝑎�𝜆𝜆

†(𝒌𝒌)�
𝜆𝜆

|0⟩

= �� 𝑑𝑑𝑑𝑑ℏ𝜔𝜔(𝒌𝒌)�|0⟩ = ℰ|0⟩
(38) 

This term is the quantum vacuum energy ℰ. It diverges and must be removed for all practical calcula-
tions of the energy. It's however not entirely unphysical. It leads e.g. to the Lamb-Shift, the Casimir-
Force, and the Quantum-Unruh-Effect (dynamical Casimir Effect). For many cases, when we only in-
vestigate effects, which occur in a finite set of modes ℰ is finite anyway and can simply be ignored. 

As 𝑎𝑎�†
𝜆𝜆(𝒌𝒌) and 𝑎𝑎� 𝜆𝜆(𝒌𝒌) can be used to move us up and down the ladder of Fock-States, we thus call 

them ladder-operators or creation and annihilation operators for the mode denoted by the index 𝜆𝜆 
and 𝒌𝒌. 

Using the modal expansion operators, acting from the universal ground state |0⟩ we can now introduce 
a particular array of eigenstates, denoted the (plane-wave) Fock-States �𝑛𝑛𝒌𝒌,𝜆𝜆� for the mode denoted 
by 𝒌𝒌 and 𝜆𝜆 by applying  𝑎𝑎�†

𝜆𝜆(𝒌𝒌)  𝑛𝑛 times to |0⟩, such that 

�𝑛𝑛𝒌𝒌,𝜆𝜆�~��  𝑎𝑎�𝜆𝜆
†(𝒌𝒌)

𝑛𝑛

𝑚𝑚=1

� |0⟩ (39) 

 

These then have the relative energy: 

𝐸𝐸𝑛𝑛,𝜆𝜆(𝒌𝒌) = ℏ𝜔𝜔(𝒌𝒌)𝑛𝑛 (40) 

Please note the proportionality sign in the above equations. The fact that one state fulfils an eigenvalue 
equation is not yet sufficient for it be a basis vector. It must also be normalized. Without loss of gen-
erality we can assume that the vacuum state is normalized, i.e. ⟨0|0⟩ = 1 but this is not nessecarily 
true for any other state. We will address this issue now, but first have to deal with some technical 
problem. In the way we have defined Fock-States, they belong to infinitely extended plane waves and 
are thus not normalizable at all: 
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⟨1𝑘𝑘𝑘𝑘|1𝑘𝑘′𝜆𝜆⟩ = �0𝑘𝑘𝑘𝑘�𝑎𝑎�𝜆𝜆′ (𝒌𝒌)𝑎𝑎�𝜆𝜆
†(𝒌𝒌)|0𝑘𝑘′𝜆𝜆�

=  �0𝑘𝑘𝑘𝑘�𝑎𝑎�𝜆𝜆
†(𝒌𝒌)𝑎𝑎�𝜆𝜆′(𝒌𝒌)|0𝑘𝑘′𝜆𝜆� + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 − 𝒌𝒌′ )

=  𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿(𝒌𝒌 − 𝒌𝒌′ )
(41) 

We'll now simply make a Basis transformation into a set of modes 𝒗𝒗𝑗𝑗,𝜆𝜆 , which are centered around a 
particular wave-vector 𝒌𝒌𝑗𝑗 and which themselves form an orthnormal basis. We can then decompose 
the quantum field 𝑨𝑨�  into these modes using a Bogolioubov transformation 

𝑏𝑏�𝑗𝑗𝑗𝑗 = �
𝜖𝜖0

ℏ
�𝒗𝒗𝜆𝜆𝜆𝜆 , 𝑨𝑨��

= � � 𝑑𝑑𝒌𝒌 �𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗′(𝒌𝒌)𝑎𝑎�𝜆𝜆′ (𝒌𝒌) + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗𝑗′(𝒌𝒌)𝑎𝑎�𝜆𝜆′
† (𝒌𝒌)�

𝜆𝜆′

(42) 

By construction the new modal operators 𝑏𝑏�𝑗𝑗𝑗𝑗 (i.e. the new creation and annihilation operators), fulfil 
the commutation relations  

�𝑏𝑏�𝑗𝑗𝑗𝑗 ,𝑏𝑏�𝑗𝑗′𝜆𝜆′
† � = 𝛿𝛿𝜆𝜆𝜆𝜆′𝛿𝛿𝑗𝑗𝑗𝑗′

�𝑏𝑏�𝑗𝑗𝑗𝑗,𝑏𝑏�𝑗𝑗′𝜆𝜆′� = �𝑏𝑏�𝑗𝑗𝑗𝑗
† ,𝑏𝑏�𝑗𝑗′𝜆𝜆′

† � = 0
(43) 

Which can be checked by just plugging the definition of the 𝑏𝑏�𝑗𝑗𝑗𝑗 into the commutators. For the sake of 
simplicity we can in most cases construct a set of modes such that 𝛽𝛽𝑗𝑗(𝒌𝒌) = 0 and of course we know 
∑ ∫ 𝑑𝑑𝒌𝒌 |𝛼𝛼𝑗𝑗𝑗𝑗𝜆𝜆′(𝒌𝒌)|2 = 1𝜆𝜆′ .  Thus we can now construct the first Fock-Modes �1𝑗𝑗𝑗𝑗�, which belongs to the 
mode 𝒗𝒗𝜆𝜆𝜆𝜆  by applying its associated creation operator 𝑏𝑏�𝑗𝑗𝑗𝑗

†  onto the quantum vacuum state: 

�1𝑗𝑗𝑗𝑗� = 𝑏𝑏�𝑗𝑗𝑗𝑗
† |0⟩

= �� 𝑑𝑑𝒌𝒌 𝛼𝛼𝑗𝑗𝑗𝑗𝜆𝜆′
∗ (𝒌𝒌)𝑎𝑎�𝑗𝑗

†(𝒌𝒌)|0⟩
𝜆𝜆′

(44) 

We can now test this state of the quantum field for its normalizability 

⟨1𝑗𝑗𝑗𝑗�1𝑗𝑗𝑗𝑗� = �� 𝑑𝑑𝒌𝒌𝑑𝑑𝒌𝒌′ 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝒌𝒌)𝛼𝛼𝑗𝑗𝑗𝑗𝜇𝜇′
∗ (𝒌𝒌′)�0 �𝑎𝑎�𝜇𝜇(𝒌𝒌)𝑎𝑎�𝜇𝜇′

† (𝒌𝒌′)�0�
𝜇𝜇𝜇𝜇′

= �� 𝑑𝑑𝒌𝒌𝑑𝑑𝒌𝒌′ 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝒌𝒌)𝛼𝛼𝑗𝑗𝑗𝑗𝜇𝜇′
∗ (𝒌𝒌′)�0 �𝑎𝑎�𝜇𝜇′

† (𝒌𝒌′)𝑎𝑎�𝜇𝜇(𝒌𝒌) + 𝛿𝛿𝜇𝜇𝜇𝜇′ 𝛿𝛿(𝒌𝒌 − 𝒌𝒌′ )�0�
𝜇𝜇𝜇𝜇′

= �� 𝑑𝑑𝒌𝒌𝑑𝑑𝒌𝒌′  𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝒌𝒌)𝛼𝛼𝑗𝑗𝑗𝑗𝜇𝜇′
∗ (𝒌𝒌′ )𝛿𝛿𝜇𝜇𝜇𝜇′ 𝛿𝛿(𝒌𝒌 − 𝒌𝒌′)⟨0|0⟩

𝜇𝜇𝜇𝜇′

= �� 𝑑𝑑𝒌𝒌 𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗(𝒌𝒌)𝛼𝛼𝑗𝑗𝑗𝑗𝑗𝑗
∗ (𝒌𝒌)

𝜇𝜇

= 1

(45) 

This is now well-behaved! Keep in mind that the function  𝛼𝛼𝑗𝑗(𝒌𝒌) may be very localized, such that from 
an experimental point of view here is very little difference to a plane wave here. We’ll therefore in the 
future often forget the difference between 𝑏𝑏�𝑗𝑗𝑗𝑗 and 𝑎𝑎�𝜆𝜆(𝒌𝒌). We will later do the same for the temporal 
structure of the mode; let’s call this “modal doublethink”. If you are really worried about this, then you 
are a good mathematician. Good on you. 

Let us now use the normalized mode operators to properly normalize the respective Fock states with 
𝑛𝑛 > 1, which we could not do previously. The result of this process is: 
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�𝑛𝑛𝑗𝑗𝑗𝑗� =
1

√𝑛𝑛!
 �𝑏𝑏�𝑗𝑗𝑗𝑗

† �𝑛𝑛|0⟩

𝑏𝑏�𝑗𝑗𝑗𝑗�𝑛𝑛𝑗𝑗𝑗𝑗� = √𝑛𝑛�𝑛𝑛 − 1𝑗𝑗𝑗𝑗�

𝑏𝑏�𝑗𝑗𝑗𝑗
† �𝑛𝑛𝑗𝑗𝑗𝑗� = √𝑛𝑛 + 1�𝑛𝑛 + 1𝑗𝑗𝑗𝑗�

(46) 

Combining these equations, the reader can readily verify that the Fock states are Eigenstates to the 
photon number operator  

𝑛𝑛�𝑗𝑗𝑗𝑗 = 𝑏𝑏�𝑗𝑗𝑗𝑗
† 𝑏𝑏�𝑗𝑗𝑗𝑗 

𝑛𝑛�𝑗𝑗𝑗𝑗�𝑛𝑛𝑗𝑗𝑗𝑗� = 𝑛𝑛�𝑛𝑛𝑗𝑗𝑗𝑗� 

That is, the position on the ladder (or more precisely, the number total number of creation operators 
𝑛𝑛, which are required to create a certain state) can be determined by applying the number operator. 
Note that this kind of behaviour gives rise to the notion of the PHOTON, namely that the natural states 
of the modes are discrete excitations with a fixed energy defined by the frequency/wavelength of that 
mode, that can be created and annihilated in a certain way. 3 

So far, we have only considered states where all excitations are in a single mode of the field, i.e. only 
one mode was occupied with one or more photons. To describe field excitations across multiple modes 
we assign each mode 𝑎𝑎�𝜆𝜆(𝒌𝒌) an independent Hilbert space (spanned by e.g. the Fock-States in this 
mode). This way, multi-mode number states of the quantum field may be denoted as the tensor prod-
uct of the respective Fock States: 

�𝑛𝑛𝑗𝑗1𝜆𝜆𝟏𝟏

(1) �⨂ �𝑛𝑛𝑗𝑗2𝜆𝜆𝟐𝟐

(2) �… … ⨂ �𝑛𝑛𝑗𝑗𝑀𝑀𝜆𝜆𝑴𝑴

(𝑀𝑀) �  

  Or in an equivalent shorthand notation:  

�𝑛𝑛𝑗𝑗1𝜆𝜆𝟏𝟏

(1) ,…, 𝑛𝑛𝑗𝑗𝑀𝑀,𝜆𝜆𝑴𝑴

(𝑀𝑀) � 

These states are now eigenstates to the total photon number operator  

 

𝑛𝑛� = �� 𝑑𝑑𝒌𝒌 𝑎𝑎�𝜆𝜆
†(𝒌𝒌)𝑎𝑎�𝜆𝜆(𝒌𝒌)

𝜆𝜆

(47) 

Which has a well-defined meaning for Fock-States in a particular mode �𝑛𝑛𝑗𝑗𝑗𝑗� and also for multimode 
Fock-States across different modes. The multi-mode Fock states are now Eigenstates of this operator 

𝑛𝑛�   �𝑛𝑛𝑗𝑗1𝜆𝜆𝟏𝟏

(1) ,…, 𝑛𝑛𝑗𝑗𝑀𝑀,𝜆𝜆𝑴𝑴

(𝑀𝑀) � = � � 𝑛𝑛𝑗𝑗𝜆𝜆𝑚𝑚

𝑀𝑀

𝑚𝑚=1

�  �𝑛𝑛𝑗𝑗1𝜆𝜆𝟏𝟏

(1) ,… , 𝑛𝑛𝑗𝑗𝑀𝑀,𝜆𝜆𝑴𝑴

(𝑀𝑀) � (48) 

with the eigenvalue 𝑛𝑛 = �∑ 𝑛𝑛𝒌𝒌𝒎𝒎,𝜆𝜆𝑚𝑚
𝑀𝑀
𝑚𝑚=1 �, i.e. the total number of photons in all relevant field modes. 

Notice that, unlike in the single-mode case, the eigenvalue spectrum is now degenerate; that is, there 
are many possible multi-mode Fock states that correspond to the same eigenvalue.  

As a simple example let us pick out three arbitrary field modes, with the mode excitations:  

�1𝑗𝑗1𝜆𝜆𝟏𝟏 ,0𝑗𝑗2𝜆𝜆𝟐𝟐 ,2𝑗𝑗3𝜆𝜆𝟑𝟑
� 

 
3 Edwin: Trude, how can we create a photon? Trude: By applying a creation operator to a field state.   
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�3𝑗𝑗1𝜆𝜆𝟏𝟏 ,0𝑗𝑗2𝜆𝜆𝟐𝟐 ,0𝑗𝑗3𝜆𝜆𝟑𝟑
� 

�2𝑗𝑗1𝜆𝜆𝟏𝟏 ,1𝑗𝑗2𝜆𝜆𝟐𝟐 ,0𝑗𝑗3𝜆𝜆𝟑𝟑
� 

We note that the states are now all Eigenstates of the total photon number operator, with Eigenvalue 
n=3. Hence any superposition of these states  

|Ψ𝑛𝑛〉 ∝ �1𝑗𝑗1𝜆𝜆𝟏𝟏 ,0𝑗𝑗2𝜆𝜆𝟐𝟐 ,2𝑗𝑗3𝜆𝜆𝟑𝟑
� + �1𝑗𝑗1𝜆𝜆𝟏𝟏 ,0𝑗𝑗2𝜆𝜆𝟐𝟐 ,2𝑗𝑗3𝜆𝜆𝟑𝟑

� + �1𝑗𝑗1𝜆𝜆𝟏𝟏 ,0𝑗𝑗2𝜆𝜆𝟐𝟐 , 2𝑗𝑗3𝜆𝜆𝟑𝟑
� 

is also an Eigenstate of the total photon number operator 𝑛𝑛� |Ψ𝑛𝑛〉 = 𝑛𝑛|Ψ𝑛𝑛〉. In general, the state |Ψ𝑛𝑛〉 is 
not an eigenstate of the Hamiltonian, due to the different Energy ℏ𝜔𝜔(𝒌𝒌) associated with each mode 
excitation, i.e.  𝐻𝐻� |Ψ𝑛𝑛〉 ≠ 𝐸𝐸𝑛𝑛 |Ψ𝑛𝑛〉.  

These results now warrant a bit of interpretation, some of which is already hidden in the naming con-
vention for the various operators, states, and eigenvalues. Let’s try and summarize the findings in some 
straightforward bullet points: 

• the Quantum Vector Potential, or Field Operator 𝑨𝑨�   
- is composed of modal fields 𝒗𝒗𝜆𝜆𝜆𝜆  
- and modal expansion coefficients 𝑏𝑏�𝑗𝑗𝑗𝑗, which are operators 
- defines the magnetic and electric quantum field operators 𝑬𝑬�  , 𝑩𝑩�   via Maxwell Equn. 

• the modal amplitude 𝒗𝒗𝜆𝜆𝜆𝜆  
- is exactly the mode from classical electrodynamics 
- has a frequency 𝜔𝜔𝑗𝑗 
- retains all classical properties related to scalar products, completeness, normalization, 

and modal transformations 
• the modal expansion operators 𝑏𝑏�𝑗𝑗𝑗𝑗 

- fulfil bosonic commutation relations 
- each operator evolves according to exp (−𝑖𝑖ℏ𝜔𝜔𝑗𝑗) 
- modal transformations mix the modal expansion operators, the new modal expansion 

operators 𝑐̂𝑐𝑗𝑗𝑗𝑗 fulfil equal relations (i.e. there is not preferred set of modes) 
• Fock-states 

- are a discrete and complete set of eigenstates to the Hamiltonian operator 
- can be numbered for each mode 𝒗𝒗𝜆𝜆𝜆𝜆  with an index �𝑛𝑛𝑗𝑗,𝜆𝜆�; a mode is then said to be 

populated with 𝑛𝑛 photons 
- each number contributes a discrete amount of energy ℏ𝜔𝜔𝑗𝑗 to the total energy of the 

system 
- the 𝑏𝑏� †

𝑗𝑗,𝜆𝜆 operator creates one photon in mode 𝒗𝒗𝜆𝜆𝜆𝜆  
- the 𝑏𝑏�𝑗𝑗,𝜆𝜆 operator destroys one photon in mode 𝒗𝒗𝜆𝜆𝜆𝜆  

1.2.5 Coherent States 
In the last chapter we have introduced Fock-States, which are eigenstates to both, the Hamilton-Op-
erator (i.e. the energy of the system) as well as the photon number operator. We have also seen that 
they can be created from the quantum vacuum state |0⟩ by repeated application of the photon crea-
tion operator 𝑎𝑎�† for any given mode (note that in this chapter we only consider a single mode and 
supress the modal index). 

Fock-states, are, however, fairly rare in nature (in fact, Fock-States with large numbers of photons in 
any given mode are extremely hard to produce!). The deeper reason being, that photons are typically 
produced in a random process, where a large number of emitters is each emitting a photon with a 
certain non-unity chance (the prime example is the amplification process in a laser). This randomness 
naturally leads to uncertainty in the photon number of a so-produced “coherent state of light” (one 
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can already kind of guess that the resulting state of the field should have a Poisson-distribution of the 
photon numbers). 

We will nevertheless utilize the Fock-States, as we have seen that they are a complete set of eigen-
states to the state of any given mode as a basis to construct new coherent states from. We will con-
struct a new set of modes from a superposition of these Fock-States for a single mode, by application 
of a superposition of creation/annihilation-operators to the vacuum state: 

𝐷𝐷�(𝛼𝛼) = exp�𝛼𝛼𝑎𝑎�† − 𝛼𝛼∗𝑎𝑎�� (49) 

Where 𝛼𝛼 is a complex number and 𝐷𝐷�(𝛼𝛼) is a unitary operator (we will see in the next chapter, that this 
is a necessary requirement for such a generation operator). In this case 𝐷𝐷�(𝛼𝛼) is called the "Glauber 
displacement operator". Unitarity can be easily proven by checking the following relations: 

𝐷𝐷� †(𝛼𝛼) = 𝐷𝐷� −1(𝛼𝛼) = 𝐷𝐷�(−𝛼𝛼) (50) 

Let's now rewrite the operator, using the commutation relation [𝑎𝑎�, 𝑎𝑎�†]=1: 

𝐷𝐷�(𝛼𝛼) = exp�𝛼𝛼𝑎𝑎�† − 𝛼𝛼∗𝑎𝑎� −
1
2

�𝛼𝛼𝑎𝑎�† ,−𝛼𝛼∗𝑎𝑎�� +
1
2

�𝛼𝛼𝑎𝑎�† ,−𝛼𝛼∗𝑎𝑎���

= exp�−
|𝛼𝛼| 2

2 �exp �𝛼𝛼𝑎𝑎�† − 𝛼𝛼∗𝑎𝑎� −
1
2

�𝛼𝛼𝑎𝑎�† ,−𝛼𝛼∗𝑎𝑎���

= exp�−
|𝛼𝛼| 2

2 �exp �𝐴̂𝐴 + 𝐵𝐵� +
1
2

�𝐴̂𝐴, 𝐵𝐵���

= exp�−
|𝛼𝛼| 2

2 �exp�𝐴̂𝐴� exp�𝐵𝐵� �

⟺ ��𝐴̂𝐴,𝐵𝐵� �, 𝐴̂𝐴� = ��𝐴̂𝐴, 𝐵𝐵��, 𝐵𝐵�� = 0 with 𝐴̂𝐴 = 𝛼𝛼𝑎𝑎�† , 𝐵𝐵� = −𝛼𝛼∗𝑎𝑎�

= exp�−
|𝛼𝛼| 2

2 �exp�𝛼𝛼𝑎𝑎�†� exp{−𝛼𝛼∗𝑎𝑎�}

(51) 

Then we can apply this reformulated version of the Glauber-Operator 𝐷𝐷�(𝛼𝛼) on the Vacuum-State quite 
easily to get a better understanding on the state of the field. 

|𝛼𝛼⟩ = 𝐷𝐷�(𝛼𝛼)|0⟩ = exp�−
|𝛼𝛼|2

2 �exp�𝛼𝛼𝑎𝑎�†� exp{−𝛼𝛼∗𝑎𝑎�} |0⟩

= exp�−
|𝛼𝛼|2

2 �exp�𝛼𝛼𝑎𝑎�†� |0⟩

= exp�−
|𝛼𝛼|2

2 ��
𝛼𝛼𝑛𝑛�𝑎𝑎�†�𝑛𝑛

𝑛𝑛!
|0⟩ 

𝑛𝑛

= exp�−
|𝛼𝛼|2

2 ��
𝛼𝛼𝑛𝑛

√𝑛𝑛!
|𝑛𝑛⟩  

𝑛𝑛

(52) 

This means, that the field is in a superposition of Fock-States and the probability 𝑃𝑃(𝑛𝑛) (amplitude 
square!!!) of finding the field in an |𝑛𝑛⟩ state is given by the Poisson distribution: 

𝑃𝑃(𝑛𝑛) = ��𝑛𝑛�𝐷𝐷�(𝛼𝛼)�0��2

=
exp{−|𝛼𝛼|2} |𝛼𝛼| 2𝑛𝑛

𝑛𝑛!
= 𝑃𝑃Poisson (𝑛𝑛, |𝛼𝛼| 2)

(53) 
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From probability theory we know, that a series of Poisson-distributed events is maximally random, i.e. 
the occurrence of an event (i.e. the appearance of a photon) at any given point in time in a certain 
mode does by no means make the time of appearance of another photon more of less probable. In 
this respect, coherent states have no memory, photons are neither bunched, nor anti-bunched. 

 
 

 
Fig. 3: Photon-Number Probabilities of two different coherent states. 

We can quite easily find the expectation value and variance of the photon number operator: 

〈𝑛𝑛�〉 = ⟨𝛼𝛼|𝑛𝑛�|𝛼𝛼⟩

= exp{−|𝛼𝛼| 2} �
𝛼𝛼𝑛𝑛

√𝑛𝑛!
𝛼𝛼∗ 𝑛𝑛′

√𝑛𝑛′! 
⟨𝑛𝑛′|𝑛𝑛�|𝑛𝑛⟩ 

𝑛𝑛,𝑛𝑛′

= exp{−|𝛼𝛼| 2} �
|𝛼𝛼| 2𝑛𝑛

𝑛𝑛!  
𝑛𝑛

𝑛𝑛

= |𝛼𝛼|2

(Δ𝑛𝑛)2 = 〈𝑛𝑛�2〉 − 〈𝑛𝑛�〉2

= |𝛼𝛼|4 + |𝛼𝛼|2 − |𝛼𝛼|4

= |𝛼𝛼|2

(54) 

This has a few major ramifications. Ordinary light sources emit states of light, which do NOT have a 
defined number of photons. If you measure the energy you get so-called "shot-noise" even for a per-
fect detector, which limits the measurement accuracy. Examples: 

• 10 µW Signal on a 10 GHz Communication Channel -> 10−15J per time slot --> roughly 10−18J  
per photon for light with a wavelength of 1000 nm --> 1000 Photons and a shot noise floor of 
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√1000 ≈ 30 photons --> SNR of roughly 30; no more than log2 𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 5 bits per time slot 
possible for fundamental information theoretical reasons 

• low-Light image with roughly 10 Photons per pixel per frame --> 3 Photons Shot Noise --> 30 
% Noise floor 

Both Communication- as well as Imaging can profit from the usage of Fock-States. Particularly the latter 
one is a goal of Quantum-Imaging and a hot topic in research. 

Let's now proceed to a few more properties of coherent states. First, they are robust against mixing 
(i.e. amplification and damping): 

𝐷𝐷�(𝛽𝛽)|𝛼𝛼⟩ = |𝛼𝛼 + 𝛽𝛽⟩ (55) 

Coherent states are also complete: 

�
𝑑𝑑2𝛼𝛼

𝜋𝜋 |𝛼𝛼⟩⟨𝛼𝛼| = 1
ℂ

 (56) 

They are also eigenstates of the annihilation operator 𝑎𝑎�  

𝑎𝑎�|𝛼𝛼⟩ = 𝛼𝛼|𝛼𝛼⟩ (57) 

We shall later see, that the time evolution of the any state is given by the application of the time 

evolution operator exp �− 𝑖𝑖
ℏ

ℋ� 𝑡𝑡�, in this case this yields: 

exp�−
𝑖𝑖
ℏ ℋ� 𝑡𝑡�|𝛼𝛼⟩ = exp �−

𝑖𝑖
ℏ ℋ� 𝑡𝑡�exp �−

|𝛼𝛼| 2

2 ��
𝛼𝛼𝑛𝑛

√𝑛𝑛!
|𝑛𝑛⟩ 

𝑛𝑛

= exp �−
|𝛼𝛼|2

2 � �
𝛼𝛼𝑛𝑛

√𝑛𝑛!
exp�−

𝑖𝑖
ℏ ℋ� 𝑡𝑡�|𝑛𝑛⟩ 

𝑛𝑛

= exp �−
|𝛼𝛼|2

2 � �
𝛼𝛼𝑛𝑛

√𝑛𝑛!
exp{−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖} |𝑛𝑛⟩ 

𝑛𝑛

with  ℋ� |𝑛𝑛⟩ = ℏ𝜔𝜔𝜔𝜔|𝑛𝑛⟩

=  � exp�−
|𝛼𝛼|2

2 �
[𝛼𝛼 exp{−𝑖𝑖𝑖𝑖𝑖𝑖}]𝑛𝑛

√𝑛𝑛!
|𝑛𝑛⟩  

𝑛𝑛
= |𝛼𝛼 exp{−𝑖𝑖𝑖𝑖𝑖𝑖}⟩

(58) 

The coherent states do thus have a time evolution, which can be represented by a rotation in the 𝛼𝛼-
plane, where the rate of rotation is only depended on the modes frequency. 
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Fig. 4: Representation of coherent states and their evolution in the complex plane. Note that the axes correspond 
to conjugated variables and roughly to the amplitude of the field and its phase, i.e. the electric and magnetic fields. 
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1.3 Time Evolution 
The field of science is called Quantum Electro DYNAMICS. Let’s thus take a closer look at the evolution 
of the field and find out, how this is related to the Hamiltonian-Operator, for as of now, we have only 
looked into static scenarios – with the exception that a part of the time evolution is already covered in 
the time-dependence of the modes of the electric fields. 

We will then find, that this concept can indeed be expanded into arbitrary Interaction-Hamiltonians, 
which may describe real-world optical elements, such as beam-splitters, loss-elements and the like. As 
a last part we shall introduce time-bin operators in temporally localized fields. 

1.3.1 Heisenberg Equations of Motion 
In chapter 1.2.3 we had already – in a very brief manner – discussed the time evolution of operators. 
This shall be extended here. Note that we will operate in the Heisenberg-picture here, meaning that 
we treat the time-evolution of any field as an evolution of the operators 𝑎𝑎� and 𝑎𝑎�†. This approach is 
very natural for a quantum electrodynamics, as per the last chapter we have a thorough understanding 
of the relation of these operators with respect to the notion of photons of modes. 

Just like in the aforementioned chapter 1.2.3, we start with the understanding that in classical me-
chanics the total time derivative of any not-explicitly time-dependent measurable 𝐴𝐴(𝑞𝑞𝑘𝑘 ,𝑝𝑝𝑘𝑘) is given 
by its Poisson-Bracket with the system’s Hamiltonian. By construction the same is true for quantum 
mechanics, with the difference that the we have to replace the Poisson-bracket with −𝑖𝑖/ℏ and the 
commutator and the measurable is now a Hermitian operator 𝐴̂𝐴 

𝑑𝑑𝐴̂𝐴
𝑑𝑑𝑑𝑑 =

𝑖𝑖
ℏ

�ℋ� , 𝐴̂𝐴� (59) 

We can repeatedly apply this relation to get higher order derivatives of the operator 𝐴̂𝐴, e.g.  

𝑑𝑑2𝐴̂𝐴
𝑑𝑑𝑡𝑡 2 =

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝐴̂𝐴
𝑑𝑑𝑑𝑑 = �

𝑖𝑖
ℏ

�
2

�ℋ� ,�ℋ ,� 𝐴̂𝐴��

𝑑𝑑3𝐴̂𝐴
𝑑𝑑𝑡𝑡 3 =

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑2𝐴̂𝐴
𝑑𝑑𝑡𝑡 2 = �

𝑖𝑖
ℏ

�
3

�ℋ� , �ℋ� ,�ℋ� ,𝐴̂𝐴���
(60) 

From this we can reverse-engineer the explicit relation for the time-dependence of the operator, by 
writing it as a Taylor-series as a function of the time coordinate (we assume without loss of generality 
that the point of the Taylor-series expansion is a 𝑡𝑡 = 0. 

𝐴̂𝐴(𝑡𝑡) = 𝐴̂𝐴(𝑡𝑡 = 0) + 𝑡𝑡
𝑑𝑑𝐴̂𝐴
𝑑𝑑𝑑𝑑 �

𝑡𝑡=0
+ 𝑡𝑡 2 1

2!
𝑑𝑑2𝐴̂𝐴
𝑑𝑑𝑡𝑡 2 �

𝑡𝑡=0
+ ⋯

= 𝐴̂𝐴 + �
𝑖𝑖
ℏ 𝑡𝑡� �ℋ� , 𝐴̂𝐴� +

1
2!

�
𝑖𝑖
ℏ 𝑡𝑡�

2
�ℋ� , �ℋ� ,𝐴̂𝐴�� + ⋯

(61) 

The last expression may seem complicated but it is the exact representation of the Baker-Campbell-
Hausdorff-Theorem (which is, in fact, true for complex expansion parameters and non-hermitic oper-
ators. Using the BCH-theorem we get: 

𝐴̂𝐴(𝑡𝑡) = 𝑒𝑒
𝑖𝑖
ℏ𝑡𝑡ℋ� 𝐴̂𝐴(𝑡𝑡 = 0)𝑒𝑒−𝑖𝑖

ℏ𝑡𝑡ℋ�

= 𝑈𝑈(𝑡𝑡)𝐴̂𝐴𝑈𝑈†(𝑡𝑡)
(62) 

The exponential (and thus unitarian) form of the Hamilton-operators is, due to this relation is called 
the “generator operator”.  
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In the Heisenberg picture an arbitrary Hermitian operator 𝐴̂𝐴 evolves in time under the influence of the 
time evolution operator 𝑈𝑈�(𝑡𝑡). 

1.3.2 Temporal Wavepackets 
We can now use these findings to introduce temporally localized wavepackets. In chapter 1.2.3 we had 
found that 

𝑎𝑎�𝜆𝜆(𝒌𝒌;𝑡𝑡) = 𝑎𝑎�𝜆𝜆(𝒌𝒌;𝑡𝑡 = 0) exp(𝑖𝑖 𝜔𝜔(𝒌𝒌)𝑡𝑡)
𝑎𝑎�†

𝜆𝜆(𝒌𝒌;𝑡𝑡) = 𝑎𝑎�†
𝜆𝜆(𝒌𝒌;𝑡𝑡 = 0)exp(−𝑖𝑖 𝜔𝜔(𝒌𝒌)𝑡𝑡)

(63) 

We shall now generalize this to introduce the time-dependent annihilation operator, by integrating 
over all possible modes (which are no longer time dependent). We do so for a given polarization 𝜆𝜆 and 
at a fixed position 𝑟𝑟 = 0. For plane waves in vacuum this is not a problem for all other types of waves 
it’s not a big problem. 

𝑎𝑎�𝜆𝜆(𝑡𝑡,𝑟𝑟 = 0) = � 𝑑𝑑𝒌𝒌 𝑎𝑎�𝜆𝜆(𝒌𝒌;𝑡𝑡) = � 𝑑𝑑𝒌𝒌 𝑎𝑎�𝜆𝜆(𝒌𝒌)exp(𝑖𝑖 𝜔𝜔(𝒌𝒌)𝑡𝑡) (64) 

The same can be done for the time-dependent number operator: 

𝑛𝑛𝜆𝜆(𝑡𝑡,𝑟𝑟 = 0) = 𝑎𝑎�𝜆𝜆
†(𝑡𝑡)𝑎𝑎�𝜆𝜆(𝑡𝑡) = � 𝑑𝑑𝒌𝒌� 𝑑𝑑𝒌𝒌′ 𝑎𝑎�𝜆𝜆(𝒌𝒌′)𝑎𝑎�†(𝒌𝒌)exp(𝑖𝑖 (𝜔𝜔(𝒌𝒌) − 𝜔𝜔(𝒌𝒌′))𝑡𝑡) (65) 

Assume that we have a temporal wave packet |1𝑗𝑗,𝜆𝜆�, denoted with some wave packet-identification 
index 𝑗𝑗 in a polarization 𝜆𝜆, which is filled with exactly one photon, i.e: 

|1𝑗𝑗,𝜆𝜆� = � 𝑑𝑑𝒌𝒌𝛼𝛼𝑗𝑗(𝒌𝒌)𝑎𝑎�†(𝒌𝒌)|𝑣𝑣𝑣𝑣𝑣𝑣⟩ (66) 

Obviously 𝛼𝛼𝑗𝑗(𝒌𝒌) has to be defined in the very same way as was done in chapter 1.1.7, i.e. they have to 
be normalized appropriately for any mode function. For this we can simply take the wavepackets de-
fined in 1.1.7.  Then the expectation value of the time-dependent number operator is simply: 

〈𝑛𝑛〉(𝑡𝑡,𝑟𝑟 = 0) = �1𝑗𝑗,𝜆𝜆|𝑛𝑛𝜆𝜆(𝑡𝑡)|1𝑗𝑗,𝜆𝜆� = �� 𝑑𝑑𝒌𝒌 𝛼𝛼𝑗𝑗(𝒌𝒌)exp(−𝑖𝑖 𝜔𝜔(𝒌𝒌)𝑡𝑡)�
2

. (67) 

This means that the absolute value of the number density operator expectation value of a single-pho-
ton wavepacket is given by the absolute value square of the Fourier-transform of its spectrum. Just as 
we would expect from classical wave-theory. 
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2 Fundamentals  
What is quantum communication?  Since every 
communication system is ultimately described 
by quantum physics, the answer to this question 
cannot be exclusively related to the inner work-
ings of hardware alone. What makes a quantum 
communication system different from classical 
systems, is thus better defined at the opera-
tional resource level:  

A quantum communication system uses distrib-
uted quantum information to perform specific 
information processing tasks in a way that 
would not be possible using classical resources 
alone.  

While state-of-the-art classical communication 
systems may well leverage quantum technology 
at the level of hardware (lasers, semiconductor technology, photodetection), they do not take ad-
vantage of quantum principles at the level of information distribution or processing itself. Not yet.  

To understand what these key quantum principles are, let us cast some of the key concepts of quantum 
theory into a slightly different light – that of quantum information theory. We will assume some level 
of familiarity with linear algebra and probability theory extensively throughout. The reader is encour-
aged to consult the standard quantum theory textbooks for a review if deemed necessary. 

2.1 The principles of quantum theory 
Quantum theory provides a set of tools for calculating probabilities for outcomes of measurements4 
applied to a certain state of the quantum system to be measured. A measurement corresponds to 
anything we may observe in a laboratory using a suitable measurement apparatus we may potentially 
build. Mathematically such an apparatus is represented by a so-called observable. Let’s briefly state 
the principles and then look into them in a little more detail: 

• States of a quantum physical system are completely described via a vector |𝜓𝜓⟩ in a linear 
vector space ℋ with a complex-valued inner product ⟨𝜙𝜙|𝜓𝜓⟩ =  ⟨𝜓𝜓|𝜙𝜙⟩∗ ∈  ℂ  

• Observable quantities are described by linear, hermitian operators 𝑂𝑂�  with exclusively real ei-
genvalues. These eigenvalues {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3,..} denote the possible outcomes of a measurement 
(hence they can only be real). 

• If the measurement outcome is guaranteed to be 𝑎𝑎𝑖𝑖, then the system is in the Eigenstate of 
𝑂𝑂�|𝑖𝑖⟩ = 𝑎𝑎𝑖𝑖 |𝑖𝑖⟩. 

• The Eigenstates |𝑖𝑖⟩ form a complete basis of the Hilbert Space. They are orthonomal ⟨𝑖𝑖|𝑗𝑗⟩ =
𝛿𝛿𝑖𝑖𝑖𝑖. 

• Not all measurement outcomes need to be different, there may be a subset of eigenstates 
which are degenerate. 

 
4 And nothing more. If you find that non-satisfactory, then deal with it. We shall later see that this is not a problem 
of the theory but the very essence of nature itself as can be tested in e.g. a Bell measurement. 
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• States that can be distinguished with certainty are orthogonal ⟨𝜙𝜙|𝜓𝜓⟩ = 0. (the opposite is not 
always true, see above). Distinguishability here means, that they produce different results 
upon a specific measurement 𝑂𝑂� . 

• The overlap of a state vector |𝜓𝜓⟩ with an eigenvector |𝑖𝑖⟩  determines the probability that the 
eigenvalue 𝑎𝑎𝑖𝑖 will be observed, specifically:  𝑃𝑃(𝑎𝑎𝑖𝑖 ) = |⟨𝜓𝜓|𝑖𝑖⟩|2. 

• The time-evolution of an isolated quantum system conserves overlap between state vectors, 
i.e.: ⟨𝜙𝜙(𝑡𝑡 = 0)|𝜓𝜓(𝑡𝑡 = 0)⟩ = ⟨𝜙𝜙(𝑡𝑡 = 𝑇𝑇)|𝜓𝜓(𝑡𝑡 = 𝑇𝑇)⟩, i.e. unperturbed quantum states retain 
their degree of (dis-)similarity. 

2.1.1 Quantum States 
The quantum state of a physical system is specified by a vector in Hilbert Space ℋ - that is – a complex 
vector space that is equipped with an inner product (a linear mapping from two vectors into complex 
numbers;  ℋ × ℋ → ℂ).  For historical reasons we do not denote the state vector using more familiar 
notation, e.g. 𝜓𝜓�⃗ , but instead the Dirac “ket” notation:  

 |𝜓𝜓⟩ (68) 

According to quantum theory, the state vector represents a state of complete knowledge about the 
preparation of the physical system – i.e. everything that we need to know, and everything that is prin-
ciple knowable. Implicit in the structure of the linear vector space structure is the following statement: 
If |𝜓𝜓1  ⟩ and  |𝜓𝜓2⟩ are possible quantum states, then so is any superposition state: 

|𝜓𝜓 ⟩ =   𝛼𝛼1|𝜓𝜓1  ⟩ + 𝛼𝛼2|𝜓𝜓2⟩ (69) 

with complex amplitudes  𝛼𝛼1 and 𝛼𝛼2 . While this may look trivial, it is arguably the most profound con-
cept in quantum theory: the superposition principle is not only the culprit responsible for much quan-
tum weirdness such a quantum nonlocality or the Heisenberg uncertainty principle, it is also the key 
feature in many quantum-enhancements such as exponential speedups in computing and tap-proof 
communication. 

In the following we will see that experimentally accessible quantities, such as expectation values and 
probabilities are described by numbers and not the state vectors themselves. Or to put it more bluntly: 
you cannot measure the state |𝜓𝜓⟩ by any conceivable means. To arrive at these, we need a mapping 
from vectors to numbers, i.e. an inner product. Denoting the dual vector to |𝜓𝜓 ⟩ by the Dirac “bra”: 

⟨𝜓𝜓| = |𝜓𝜓⟩†  = 𝛼𝛼1
∗⟨𝜓𝜓1| + 𝛼𝛼2

∗⟨𝜓𝜓2| (70) 

The inner product can be written conveniently as a „bra-ket“:  

⟨𝜙𝜙|𝜓𝜓⟩ =  ⟨𝜓𝜓|𝜙𝜙⟩∗ (71) 

In particular, the norm of a vector is a real number ⟨𝜓𝜓|𝜓𝜓⟩ > 0 .  

2.1.2 Observables  
Observable physical quantities, so-called observables or measurables, are described using linear oper-
ators. Possible measurement outcomes correspond to the eigenvalues {𝑎𝑎1,𝑎𝑎2, 𝑎𝑎3,..} of an operator 𝐴̂𝐴. 
In accordance with our every-day lab experience, we can think of measurement outcomes as numbers 
on a read-out device. Extending this idea to the measurement of a quantum system, we may require 
measurement outcomes to be real-valued numbers 𝑎𝑎𝑖𝑖 ∈ 𝑅𝑅 (and not, e.g. complex numbers, as these 
can be described by two real numbers, i.e. give two measurement outcomes). 
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If we prepare a quantum system in a way that the measurement outcome for observable is 𝑎𝑎𝑖𝑖 with 
certainty, then the system is in an Eigenstate of the operator: 

 𝐴̂𝐴|𝑖𝑖⟩ = 𝑎𝑎𝑖𝑖 |𝑖𝑖⟩ (72) 

Moreover, if we obtain a result, say 𝑎𝑎𝑖𝑖 , we expect a subsequent identical measurement to give the 
same result, and not some other result, say 𝑎𝑎𝑗𝑗 . In other words, the measurement outcomes 𝑎𝑎𝑖𝑖 ≠
𝑎𝑎𝑗𝑗  should correspond to unambiguously distinguishable quantum states. As stated initially, we require 
that states that can be distinguished with certainty are orthogonal; which implies that the eigenvectors 
corresponding to different eigenvalues (measurement outcomes) should be orthogonal, i.e. we have 
⟨𝑖𝑖|𝑗𝑗⟩ = 𝛿𝛿𝑖𝑖𝑖𝑖. These requirements restrict the type of operator we can use to describe the measurement 
process; Operators that represent observables are so-called Hermitian operators: 

𝐴̂𝐴 = 𝐴̂𝐴† (73) 

where the Hermitian conjugate 𝐴̂𝐴† of operator 𝐴̂𝐴 is defined by the requirement  

�𝜙𝜙�𝐴𝐴†�𝜓𝜓� =  �𝜓𝜓�𝐴̂𝐴�𝜙𝜙�∗
     ∀ |𝜓𝜓⟩, |𝜙𝜙⟩ (74) 

It is quite easy to show that Hermitian operators have orthogonal set of eigenvectors with real-valued 
eigenvalues; so let’s do it. First, we show that the eigenvalues are real:  

�𝑖𝑖�𝐴̂𝐴�𝑖𝑖� =  �𝑖𝑖�𝐴̂𝐴�𝑖𝑖�
∗

→  𝑎𝑎𝑖𝑖 ⟨𝑖𝑖|𝑖𝑖⟩ = 𝑎𝑎𝑖𝑖
∗⟨𝑖𝑖|𝑖𝑖⟩∗ → 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖

∗  
(75)

 

where we have used the fact that the norm is a real number. To prove that eigenvectors of a Hermitian 
operator with eigenvalues 𝑎𝑎𝑖𝑖 ≠ 𝑎𝑎𝑗𝑗  are orthogonal, we calculate conjugate of the Eigenvalue equa-
tion
 ⟨𝑖𝑖|𝐴̂𝐴† = ⟨𝑖𝑖|𝐴̂𝐴 = 𝑎𝑎𝑖𝑖

∗⟨𝑖𝑖| (76) 

And evaluate its inner product with an eigenvector |𝑗𝑗⟩, 

⟨𝑖𝑖�𝐴̂𝐴†�𝑗𝑗⟩ = ⟨𝑖𝑖|𝐴̂𝐴|j⟩ = 𝑎𝑎𝑖𝑖 ⟨𝑖𝑖|𝑗𝑗⟩ (77) 

Similarly, taking the overlap of 𝐴̂𝐴|𝑗𝑗⟩ = 𝑎𝑎𝑗𝑗|𝑗𝑗⟩ with eigenvector |i> we have: 

⟨𝑖𝑖|𝐴̂𝐴|𝑗𝑗⟩ = 𝑎𝑎𝑗𝑗⟨𝑖𝑖|𝑗𝑗⟩ (78) 

Subtraction of the two results shows that ⟨𝑖𝑖|𝑗𝑗⟩ = 0. After normalizations can thus construct an or-
thonormal basis consisting of eigenvectors ⟨𝑖𝑖|𝑗𝑗⟩ = 𝛿𝛿𝑖𝑖𝑖𝑖, where 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta symbol.  

2.1.3 The Born rule  
So far, we have discussed what happens when we measure an observable a physical system that is 
prepared in an Eigenstate, i.e. a situation that gives a definitive outcome. Now let us consider the more 
general situation in which state of the system prior to measurement is described by a normalized vec-
tor |𝜓𝜓⟩. 

 The Born rule states the following: For a system described by any normalized state vector  |𝜓𝜓⟩ =
∑𝛼𝛼𝑖𝑖 |𝑖𝑖⟩  (∑|𝛼𝛼𝑛𝑛|2 = 1), the measurement of observable 𝐴̂𝐴  will yield an outcome 𝑎𝑎𝑗𝑗 with a probability 
that is given by the modulus of the overlap with the eigenstate|𝑗𝑗⟩, i.e.:   

𝑃𝑃�𝑎𝑎𝑗𝑗� = |⟨𝜓𝜓|𝑗𝑗⟩|2 = �𝛼𝛼𝑗𝑗�2
. 
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If we repeat many such experiments with identically prepared quantum systems, then we obtain the 
expected value for the observable:   

�𝐴̂𝐴� = ⟨ψ|𝐴̂𝐴|𝜓𝜓� = � 𝑃𝑃(𝑎𝑎𝑛𝑛)
𝑛𝑛

𝑎𝑎𝑛𝑛 (79) 

Fun fact: this axiomatic rule was guessed by Max Born in one of his papers and stated there as a foot-
note only. Take this as a hint to by default not skip footnotes. 

2.1.4 Projection operators 
Hermitian operators can be decomposed into orthogonal projection operators  𝑃𝑃𝚤𝚤� = |𝑖𝑖⟩⟨𝑖𝑖|  

𝐴̂𝐴 = � 𝑃𝑃𝚤𝚤� 𝑎𝑎𝑖𝑖 (80) 

These projection operators fulfil the relations: 

𝑃𝑃𝚤𝚤� 2 = 𝑃𝑃𝚤𝚤 �
𝑃𝑃𝚤𝚤� 𝑃𝑃𝚥𝚥� = 𝛿𝛿𝑖𝑖𝑖𝑖𝑃𝑃𝚤𝚤�

(81) 

We can think of a projection operator as an elementary observable that essentially “asks” the quantum 
system the question: “will you give me result 𝑎𝑎𝑖𝑖''. The operators’ eigenvalues (1 and 0) can be inter-
preted as the response (yes/no) to such a query: 

𝑃𝑃𝚤𝚤� |𝑖𝑖⟩ = � 𝛿𝛿𝑖𝑖𝑖𝑖|𝑗𝑗⟩
𝑗𝑗

 (82) 

Phrasing the Born rule slightly differently, the probability of measuring a particular value 𝑎𝑎𝑗𝑗 when we 
perform a projective measurement on a state prepared in a state |𝜓𝜓⟩ is the expected value of the cor-
responding projection operator: 

𝑃𝑃�𝑎𝑎𝑗𝑗� = ⟨𝜓𝜓|𝑃𝑃𝚥𝚥� |𝜓𝜓⟩ = |⟨𝜓𝜓|𝑗𝑗⟩|2 (83) 

Whenever a measurement is made our knowledge about the state of the system also changes accord-
ing to the outcome of the measurement. From the numerous potential outcomes, only one occurs in 
the measurement.  Correspondingly the normalized post-measurement state becomes 5:   

  |𝜓𝜓〉 →
𝑃𝑃𝚥𝚥� |𝜓𝜓⟩

�P�𝑎𝑎𝑗𝑗�
= |𝑗𝑗⟩ (84) 

So, when the quantum measurement has been performed, we must update the state vector according 
to the measurement outcome that was observed, i.e. the wave function collapses onto the correspond-
ing eigenvector. Whenever the state of the system is not an Eigenstate of the observable to be meas-
ured, the mere process of measurement will change the quantum state. 

 
5 Otherwise we could not guarantee that a repeated measurement would yield the same result, which would be 
contrary to what we observe in the real world. 
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2.1.5 Complementarity of Observables  
Two observables 𝐴̂𝐴 , 𝐵𝐵�  are said to be complementary (incompatible) when complete knowledge about 
the result of a measurement of the first means that we have absolutely no knowledge of the measure-
ment outcome of the second. In quantum formalism, the complementarity of observables is captured 
using the commutator of the respective operators: 

�𝐴̂𝐴, 𝐵𝐵�� = 𝐴̂𝐴𝐵𝐵� − 𝐵𝐵�𝐴̂𝐴 (85) 

 

For any non-commuting observables [𝐴̂𝐴, 𝐵𝐵�] ≠ 0, we can define an uncertainty relation for the expec-
tation values of measurements:   

ΔA� ⋅ Δ𝐵𝐵� ≥
1
2 |��𝐴̂𝐴, 𝐵𝐵��� (86) 

where (Δ𝐴̂𝐴)2 = �(𝐴̂𝐴 − �𝐴̂𝐴�)2� = �𝐴̂𝐴2� − �𝐴̂𝐴�2
. This means that a measurement in 𝐴̂𝐴 will randomly col-

lapse the wavefunction into a basis, which is guaranteed to not produce a fixed result in 𝐵𝐵� . Or, from 
an experimental point of view: the more precisely you measure 𝐴̂𝐴 the more random the results of a 
consecutive measurement of 𝐵𝐵�  will be. 

2.2 On quantum optics and the Nature of Photons 
The term “quantum information distribution” also implies that we are mostly concerned with the 
quantum properties of light, i.e. to the properties of photons. This is because photons are extremely 
robust and long-lived (after all we sometimes collect some them that are almost as old as the universe). 
They can also be easily created, manipulated, and detected and they are pretty damn fast. In other 
words: they are, in most cases, the best candidates of the distribution of quantum information.  

To be able to properly speak of photons, this in principal requires a full introduction of the quantum 
theory of light, as is classically taught in lectures such as quantum optics. For the sake of brevity, we 
shall not do this here but just point to the most important results: 

• The notion of modes carries over to quantum optics from classical electromagnetic theory in 
a 1:1 manner. All states of the (quantum) electromagnetic field can be decomposed into 
eigenmodes and the eigenmodes are calculated exactly the same way as they are calculated 
in classical theory (same scalar product, same eigenfrequency 𝜔𝜔, etc…). 

• The difference between electromagnetic theory and the quantum theory of light lies exclu-
sively in the expansion coefficients of each mode. In classical theory this expansion coefficient 
is a complex number 𝑎𝑎  (indicating amplitude and phase) and its conjugate 𝑎𝑎∗ , whereas in 
quantum theory it’s an operator 𝑎𝑎�  and its conjugate 𝑎𝑎�†  . 

• The operator 𝑎𝑎� itself is not Hermitian, hence not an observable. This means that it cannot be 
determined by a measurement (in more physical terms: we cannot measure the amplitude of 
the electric field and its phase at the same point in space at the same time or in yet other terms 
you can either precisely measure the electric or the magnetic field at one point in space but 
not both). 

• The absolute value of the operator 𝑎𝑎�†𝑎𝑎�  , however, is Hermitian and it’s a measure of the en-
ergy contained in the mode. More specifically we find its eigenvalues are 𝐸𝐸𝑛𝑛 = ℏ𝜔𝜔𝜔𝜔, where 
each value corresponds to an eigenstate of the quantum field |𝑛𝑛⟩. Each of these states is at-
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tributed to the excitation of the (classical) mode with 𝑛𝑛 photons. Each of these so-called num-
ber state |𝑛𝑛⟩ is orthogonal to all other number states of the (classical) mode |𝑛𝑛′ ⟩ such that 
⟨𝑛𝑛|𝑛𝑛′⟩ = 𝛿𝛿𝑛𝑛′𝑛𝑛. 

• The full state of the field in any one mode can be decomposed of the superpositon of these 
number states |𝜓𝜓⟩ = ∑ 𝑎𝑎𝑛𝑛|𝑛𝑛⟩𝑛𝑛 , where 𝑎𝑎𝑛𝑛 are complex numbers. 

Or in summary for quantum optics each classical mode is by itself a superposition of (frequency)-de-
generate photon number states; each of which can be considered as an individual mode in their own 
right. 

Each state of the (global) quantum field |𝜓𝜓⟩ is thus a vector in some high-dimensional Hilbert space 
|𝜓𝜓⟩ ∈ ℋ. It can be decomposed into the superposition of Basis states |𝑚𝑚⟩ with some arbitrary num-
bering scheme, such that |𝜓𝜓⟩ = ∑ 𝑎𝑎𝑚𝑚|𝑚𝑚⟩𝑚𝑚 . The basis vectors |𝑚𝑚⟩ may be any superposition of fre-
quency-photon-number eigenmodes. The only requirement is that the modes be orthogonal ⟨𝑛𝑛|𝑛𝑛′⟩ =
𝛿𝛿𝑛𝑛′𝑛𝑛 and the state itself must be normalized, e.g. ⟨𝜓𝜓|𝜓𝜓⟩ = 1, i.e. ∑ |𝑎𝑎𝑛𝑛|2 = 1.𝑛𝑛  

More info on the general nature of Quantum Optics can be found in chapter  1 of the appendix. 

2.3 Matrix representations 
With the orthonormal eigenvectors we can write any state vector in terms of the orthonormal eigen-
vector basis, i.e.:  

 |𝜓𝜓 ⟩ = ∑𝛼𝛼𝑛𝑛|𝑛𝑛⟩ 
⟨𝜓𝜓| = ∑𝛼𝛼𝑛𝑛

∗⟨𝑛𝑛| (87) 

where 𝛼𝛼𝑛𝑛 are complex coefficients. If we group the ket coefficients into a column vector  

 |𝜓𝜓 ⟩ →  

⎝

⎜⎜
⎛

𝛼𝛼1
𝛼𝛼2
𝛼𝛼3
𝛼𝛼4
.
. ⎠

⎟⎟
⎞

(88) 

and bra vectors into row vectors  

⟨𝜓𝜓| →  (𝛼𝛼1 ,𝛼𝛼2 , 𝛼𝛼3 , 𝛼𝛼4 , . , . . )∗ (89) 

 We can express the action of any operator 𝑂𝑂�  on a state vector as a simple matrix multiplication:  

𝑂𝑂�|𝜓𝜓⟩ → 𝑂𝑂𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗 (90) 

with a matrix with elements 𝑂𝑂𝑖𝑖𝑖𝑖 = ⟨𝑖𝑖|𝑂𝑂�|𝑗𝑗⟩  

𝑂𝑂� →  

⎣
⎢
⎢
⎢
⎡
𝑜𝑜11 ⋯ 𝑜𝑜1𝑗𝑗 … ⋮
𝑜𝑜21 … 𝑜𝑜2𝑗𝑗 … ⋮
𝑜𝑜31 … 𝑜𝑜3𝑗𝑗  … ⋮

⋮ … … ⋱ ⋮
⋮ ⋯ … … ⋱⎦

⎥
⎥
⎥
⎤

(91) 

The matrix elements of the Hermitian conjugate operator are then given by transposition and com-
plex conjugation 𝑂𝑂𝑖𝑖𝑖𝑖

′ =𝑂𝑂𝑗𝑗𝑗𝑗
∗ . In the eigenvector basis of the observable 𝐴̂𝐴, the matrix representation 𝐴𝐴𝑖𝑖𝑖𝑖 

is diagonal matrix:  
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𝐴̂𝐴 →  

⎣
⎢
⎢
⎢
⎡𝑎𝑎1 0 0 0 0

0 𝑎𝑎2 0 0 0
0 0 𝑎𝑎3  0 0
0 0 0 𝑎𝑎4 0
0 0 0 0 ⋱⎦

⎥
⎥
⎥
⎤

(92) 

which is called the spectral decomposition of the observable. In the following we will mostly consider 
cases in which possible measurement outcomes are discrete and finite {𝑎𝑎1 ,𝑎𝑎2,…𝑎𝑎𝑛𝑛 }, i.e. we will 
mostly deal with vectors of dimensionality N and matrices of dimensionality of N x N. In the matrix 
formalism we can also better interpret functions of operators, simply  

2.4 Mixed States and the density matrix 
So far, we have looked into the state of a particular quantum system per-se. In reality, however, we 
will typically make experiments on a series of more-or-less identical copies of a system, for example to 
generate some kind of statistical data. In practice it may well be that any quantum system is in fact far 
from reproducible and will generate a different quantum state for each repetition. In a summary, we 
will get an ensemble of quantum states, with some degree of statistical distribution between the dif-
ferent pure quantum states. 

In practice, many things can contribute to such effects: emitters may have multiple decay channels, 
dipole-vectors jitter in their orientation, various processes may lead to inhomogeneous broadening of 
spectroscopic lines, your helpful co-worker may occasionally change the temperature of some nonlin-
ear crystal, just because he can. And he will. Your hands may shake slightly upon adjustment of some 
setup, due to a lack of Thorlabs sending lab snacks. 

Such statistical ensembles of quantum states may be described with the help of the density operator  

𝜌𝜌� = �𝑝𝑝𝑖𝑖 𝜌𝜌�𝑖𝑖
𝑖𝑖

= �𝑝𝑝𝑖𝑖 |𝜓𝜓𝑖𝑖⟩⟨𝜓𝜓𝑖𝑖|
𝑖𝑖

(93) 

where 𝑝𝑝𝑖𝑖 is the probability that the quantum system is in state |𝜓𝜓𝑖𝑖 ⟩ and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1 and 𝜌𝜌�𝑖𝑖 = |𝜓𝜓𝑖𝑖 ⟩⟨𝜓𝜓𝑖𝑖| is 
the pure state density operator.  

In reality, we are, however more interested in measurables than in the quantum state itself. Any meas-
urable is, of course, defined by its measurement operator 𝐴̂𝐴 and can be characterized by expectation 
value 〈𝐴̂𝐴〉, which is defined as: 

 〈𝐴̂𝐴〉 = �𝑝𝑝𝑗𝑗  〈𝐴̂𝐴〉𝑗𝑗
𝑗𝑗

= � 𝑝𝑝𝑗𝑗  
𝑗𝑗

𝑇𝑇𝑇𝑇�𝜌𝜌�𝑗𝑗𝐴̂𝐴� = 𝑇𝑇𝑟𝑟 ��𝑝𝑝𝑗𝑗  
𝑗𝑗

𝜌𝜌�𝑗𝑗𝐴̂𝐴� = 𝑇𝑇𝑇𝑇(𝜌𝜌�𝐴̂𝐴) (94) 

Where Tr(. ) is the trace operator, i.e. the sum of the diagonal elements of the density matrix. We 
don’t show this relation here, please look it up if you are interested. It is noteworthy that 𝜌𝜌� (being a 
sum of obviously Hermitian 𝜌𝜌�𝑖𝑖 with real factors) can always be decomposed into eigenstates and ap-
propriate eigenvalues, such that: 

𝜌𝜌� = � 𝜆𝜆𝑖𝑖|𝜆𝜆𝑖𝑖⟩⟨𝜆𝜆𝑖𝑖 |
𝑖𝑖

(95) 

which is called the spectral decomposition of the density matrix. For example, a light source may emit 
50% horizontally polarized photons and 50% diagonally upwards polarized photons, thus: 
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𝜌𝜌� =
1
2 |ℎ⟩⟨ℎ| +

1
2 |𝑢𝑢⟩⟨𝑢𝑢|

=
1
2

[1 0]�1
0� +

1
4

[1 1] �1
1�

=
1
4

�2 + √2� �
1 + √2

�4 + 2√2 
 

1
�4 + 2√2 

�

⎣
⎢
⎢
⎢
⎡ 1 + √2
�4 + 2√2 

1
�4 + 2√2 ⎦

⎥
⎥
⎥
⎤

   +
1
4

�2 − √2� �
1 − √2

�4 + 2√2 

1
�4 + 2√2 

�

⎣
⎢
⎢
⎢
⎡ 1 − √2
�4 + 2√2 

1
�4 + 2√2 ⎦

⎥
⎥
⎥
⎤

=
1
4

�2 − √2� �
1 − √2

�4 + 2√2 
[1 0] �1

0
� +

1
�4 + 2√2 

[0 1] �0
1

��

(96) 

Which means that the spectrally decomposed version of this are again linear states of light. And this is 
surprisingly cumbersome. 

Also note that: 

𝑇𝑇𝑇𝑇(𝜌𝜌�) = 1 (97) 

And furthermore, for any quantum state |𝜓𝜓⟩, we get: 

⟨𝜓𝜓|𝜌𝜌�|𝜓𝜓⟩ ≥ 0 (98) 

i.e. the density operator is always positive. For pure quantum state vectors the density matrix reduces 
to a projection operator |𝜓𝜓𝑖𝑖 ⟩⟨𝜓𝜓𝑖𝑖|, for which the relation 𝜌𝜌�2 = 𝜌𝜌� is readily shown. This relation is useful 
as it allows us to quantify the “degree of mixedness”, i.e. the state purity: 

Purity(𝜌𝜌�) = Tr(𝜌𝜌�2) (99) 

The reader can readily verify that Purity�|𝜓𝜓𝑖𝑖 ⟩⟨𝜓𝜓𝑖𝑖 |� = 1 for a pure state and Purity(𝜌𝜌�𝑁𝑁 ) = 1�/𝑁𝑁 for a 
completely mixed state of dimension N. 

Note that the type of uncertainty here is a different one from the uncertainty introduced by the quan-
tum measurement process. Each of these effects may in fact be fully quantified and measured, this 
may just be practically impossible or impractical to deal with. Also note that each of the effects, which 
contribute to some kind of statistical uncertainty are themselves subject to the laws of quantum phys-
ics (even your co-worker is!). They derive from a pure state and if the system is large enough, they are 
unaffected by external noise. Thus, any mixed state can be purified into a pure state of a larger system. 
We won’t show the mathematical proof here. 

2.4.1 Entropy in Quantum Physics 
In classical physics there is an intricate relation between the notion of Entropy and Information in a 
System. If you are more interested in that please consult the seminal works by Landauer. We’ll just 
summarize here: the more entropy a system has, the more information it contains. I typically think 
about the room of my kids: if there are toys lying around everywhere there is lots of information in the 
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room (e.g. to describe which toy is where takes a loooong time), whereas if the room is cleaned up you 
can describe it with a single piece of info: everything is, where it belongs 6. 

We would now like extend this concept to quantum physics and the idea that a pure quantum state is 
a minimum information/entropy state a little more formally. For a pure state, where we have complete 
information of the preparation procedure, we expect a measure describing disorder (if you’re from a 
physics background) or information content (if you’re a telecom engineering background) to be mini-
mized. The von Neumann entropy is the extension of the concept of entropy from classical thermody-
namics (Gibbs entropy) or information theory (Shannon entropy) to the quantum realm. It is defined 
as:  

𝑆𝑆(𝜌𝜌�) = −Tr{𝜌𝜌� Log(𝜌𝜌�)} (100) 

It is straightforward to verify that the von Neumann entropy7 of a physical system prepared in any pure 
quantum state |𝜓𝜓⟩ is zero: 

𝑆𝑆(|𝜓𝜓⟩⟨𝜓𝜓|) =  0 (101) 

With the pure quantum states thus corresponding to minimum information. The state of maximum 
confusion, i.e. the opposite of a pure state, is the maximally mixed state in which each eigenstate of 
the system |𝑖𝑖⟩ appears with equal likelihood: 

𝜌𝜌�𝑀𝑀 =
1
𝑁𝑁

� |𝑖𝑖⟩⟨𝑖𝑖| 
𝑖𝑖

=
1�
𝑁𝑁

(102) 

where 1�  is the unit operator and N is the dimension of the state space. This is the state of maximum 
entropy in a Hilbert space of dimension 𝑁𝑁:   

𝑆𝑆(𝜌𝜌�𝑀𝑀) ∝  log(𝑁𝑁) (103) 

Hence you can see that the concept of the impurity of the state is closely related to the entropy of a 
quantum system. When you think about this for a while you can come to a few nifty conclusions on 
the relation of entropy, information and the nature of coincidences: 

There are two distinguishable types of randomness in a quantum measurement: If you make meas-
urements on a mixed state you have two contributions to the statistics of the measurement: the sta-
tistics of the quantum measurement process and the classical ensemble statistics that comes from the 
mixed’ness of the states. While the latter does contribute to the entropy the former does not. So, there 
is a conceptual difference between the two classes of randomness. Only classic-statistical randomness 
it attributed to entropy. The reason is: the quantum randomness can be reduced to zero by virtue of 
choosing a measurement operator, where the quantum state is an eigenstate. The selection of the 
(virtual) measurement operator, however, should not contribute to the entropy of a system. 

Quantum states have a fixed entropy when not measured: A pure state does not have entropy. Any 
quantum operation that does not affect the purity of a state thus does not increase entropy. We shall 
later see that unitary operator leaves the purity of a quantum state unaffected and that all non-meas-
urement operations on a quantum system belong to such unitary operators. In other words: unless 
you measure a quantum system, its entropy does not increase by its intrinsic evolution. 

 
6 My colleagues tell me this example shows more than anything else, that I am German. Alas. 
7 In the following the entropy is commonly defined in terms of the base-2 logarithm, so that a maximally mixed 
state of a two-level system corresponds to one bit of entropy. 
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A measurement operation can induce entropy and is thus irreversible if the measurement outcome 

was not yet known: As an example take a |𝜓𝜓⟩ = 1
√2

(|0⟩ + |1⟩) state, which is measured with the 𝑆𝑆𝑥𝑥 =
|0⟩⟨0| − |1⟩⟨1| operator (we shall later see, that this e.g. corresponds to a diagonally polarized photon 
measured with an HV-polarization beamsplitter). The result is a |0⟩ or a |1⟩ state, each with 50% prob-
ability, thus a mixed state with 𝜌𝜌� = 1/2(|0⟩⟨0| + |1⟩⟨1|) and an entropy of 𝑆𝑆(𝜌𝜌�) = 𝑇𝑇𝑇𝑇(𝜌𝜌� log 𝜌𝜌�) =
log(2) = 1 (e.g. this is a maximum entropy state). As we have increased the entropy we have made 
an irreversible operation. 

A measurement operation does not need to induce entropy and may thus reversible if the measure-
ment outcome was known to begin with: If the measurement had been in parallel with the state then 
we would have gotten one answer with certainty and retained a pure state. This operation is thus NOT 
irreversible. 

The last two statements have profound impact on our ability to clone a quantum state. You can imag-
ine that doing irreversible things to systems you’d like to clone is a big no-no. 

If the measurement apparatus extracts information from the quantum system. It must thus increase 
the quantum systems entropy: If the entire system (measurement apparatus plus quantum system) is 
adiabatic8 then the overall entropy of the system cannot have changed by the measurement and the 
measurement must have reduced the entropy of the measurement apparatus. In other words: The 
measurement has transferred a certain degree of order from the quantum system to the measurement 
apparatus (its quantum information being measured leaves the measurement apparatus in a more 
well-defined state as before; e.g. it shows a specific reading and not just noise) but the apparatus must 
likewise transfer disorder to the quantum system. In this respect the measurement process in quantum 
physics may be a bit less mysterious: it’s “simply” the random dephasing of a highly ordered state, 
when it gets in contact with a thermal bath of a large apparatus. 

2.5 Time evolution of quantum systems 
Let us consider an isolated quantum system that is prepared in a state |Ψ(𝑡𝑡 = 0)⟩. Depending on the 
dynamics of the system, the state of the system at some other time 𝑡𝑡 = 𝑇𝑇 is determined by some op-
erator acting on the initial state   

|Ψ(𝑇𝑇)⟩ = 𝑈𝑈�(𝑇𝑇)|Ψ(0)⟩ (104) 

we call  𝑈𝑈�(𝑡𝑡) the time-evolution operator. Typically, we would derive this from the equation of motion 
of the system, however the specifics are not of interest at the moment. We are merely interested in 
the key features of the time evolution operator, as imposed by the laws of quantum mechanics. First, 
the operator should be linear. This does not come as a surprise, since aside from the measurement 
process, all quantum mechanics is linear. Second, we want the information content of the system to 
remain unchanged. We saw, in the previous section, that a pure quantum state has zero entropy and 
we expect a completely isolated quantum system to maintain its entropy irrespective of its inner work-
ings. This immediately leads us to the following requirement: relationships between quantum states 
should be conserved. In particular, if two quantum states are unambiguously distinguishable by meas-
urement at time t=0, then this distinguishability should be maintained. In other words, the inner prod-
uct of vectors should be conserved:   

⟨Φ(𝑇𝑇)| Ψ(𝑇𝑇)⟩ = ⟨Φ(0)|𝑈𝑈�†(𝑇𝑇)𝑈𝑈�(𝑇𝑇)| Ψ(0)⟩ = ⟨Φ(0)|Ψ(0)⟩ (105) 

 
8 This can always be enforced if the apparatus is big enough or if you only consider sufficiently short times. 
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This will only be the case if the operator satisfies  

𝑈𝑈�†𝑈𝑈� = 1 (106) 

We call operators that fulfil this condition unitary; Time-evolution, or more generally any transfor-
mation of an isolated quantum state is given by unitary transformations. This has several implications, 
as we shall see in the following.   

As a final remark, we note that the quantities we access in an experiment are probabilities of certain 
measurement outcomes, or more generally, time-dependent observables:  

𝐴̂𝐴(𝑡𝑡) = ⟨𝜓𝜓| 𝑈𝑈�†(𝑡𝑡) 𝐴̂𝐴  𝑈𝑈�(𝑡𝑡) |𝜓𝜓〉 (107) 

We can describe the time evolution of a quantum system in several ways: We can attribute the time-
dependence entirely to the operators (this is called the Heisenberg picture), or we can keep the oper-
ators constant, and attribute the time-dependence to the quantum state (Schrödinger picture), or we 
do something in between, and attribute part of the time evolution to the state and the operators (for 
example in the Interaction picture).  

Specifically, in the Schrödinger picture the states evolve in time under the influence of the time evolu-
tion operator |Ψ(𝑡𝑡)⟩ = 𝑈𝑈�(𝑡𝑡)|Ψ(0)⟩, wherase in the Heisenberg picture the time-dependence is purely 
in the operators 𝑂𝑂�(𝑡𝑡) = 𝑈𝑈 � (𝑡𝑡)𝑂𝑂�𝑈𝑈�(𝑡𝑡). We will be using these pictures interchangeably- but more on 
this later. 

In quantum optics (or quantum physics in general) the free (time-)evolution of any system is deter-
mined by its Hamiltonian9 𝐻𝐻�. Using a few theorems and a bit nibbling around you indeed find that the 
system’s Hamiltonian 𝐻𝐻� and the systems evolution operator 𝑈𝑈�(𝑡𝑡) according to: 

𝑈𝑈�(𝑡𝑡) = 𝑒𝑒
𝑖𝑖
ℏ𝑡𝑡ℋ� (108) 

The general terminology here is that the Hamiltonian 𝐻𝐻� generates the evolution operator 𝑈𝑈�; it is thus 
called the “generator”. As the Hamiltonian is the measurable for the system’s energy it comes as no 
surprise to you that it is a Hermitian operator. The same way that an exponential of numbers (times 𝑖𝑖) 
relates purely real numbers to pure phases it relates Hermitian operators with Unitary operators. Thus, 
by construction we have guaranteed that 𝑈𝑈� is unitary, that its eigenvalues are phases and that its 
eigenmodes for a complete basis set. 

While we have been discussing time-evolution here, the same kind or argumentation here applies to 
any kind of reversible (lossless 10) and linear operation you can carry out on a quantum system. In the 
reality of quantum optics such an operation may be represented by any type of lossless optical system; 
e.g. phase shifters, beam splitters, polarization optics, holograms, fibers, gratings….you name them. 
They can all be represented by a unitary evolution operator 𝑈𝑈� , which connects the quantum system 
before |𝜓𝜓0⟩ and after |ψ1⟩ the interaction 

|ψ1⟩ = 𝑈𝑈�|𝜓𝜓0⟩ (109) 

Moreover, each of these evolution operators 𝑈𝑈� are generated by an interaction Hamiltonian: 

 
9 If you come from a classical world, then note that the Hamiltonian is basically a modified version of the evolu-
tion equation (e.q. maxwell equations or the Schrödinger equation) with exactly the same information content 
10 If your loss is not so bad as to make the modal structure of your system meaningless you can include loss here, 
too. 
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𝑈𝑈� = 𝑒𝑒𝑖𝑖ℋ� (110) 

Note that as opposed to the time-evolution Hamiltonian there is no time here and we have absorbed 
the ℏ into the definition of the interaction Hamiltonian for the sake of brevity. 

In the following chapter we shall introduce the qubit as the simplest possible quantum system and 
then discuss specific optical elements and how their properties are related to their interaction Hamil-
tonians, their evolution operators and what that all means physically. 

3 Photonic Qubits 
As we now have a fundamental understanding of how the 
world works on a quantum level, we shall dive deeper into 
the realm of quantum information. We do so by dumbing 
down all the concepts from the last chapter until nothing is 
left but the most simple quantum system, that you can still 
righteously call a quantum system. A quantum system which 
is composed of two modes and only two modes: the Qubit. 

3.1 The Qubit 
In the classical case we can encode information in any phys-
ical system that has at least two clearly distinguishable 
states – a bit. Such states may be a low or high voltage; a 
light being turned on or off or an apple having a bite taken 
out of it or not. In any case we can give these two specific 
states logical representations and call them:  
 

 |0⟩  ,  |1⟩ (111) 
 
Note that the formal similarity to quantum states is at this case purposefully selected but not yet ob-
vious. Let’s however call these the computational basis states (CBS). If these states are the basis states 
of an arbitrary quantum system, we have the possibility of introducing general superposition states, a 
qubit state 

 |𝜓𝜓⟩ =  𝛼𝛼|0⟩ + 𝛽𝛽 |1⟩ (112) 

which is something, that one, of course, cannot do with a classical bit. 

How can we physically realize Qubits in quantum photonics, which – as we recall – has the concept of 
modes and photons? The first option is to encode the qubit in the photon state of a single fixed mode 
with index 𝑖𝑖, which we shall call  𝑎𝑎�𝑖𝑖. This is known as the single-rail qubit representation. One possible 
implementation would be to differentiate between the single photon Fock-State and the two Photon 
Fock-State7 of the field in this particular mode:   

 |0⟩ ≡  |𝑛𝑛𝑖𝑖 = 1⟩ = 𝑎𝑎�𝑖𝑖
†|vac⟩

|1⟩ ≡  |𝑛𝑛𝑖𝑖 = 2⟩ = 𝑎𝑎�𝑖𝑖
†𝑎𝑎�𝑖𝑖

†|vac⟩
(113)   

Note that we have changed the notation of the number-States somewhat (they are now called |𝑛𝑛𝑖𝑖 =
1⟩, to differentiate between them (and the vacuum-state) and the CBS. That is, the computational basis 
state |1⟩ corresponds to a state of the field with a two photons in mode 𝑎𝑎�𝑖𝑖 and the state |0⟩ corre-
sponding to a state with one photon. Keep in mind the specific numbers are chosen arbitrary. 
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Some problems with single-rail qubit encoding is that photon loss will affect the qubit state in the sense 
of that it changes its value. Moreover, it requires a handle on detectors and even more so on optical 
elements and sources that create and/or mix different Fock-states at will. This is indeed difficult, and 
the loss issue is rather unpractical if we want to transmit the state over a long distance. Moreover, if 
you want to implement operations which work differently, depending on the state of the qubit you’ll 
have to resort to nonlinear optics and that’s generally a bugger. 

 
Fig. 5: Some important classes of photonic Qubits. 

The second, and more practical way, is to fix the number-state and use a pair of orthogonal field modes 
𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑗𝑗 to encode the qubit, which may be orthogonal polarization modes, plane waves of different 
orientation, Gauss-Laguerre modes of different order or azimuthal phase, different beam paths, dif-
ferent modes of a single waveguide or modes of different waveguides, or different wavelengths or 
different time-bins or anything that you can imagine11. This is called the dual-rail qubit representation. 
The Fock-state is typically fixed to a single photon state – everything else is complicated enough al-
ready: 

 |0⟩ ≡  |𝑛𝑛𝑖𝑖 = 1, nj = 0� = 𝑎𝑎�𝑖𝑖
†|vac⟩

|1⟩ ≡  |𝑛𝑛𝑖𝑖 = 0, nj = 1� = 𝑎𝑎�𝑗𝑗
†|vac⟩

(114) 

To make things less abstract, let’s take these modes to be orthogonal polarization modes. Two partic-
ularly popular polarization modes are the linear horizontal |𝐻𝐻⟩ and linear vertical |𝑉𝑉⟩ polarization (typ-
ically in reference to an optical table or a polarizing beam splitter): 

 |0⟩ ≡  |𝐻𝐻⟩ = 𝑎𝑎�𝐻𝐻
†|vac⟩

|1⟩ ≡  |V⟩ = 𝑎𝑎�𝑉𝑉
†|vac⟩

(115) 

But again, we will only use that to exemplify the physical meaning, of what we discuss here, and you 
can take any kind of qubit and apply the discussion to this qubit. 

 
11 In fact, we need not limit ourselves to two basis vectors but could take more. These states are then call qu-dit 
states. 
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3.2 The Bloch Sphere 
The first thing we do is a bit of bookkeeping. We have introduced the expansion coefficient 𝛼𝛼 and 𝛽𝛽 
which both are, of course complex numbers. However, this is in in fact a bit overly complex and we can 
describe the entire state space with only two real numbers, which represent the latitude Θ (counted 
from the north pole to the south pole) and longitude 𝜙𝜙 of an imaginary sphere, according to: 

 |𝜓𝜓 ⟩ =  𝛼𝛼|𝐻𝐻⟩ + 𝛽𝛽 |𝑉𝑉⟩ = cos
Θ
2  |𝐻𝐻⟩ + e𝑖𝑖𝑖𝑖sin

Θ
2  |𝑉𝑉⟩ (116) 

Where we have used the fact that 𝛼𝛼2 + 𝛽𝛽2 = 1 as a justification to introduce the polar angle Θ and 
the azimuthal angle 𝜙𝜙 (latitude) and have also utilized the fact that a cumulative phase is irrelevant. It 
thus becomes clear that the state of any polarization qubit and therefore ANY qubit state altogether 
can be represented as a point on the surface of the Sphere; the infamous Bloch Sphere according to 
the equation: 

𝑥𝑥 = 𝑟𝑟 sinΘ cos 𝜙𝜙
𝑦𝑦 = 𝑟𝑟 sin Θ sin𝜙𝜙
𝑧𝑧 = 𝑟𝑟 cos Θ (117)

 

Where 𝑟𝑟 = 1 (we’ll se later, that 𝑟𝑟 ≠ 1) also has a physical meaning. 

 

 
Fig. 6: Representation of a qubit on the Poincarè sphere. The Bloch-Sphere itself is created with IBM’s QISKIT library. 

On the Bloch sphere the state  |0⟩ = |𝐻𝐻⟩  is represented by the north pole and |1⟩ =  |𝑉𝑉⟩ is repre-
sented by the south pole, e.g. the CBS are exclusively along the 𝑧𝑧-axis of the Bloch sphere. The other 
axes have a profound meaning, too: The points on the x-axis, e.g. those on the equator facing the 
viewer or point straight away also belong to linear polarization, namely to the diagonal basis vectors 
 | +⟩ and  | −⟩ , which can be constructed using the Hadamard operator 𝐻𝐻�: 
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� | +⟩
 | −⟩� = 𝐻𝐻� � |0⟩

 |1⟩� =
1

√2
 �1 1

1 −1� � |0⟩
 |1⟩� (118) 

Here the Hadamard operator is given in its matrix representation (with the CBS as an expansion basis) 
as: 

𝐻𝐻� =
1

√2
 �1 1

1 −1� (119) 

In other words: 

|+⟩ =
1

√2
(|0⟩ + |1⟩)  |−⟩ =

1
√2

(|0⟩ − |1⟩)  (120) 

We will later see that find that such an action can be connected with the interaction Hamiltonian of a  
linear optical element. Of course, we know, that in this case of a polarization photon the element is a 
Half-Wave-Plate with its fast axis rotated 22.5 degrees with respect to the horizontal. In fact, we can 
connect any set of linearly polarized states to any other using a half-wave plate with the appropriate 
angle setting. For spatial modes the appropriate optical element is a 50/50-Beamsplitter. 

Another set of special points on the Bloch sphere are those, where the sphere intersects the 𝑦𝑦-axis. 
This is where the left-handed and right-handed circular basis states  |𝐿𝐿⟩  and  |𝑅𝑅⟩   (sometimes also 
called | ↺⟩ and | ↻⟩)are located. They can also be constructed from  |𝐻𝐻⟩  and  |𝑉𝑉⟩ according to: 

� |𝐿𝐿⟩
 |𝑅𝑅⟩� =

1
√2

 �1 𝑖𝑖
1 −𝑖𝑖� � |0⟩

 |1⟩� = 𝑆̂𝑆𝐻𝐻� � |0⟩
 |1⟩� (121) 

In other words: 

|𝐿𝐿⟩ =
1

√2
(|0⟩ + 𝑖𝑖|1⟩)  |−⟩ =

1
√2

(|0⟩ − 𝑖𝑖|1⟩)  (122) 

The procedure makes used of the now well-established Hadamard Gate 𝐻𝐻� and the phase gate 𝑆̂𝑆: 

𝑆̂𝑆 = �1 0
0 𝑖𝑖

� (123) 

Again, we can attribute this kind of transformation to an interaction Hamiltonian and a real kind of 
physical beam-splitter. In case of a polarization qubit 𝑆̂𝑆 is represented by a quarter wave plate with 
appropriate setting and in case of two spatial modes this is a mode-selective phase shifter. 

To generalize this somewhat: a half-wave plate rotates the states, changes the longitude Θ and leaves 
the latitude 𝜙𝜙 fixed, i.e. it rotates a state perpendicular to the equator, whereas a quarter-waveplate 
changes the latitude 𝜙𝜙 and leaves the longitude Θ fixed, i.e. it rotates a state clockwise or anticlock-
wise parallel to the equator. Using two of these elements you can connect any two points of the sphere 
and change any polarization state into any other. That’s also why you cannot buy 1/3-wave-plates or 
0.93-wave plates; you can simply construct them from a half- and a quarter-wave plate. 
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Figure 1: Actions of the 𝐻𝐻�-gates (Half-Wave-Plate) on a QuBit and 𝑆̂𝑆-gate (Quarter Wave Plate) on a QuBit, inter-
preted as rotations on the Bloch-sphere. 

An important thing to note about the three basis choices is that they are not orthogonal, in fact, they 
cannot be, because each of them is complete. One get’s |⟨𝐻𝐻|𝑈𝑈⟩|2 = |⟨𝐻𝐻|𝐷𝐷⟩|2 = |⟨𝐻𝐻|𝑅𝑅⟩|2 =
|⟨𝐻𝐻|𝐿𝐿⟩|2 = 1

2
≠ 0. When we measure a photon encoded as  |𝐷𝐷⟩ in the basis (H/V) we are equally likely 

to get one result or the other, the (H/V) and (U/D) basis are therefore called mutually unbiased. The 
same applies to the (H/V) and (L/R) basis as well as the (U/D) and (L/R) basis. This is represented by 
the fact that these three sets span the state space’s coordinate system as mutually orthogonal axes. I 
am leaving out the exact proof here, but from this you can imagine that the three types of bases intro-
duced here are in and by themselves complete in the sense that you cannot find another basis set, 
which is mutually unbiased to the others. 

From a standpoint of quantum information processing and of the three basis or in fact any other basis 
may be used to encode |0⟩ and |1⟩ states and we shall later see that some protocols actually only work 
if there is a certain degree of ambiguity as to this question. 

3.3 Observables and the Pauli-Matricies 
Now that we can describe the state of QuBits and understand the way that we can manipulate them, 
we must expand on the understanding of their measurement. For the sake of simplicity we shall iden-
tify the basis vectors as the eigenstates of the respective projection operators and construct measure-
ment operators from the individual projectors, with measurement values 1, for the first basis vector 
and measurement value −1 for the second basis vector. The construction is particularly simple for the 
computations basis set (CBS) |0⟩ and |1⟩ (or |𝐻𝐻⟩ and |𝑉𝑉⟩): 

𝜎𝜎�3 = 𝜎𝜎�𝑧𝑧   =   |0⟩⟨0|− |1⟩⟨1| = �1 0
0 −1

� (124) 

Where the matrix representation is done in the CBS. The operator is termed the Pauli-𝑧𝑧 or third Pauli 
operator, and the alphabetic naming takes its name from the corresponding axis of the Bloch sphere. 

Of course, we can construct similar measurement operators from the other two sets of basis vectors, 
namely: 
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𝜎𝜎�1   = 𝜎𝜎�𝑥𝑥   =  | +⟩⟨+|−| −⟩⟨−|

=
1
2

[(|0⟩ + |1⟩)(⟨1| + ⟨0|) − (|0⟩ − |1⟩)(−⟨1| + ⟨0|)]

=
1
2

[|0⟩⟨1| + |0⟩⟨0| + |1⟩⟨1| + |1⟩⟨0 + |0⟩⟨1| − |0⟩⟨0| − |1⟩⟨1| + |1⟩⟨0|]

=  �0 1
1 0

�

𝜎𝜎�2   =  𝜎𝜎�𝑦𝑦   =  |𝑅𝑅⟩⟨𝑅𝑅|− |𝐿𝐿⟩⟨𝐿𝐿|

= � 0 𝑖𝑖
−𝑖𝑖 0�

(125) 

Frequently there is a fourth Pauli-Operator 𝜎𝜎�0 = 1� introduced, which is the unit matrix. All for of these 
are obviously Hermitian, because they constitute measurements, e.g.: 

𝜎𝜎�𝑖𝑖 = 𝜎𝜎�𝑖𝑖
† (126) 

We also note that: 

𝜎𝜎�𝑖𝑖 𝜎𝜎�𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝕀𝕀 + 𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎�𝑘𝑘 (127) 

where 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  ist the Levi-Civita-Symbol or antisymmetric epsilon tensor. 

Any linear operator 𝑀𝑀�  on the qubit state space (e.g. any operator that acts on a two-dimensional Hil-
bert space and whose result still is in that space)  can be constructed from a superposition of the Pauli-
Operators: 

𝐴̂𝐴 = � 𝑎𝑎𝑖𝑖 𝜎𝜎�𝑖𝑖
𝑖𝑖=0…3

(128) 

If the expansion coefficients are real, then the resulting operator 𝐴̂𝐴 is Hermitian, i.e. it belongs to a 
measurement. In other words: any quantum measurement you can make on a qubit is a superposition 
of the Pauli measurement operators, or, from an optics point of view a polarization measurement. 
Conversely, if you can make Pauli-Measurements, you can make any possible measurement. 

There is, in fact, an even stronger statement to this claim. The Pauli matrices 𝜎𝜎�𝑥𝑥 and 𝜎𝜎�𝑦𝑦 can be con-
structed from 𝜎𝜎�𝑧𝑧 and the Hadamard operator 𝐻𝐻� (a 22.5° half wave plate) and a Hadamard plus Phase 
Shifter 𝑆̂𝑆𝐻𝐻� (HWP plus QWP), according to the relations: 

𝜎𝜎�𝑥𝑥 = 𝐻𝐻�𝜎𝜎�𝑧𝑧𝐻𝐻�𝜎𝜎�𝑦𝑦 = 𝑆̂𝑆𝐻𝐻�𝜎𝜎�𝑧𝑧𝐻𝐻�𝑆̂𝑆 † (129) 

This means that you can make all three basis measurements with the help of a 𝜎𝜎�𝑧𝑧-measurement and a 
set of waveplates (beamsplitters). Experimentally this appears as somewhat of a no-brainer: 
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Figure 2: Experimental implementation of all three Basis measurements for Polarization QuBits using projection 
elements and a 𝜎𝜎𝑧𝑧 measurement. 

The three types of basis state sets are mutually unbiased. You can see this relation by looking at the 
commutation relation of their observables 𝜎𝜎�1,2,3, for which the relation 

[𝜎𝜎�𝑖𝑖 , 𝜎𝜎�𝑗𝑗] = 2𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎�𝑘𝑘 (130) 

Hold. Again here 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 is the Levi-Civita-Symbol or antisymmetric epsilon tensor. Thus the Pauli opera-
tors are mututally complementary, in the sense of that complete knowledge about the result of a 
measurement of the first means that we have absolutely no knowledge of the measurement outcome 
of the second. 

In other words: if you decide to measure your Qubit |𝜓𝜓⟩ in the computational basis (we apply the 
𝜎𝜎�𝑧𝑧 operator) then there is absolutely no information left of the qubit, which you could measure in the 
other bases | +/−⟩ or |𝐿𝐿/𝑅𝑅⟩. Or, to put it in an even more blunt language: although the state of a qubit 
is characterized by two real numbers (e.g., the latitude and longitude on the Bloch-Sphere) you can 
only ever hope to extract a single bit of information from them. This is a profound finding, which cannot 
be stressed enough, because it limits the amount of classical information, which can be extracted from 
a quantum system to a point, were you can – upon a single measurement – never be quite certain as 
to the real state of the QuBit before the measurement. This potentially unintended loss of quantum 
information in the classical measurement process is the resource that quantum cryptography schemes 
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draw their strength from, it is also a source of challenges, if instead, complex quantum information is 
supposed to be transmitted and must be protected against destruction. 

3.4 Single Photon Operations, Gates, Elements and Hamiltonians 
In the last section we have used some gut feeling to map both unitary operators, such as 𝐻𝐻� and 𝑆̂𝑆  as 
well as Hermitian operators such as the Pauli Matricies onto optical elements. By doing so we have 
basically used our understanding of how polarization elements work on classical Jones vectors and 
then we have hoped and prayed that this description also holds in the realm of single photons, which 
we are discussing in the context of single rail photons.  

Any optical element which works differently on two different classical modes 𝑀𝑀0 and 𝑀𝑀1 affects the 
entire quantum state of these modes 𝑎𝑎�0 and 𝑎𝑎�1 and not just the photon number states |𝑛𝑛0 = 1⟩ and 
|𝑛𝑛1 = 1⟩ that we have chosen to use for our dual-rail representation of the qubit. We therefore have 
to invoke the apparatus introduced in chapter 2.5 on time evolution to see how the optical element in 
question works on the quantum state. We shall then see that a large class of linear operators actually 
does not mix the number states, meaning that its action is solely and completely confined to the Hil-
bert-Subspace of the Qubit and that we can simply represent it by a 2x2-Jones-Type-matrix there, 
which, as discussed above, can be created by a complex superposition of the Pauli operators.  

3.4.1 The Phase Shifter / Phase Gate 
The first optical element is the antisymmetric phase-shifter. E.g. it adds a positive phase to the 𝑀𝑀0 
mode and a negative phase to the 𝑀𝑀1 mode. Its generation Hamiltonian is expressed in terms of the 
mode operators, e.g. how they act of the field itself in the two modes that we have chosen for our 
two-rail representation of the qubit. Its Hamiltonian is (we shall see below that this actually matches 
our expectation, of what a phase shifter does in the context of a Qubit): 

ℋ�1(𝜙𝜙) = ℏ𝜙𝜙(𝑎𝑎�0
†𝑎𝑎�0 − 𝑎𝑎�1

†𝑎𝑎�1) (131) 

There is a deeper physical meaning in this formula. In quantum optics it is introduced that the 𝑎𝑎�𝑖𝑖
† and 

𝑎𝑎�𝑖𝑖  operators correspond to the creation and destruction of a photon respectively. So, what the phase 
shifter does is: it destroys a photon in mode 𝑖𝑖 and instantly recreates it, all the while adding (substract-
ing) an action of ℏ𝜙𝜙 onto this photon, corresponding to the appropriate phase shift. 
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Fig. 7: Conceptual drawing of an antisymmetric phase shifter. Top row: the action of the antisymmetric phase 
shifter on the quantum fields of the two modes 𝑀𝑀0 and 𝑀𝑀1. Displayed is the state of the quantum field before the 
interaction, the Feynman-Diagram of the interaction itself and the resulting state of the quantum field. The inter-
action is equal for all number states (i.e. there are 𝑚𝑚 identical Feynman diagrams for every number state!). The 
number states used for our Qubit are marked in yellow. Bottom row: The action of the an antisymmetric phase 
shifter as experienced by the Qubit alone. 

The Hamiltonian ℋ�1(𝜙𝜙) can of course be used to generate the evolution operator 𝑈𝑈�1(𝜙𝜙): 

𝑈𝑈�1(𝜙𝜙) = exp�
𝑖𝑖
ℏ ℋ�1(𝜙𝜙)� = exp�𝑖𝑖𝜙𝜙(𝑎𝑎�0

†𝑎𝑎�0 − 𝑎𝑎�1
†𝑎𝑎�1)� (132) 

𝑈𝑈�1(𝜙𝜙) connects the quantum states of the field 𝑎𝑎�0,1 in the modes corresponding to the qubit states 
|0⟩ and |1⟩ BEFORE the phase shifter with the quantum states 𝑏𝑏� 0,1 in the modes AFTER the phase 
shifter. We can simply calculate its effect on the quantum state of the field according to: 

𝑈𝑈�1(𝜙𝜙)𝑎𝑎�𝑗𝑗𝑈𝑈�1
†(𝜙𝜙) = exp�−

𝑖𝑖
ℏ ℋ�1(𝜙𝜙)� 𝑎𝑎�𝑗𝑗 exp �

𝑖𝑖
ℏ ℋ�1(𝜙𝜙)�

= 𝑎𝑎�𝑗𝑗 + �−
𝑖𝑖
ℏ

� �ℋ�1(𝜙𝜙),𝑎𝑎�𝑗𝑗� +
1
2

�−
𝑖𝑖
ℏ

�
2

�ℋ�1(𝜙𝜙),�ℋ�1(𝜙𝜙),𝑎𝑎�𝑗𝑗�� + ⋯

= �
𝑎𝑎�𝑗𝑗 + (−𝑖𝑖𝑖𝑖)𝑎𝑎�𝑗𝑗 +

1
2

(−𝑖𝑖𝑖𝑖)2𝑎𝑎�𝑗𝑗 + ⋯

𝑎𝑎�𝑗𝑗 + (𝑖𝑖𝑖𝑖)𝑎𝑎�𝑗𝑗 +
1
2

(𝑖𝑖𝑖𝑖)2𝑎𝑎�𝑗𝑗 + ⋯
⇔ 𝑗𝑗 = 0

𝑗𝑗 = 1

= �
𝑎𝑎�𝑗𝑗exp (−𝑖𝑖𝑖𝑖)
𝑎𝑎�𝑗𝑗exp (𝑖𝑖𝑖𝑖) ⇔ 𝑗𝑗 = 0

𝑗𝑗 = 1
≡  𝑏𝑏�𝑗𝑗

(133) 

Note that we have used a few fancy equations from quantum optics (e.g. the commutation relations 
for �ℋ�1(𝜑𝜑),𝑎𝑎�𝑗𝑗�) and the so-called Baker-Canbell-Hausdorff-theorem to get from one line to the next. 

As this relation is purely linear in the operators, we can simply express it as a matrix: 
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�𝑏𝑏�0

𝑏𝑏� 1
� = �exp (−𝑖𝑖𝑖𝑖) 0

0 exp (𝑖𝑖𝑖𝑖)��𝑎𝑎�0
𝑎𝑎�1

� (134) 

The states before and after the optical element are related in a linear manner (e.g with numbers only 
in the matrix). This means that we don’t mess around with the number state composition of the quan-
tum states of both modes (except for that specific phase term). (e.g. any |𝑛𝑛0 = 1⟩  state is transformed 
according to |𝑛𝑛0 = 1⟩ →   exp (−𝑖𝑖𝑖𝑖)|𝑛𝑛0 = 1⟩ but there is no intermixing with any other number state 
(e.g. the |𝑛𝑛0 = 2⟩ state. Or in other words: the so-defined phase shifter operation does ONLY and ONLY 
act on our |0⟩ and |1⟩ states and we quite conveniently read off: 

|𝜓𝜓′⟩ = 𝑈𝑈�1(𝜙𝜙)|𝜓𝜓⟩ = �𝑒𝑒𝑖𝑖𝜙𝜙 0
0 𝑒𝑒−𝑖𝑖𝜙𝜙 �|𝜓𝜓⟩ (135) 

Where |𝜓𝜓⟩ is of course the state of our qubit. As we had discussed above there is necessarily a relation 
with the Pauli operators, and in this case it’s simply: 

𝑈𝑈�1(𝜑𝜑) = exp(−𝜙𝜙𝜎𝜎�1) = �𝑒𝑒𝑖𝑖𝜙𝜙 0
0 𝑒𝑒−𝑖𝑖𝜙𝜙 � (136) 

Or in other words: the Pauli-Operator 𝜎𝜎�1 generates the antisymmetric phase shift gate which can be 
implemented by an antisymmetric beam splitter. 

Two special cases of the phase shifter are the phase gate S�   and the 𝜋𝜋/8-gate 𝑇𝑇�, which are defined as: 

S� = exp�
𝑖𝑖𝑖𝑖
4

� �𝑒𝑒−𝑖𝑖𝜋𝜋
4 0

0 𝑒𝑒𝑖𝑖𝜋𝜋
4

� = �1 0
0 𝑖𝑖

� (137) 

and 

𝑇𝑇� = exp�
𝑖𝑖𝑖𝑖
8

� �𝑒𝑒−𝑖𝑖𝜋𝜋
8 0

0 𝑒𝑒𝑖𝑖𝜋𝜋
8

� = �1 0
0 𝑒𝑒𝑖𝑖𝜋𝜋

4
� (138) 

Obviously, we have 𝑇𝑇� 2 = S� , 

Note that any type of phase shift on the Bloch sphere is a mere rotation about the polar axis. E.g. it 
does not change a |0⟩ or a |1⟩ state except for a global phase shift, which is of no consequence. 

3.4.2 Beam Splitter 
Now we may proceed to a more general optical element, the beam splitter. We can model the beam 
splitter in the exact same way. We guess what the Hamilton operator should look like, then derive the 
evolution operator, invoke the time evolution mechanism on that operator, see if it mixed the number 
states and then understand what that does to the qubit.  

The beam splitter obviously has the effect of mixing the modes and we can create an interaction Ham-
iltonian by simply mixing them, thus 

ℋ� (𝜃𝜃,𝜑𝜑) = ℏ𝜃𝜃 exp(𝑖𝑖𝑖𝑖) 𝑎𝑎�0
†𝑎𝑎�1 + ℏ𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) 𝑎𝑎�1

†𝑎𝑎�0 (139) 

You may wonder, why we chose this specific form. In fact, this is the most general bi-linear two-mode 
mixing Hermitian operator possible. I.e. we can only make the Hamiltonian Hermitian, if the creation 
and annihilation operators appear in pairs and if they also appear in sum with their Hermitian conju-
gates. In a more physical interpretation. The first term of this operator destroys photons in the |1⟩ 
mode and creates them in the |0⟩ mode with a probability, which is related to 𝜃𝜃 and a phase-shift 
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which is related to 𝜑𝜑. The second term does exactly the same, but while destroying a photon in the |1⟩  
mode and creating one in the |0⟩ mode. 

 

Fig. 8: A beam splitter together with its Feynman-Representation. 

Applying the same steps as before we can then also find the appropriate transformation matrix , which 
connects the state of the modes: 

�𝑏𝑏� 0

𝑏𝑏�1
� = � cos 𝜃𝜃 −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃

−𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 cos 𝜃𝜃
� �𝑎𝑎�0

𝑎𝑎�1
� (140) 

Again, same thing as before. The operation of the beam splitter does not mix up the different number 
states, e.g. its operation on the 𝑛𝑛 = 1 qubit can be described with the same matrix, e.g. 

|𝜓𝜓′⟩ = � cos 𝜃𝜃 −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃
−𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 cos 𝜃𝜃

� |𝜓𝜓⟩ (141) 

This matrix can also be created from the superposition of Pauli operators, but we shall not go into 
details here. 

We also combine the (symmetric) phase shifter with the beam splitter and obtain the most general 
case for a linear optical element (in the strict sense) with the Hamiltonian 

ℋ� (𝜃𝜃, 𝜑𝜑) =
ℏ𝜙𝜙
2 𝑎𝑎�1

†𝑎𝑎�1 −
ℏ𝜙𝜙
2 𝑎𝑎�2

†𝑎𝑎�2 + ℏ𝜃𝜃 exp(𝑖𝑖𝑖𝑖) 𝑎𝑎�1
†𝑎𝑎�2 + ℏ𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) 𝑎𝑎�2

†𝑎𝑎�1 (142) 

And the transformation matrix 

�𝑏𝑏�0

𝑏𝑏� 1
� = � 𝑒𝑒

𝑖𝑖𝑖𝑖
2 cos 𝜃𝜃 −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 sin𝜃𝜃

−𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 𝑒𝑒−
𝑖𝑖𝑖𝑖
2 cos 𝜃𝜃

� �𝑎𝑎�0
𝑎𝑎�1

� . (143) 

Obviously, this also leave the number of photons unaffected and we may use the matrix directly on 
the qubit state: 

|𝜓𝜓′⟩ = � 𝑒𝑒
𝑖𝑖𝑖𝑖
2 cos 𝜃𝜃 −𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 sin 𝜃𝜃

−𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖 sin 𝜃𝜃 𝑒𝑒−
𝑖𝑖𝑖𝑖
2 cos 𝜃𝜃

� |𝜓𝜓⟩ (144) 

Which is the most general representation of any linear two mode mixing processes, represented by 
the most general unitarian 2x2 matrix possible. This means that any lossless, photon-number-conserv-
ing, linear mode transformation between pairs of modes can be written as such a matrix. This also 
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means that a combination of beam-splitters (waveplates) and a phase shifter can create ANY possible 
lossless, linear, photon-number-conserving interaction between two modes there is. This also means 
that ANY combination of optical elements, which mixes two modes can be replaced by a beam-splitter 
and a phase-shifter. 

3.4.3 Mach-Zehnder-Interferometer 
The action of the multiple interaction Hamiltonians can of course be "stacked" to form complex optical 
elements. Here is a look at a balanced Mach-Zehnder interferometer, i.e. a stacked 50/50- beam split-
ter and single mode phase shifter and a 50/50-beam splitter.  

�𝑏𝑏� 0

𝑏𝑏� 1
� =

1
2 � 1 1

−1 1� �1 0
0 𝑒𝑒𝑖𝑖𝑖𝑖��1 −1

1 1 ��𝑎𝑎�0
𝑎𝑎�1

� (145) 

 
As expected, we see that the total number of photons is preserved but there is a shift of contrast (we 
will later see, that the 𝑏𝑏�0

†𝑏𝑏�0 − 𝑏𝑏�1
†𝑏𝑏�1-terms are indeed related to interference, which is enacted by the 

phase shift 𝜙𝜙.  

Photon number conservation:𝑏𝑏�0
†𝑏𝑏�0 + 𝑏𝑏�1

†𝑏𝑏�1 = 𝑎𝑎�0
†𝑎𝑎�0 + 𝑎𝑎�1

†𝑎𝑎1

Interference:𝑏𝑏�0
†𝑏𝑏�0 − 𝑏𝑏�1

†𝑏𝑏�1 = cos 𝜙𝜙 �𝑎𝑎�0
†𝑎𝑎�0 + 𝑎𝑎�1

†𝑎𝑎1� − 𝑖𝑖 sin 𝜙𝜙 �𝑎𝑎�0
†𝑎𝑎�1 + 𝑎𝑎�1

†𝑎𝑎0�
(146) 

 
Fig. 9: A Mach-Zehnder Interferometer.. 

3.4.4 Squeezing Operators 
This is, however, by no means a complete discussion of all possible interaction Hamiltonian and pro-
cesses, which may act on a single photon. Note from above that we have also said “linear” optical 
element. This means “an optical element, which relies exclusively on two-wave mixing, e.g. linear op-
tics”. This is represented by 𝑎𝑎�1

†𝑎𝑎�2 pairs, where photon annihilation and photon creation are balanced. 
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Fig. 10: Feynman representation of a mode squeezing operator. The green interaction paths are most commonly 
realized by a three photon interaction, where the resulting photon is discarded. 

You can, however, retain mathematically linear operators by introducing elements such as 𝑎𝑎�1𝑎𝑎�2 into 
the Hamiltonian (simultaneous annihilation) or a similar pair of creation operators (simultaneous cre-
ation). These lead to squeezed states of light and do not preserve the number of photons. They thus 
leave the realm of the dual-rail qubit and don’t belong to the canonical 2x2 matrix type of operators. 

As optical elements can be implemented using nonlinear optics (e.g. sum frequency generation of a 
pump photon destroys a signal and an ideal photon at the same time). Hence, they are subject to 
nonlinear optics. In an often-applied approximation the pump photon (or pump photons) is assumed 
to be classical and the resulting interaction Hamiltonian is still linear. This concept will be discussed in 
more detail in the context of SPDC-sources for entangled photon pairs. 

3.4.5 Some more notes 
• Any N-port interferometer (i.e. an arbitrary 𝑛𝑛 × 𝑛𝑛  Unitary Matrix) can also be constructed 

from a series of 2-port beam-splitters and phase shifters  any linear optical element for any 
number of modes can be thought of as a (possibly very complicated) set of beam-splitters and 
phase-shifters 

• we have only considered two-mode interaction, i.e. Hamiltonians which consist of sums of bi-
linear entries. This results in evolution operators 𝑈𝑈� whose action on the modes, i.e. 𝑈𝑈�𝑎𝑎�𝑗𝑗𝑈𝑈�† can 
be simplified to a Bogolioubov transformation and an appropriate matrix 𝛼𝛼𝑗𝑗𝑗𝑗 �𝑈𝑈��. This is no 
longer possible, if the summand of the interaction Hamiltonian consists of more then two en-
tries, e.g. of the type 𝑎𝑎�𝑗𝑗𝑎𝑎�𝑙𝑙𝑎𝑎�𝑘𝑘 as is the case for nonlinear optics, this has two profound conse-
quences 

o the matrix 𝛼𝛼𝑗𝑗𝑗𝑗 �𝑈𝑈�� can be diagonalized, i.e. there is a basis in which the action of the 
linear optical element is trivial. This means that linear optical element are no proper 
interactions in the strict sense at all. 

o any non-trivial interaction of photons requires multi-photon, i.e. nonlinear, interac-
tions. Quantum photonics is thus deeply intertwined with nonlinear optics. 
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3.5 Mixed Single-Qubit States  
In 2.4 we have introduced mixed states as a representation for the statistical uncertainty of a quantum 
field. Of course, such kind of uncertainty may also be attributed to the state of a (polarization) qubit. 
It may i.e. be produced by a light source, which does not always produce a fixed polarization, either by 
competing physical processes (e.g. a thermal emitter) or by statistical variations of the source over 
time (e.g. random/thermal reorientation of a dipole emitter or someone maliciously kicking your laser 
from time to time). Consider the mixed state: 

𝜌𝜌� = 𝑝𝑝|𝐻𝐻⟩⟨𝐻𝐻|+(1 − 𝑝𝑝)|𝑉𝑉⟩⟨𝑉𝑉| (147) 

If the state was pure, e.g. 𝑝𝑝 = 1, then the density matrix would correspond to the pure state |𝐻𝐻⟩  and 
its representative point on the equator of the Poincaré-Sphere. The same is true for 𝑝𝑝 = 0. The mixed 
state above can thus be thought of as lying on the connection line between the |𝐻𝐻⟩  and the |𝑉𝑉⟩ point, 
with a fraction of 𝑝𝑝 of the way from |𝑉𝑉⟩ to |𝐻𝐻⟩. Thus, mixed states lie inside the Poincaré sphere and 
the center of the sphere at 𝜌𝜌�Unpol = 1

2
|𝐻𝐻⟩⟨𝐻𝐻| + 1

2
|𝑉𝑉⟩⟨𝑉𝑉| is the maximally mixed state, i.e. completely 

unpolarized light. 

It is also obvious that any point inside the Poincaré-Sphere may be reached with multiple mixtures. As 
one example, 𝜌𝜌�Unpol = 1

2
|𝑅𝑅⟩⟨𝑅𝑅| + 1

2
|𝐿𝐿⟩⟨𝐿𝐿| = 1

4
|𝑅𝑅⟩⟨𝑅𝑅| + 1

4
|𝐿𝐿⟩⟨𝐿𝐿|+1

4
|𝑈𝑈⟩⟨𝑈𝑈| + 1

4
|𝐷𝐷⟩⟨𝐷𝐷| may be decom-

posed into mixtures of left- and right handed circular states or mixtures of left- and right handed and 
up. A density matrix decomposition of any point on inside the Poincaré-sphere is therefore never 
unique. It is, however, conceptually simple to use the three orthogonal axes to define the position of 
any point, which we have seen above are defined by the Pauli-Matrices. Thus, one can define any 
mixed polarization state (and thus any mixed Qubit state) according to: 

𝜌𝜌� =
1
2

(𝕀𝕀 + 𝑠𝑠 ⋅ 𝜎𝜎�) (148) 

where 𝑠𝑠  ist the so-called Stokes-Vector, with each entry 𝑠𝑠𝑖𝑖 ∈ (−1,1). We immediately note that 
𝑇𝑇𝑇𝑇(𝜌𝜌�) = 1 is automatically fulfilled and the expectation value for a polarization measured along the 
axis 𝑖𝑖 is given as 

𝑇𝑇𝑇𝑇(𝜌𝜌�𝜎𝜎�𝑖𝑖 ) =
1
2 𝑇𝑇𝑇𝑇(𝜎𝜎�𝑖𝑖 + 2𝑠𝑠𝑖𝑖 ) = 𝑠𝑠𝑖𝑖 (149) 

Which is just, what we expected; i.e. if we measure any type of polarized light (pure or mixed) with a 
polarization beam splitter along the axis 𝑗𝑗, then we will get the value of the appropriate stokes vector 
entry as an average measurement result. 
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Fig. 11: A mixed state is represented by a Point inside the Poincaré-sphere. (a) Representation of the state as 𝜌𝜌�𝑀𝑀 =
𝑝𝑝|0⟩⟨0|+(1 − 𝑝𝑝)|1⟩⟨1| and (b) as an alternative but equally viable mixture. (Image Source Lovet & Kok, Introduc-
tion to Optical Quantum Information Processing) 

4 Multiple Qubits and Entanglement 
So far, we have only discussed individual Q-Bits. Many proto-
cols in Quantum Communication and Quantum Information 
Processing in general rely explicitly on multiple Qubits. Image 
a physical system, which consists of multiple qubits, say for 
example multiple photons, which we shall number from 1 to 
𝑁𝑁. In such a system each individual Qubit 𝑖𝑖 must behave like 
an individual Qubit, they way we  are used to dealing with. 
Thus, the state of this qubits must be given by 

|𝜓𝜓𝑖𝑖 ⟩ = 𝛼𝛼𝑖𝑖 |0𝑖𝑖 ⟩ + 𝛽𝛽𝑖𝑖 |1𝑖𝑖 ⟩ (150) 

In other words: each Qubit’s Basis thus spans its own two-dimensional Hilbert-Space ℋ𝑖𝑖 which is inde-
pendent of the Hilbert spaces of all other QuBits, because the basis state have a distinct and seperable 
meaning (i.e. you can measure each state separately). A system of 𝑁𝑁 Qubits must therefore span a 
Hilbert space ℋ: 

ℋ = ℋ1⨂ℋ2⨂…⨂ℋ𝑁𝑁 (151) 

Which means that the Hilbert space is spanned by the basis vectors composed of all possible combi-
nations of individual computational basis vectors for the individual basis states |𝑏𝑏1⟩⨂|𝑏𝑏2⟩⨂… ⨂|𝑏𝑏𝑁𝑁⟩, 
where |𝑏𝑏𝑖𝑖⟩ ∈ {0,1}. Thus, any possible state in the complete system is given by  

|𝜓𝜓⟩ = � � … � 𝛼𝛼𝑏𝑏1𝑏𝑏2…𝑏𝑏𝑁𝑁

1

𝑏𝑏𝑁𝑁 =0

1

𝑏𝑏2=0

1

𝑏𝑏1=0

|𝑏𝑏1⟩⨂|𝑏𝑏2⟩⨂ …⨂|𝑏𝑏𝑁𝑁 ⟩

= � � … � 𝛼𝛼𝑏𝑏1𝑏𝑏2…𝑏𝑏𝑁𝑁

1

𝑏𝑏𝑁𝑁 =0

1

𝑏𝑏2=0

1

𝑏𝑏1=0

|𝑏𝑏1𝑏𝑏2… 𝑏𝑏𝑁𝑁⟩

(152) 

Where ∑ ∑ … ∑ |𝛼𝛼𝑏𝑏1𝑏𝑏2…𝑏𝑏𝑁𝑁
1
𝑏𝑏𝑁𝑁=0

1
𝑏𝑏2=0

1
𝑏𝑏1=0 |2=1 must hold for reasons of normalization.  The second line 

differs from the first in just the fact that the tensorial product of the basis vectors has been written in 
a shorthanded notation. To make this more obvious: |𝑏𝑏1𝑏𝑏2 …𝑏𝑏𝑁𝑁 ⟩ is the state, where each Qubit 𝑖𝑖 is in 
the state |𝑏𝑏𝑖𝑖 ⟩; e.g. |000⟩ is a three qubit system in a state where all qubit have value zero, e.g. they are 
all horizontally polarized. These basis vectors |𝑏𝑏1𝑏𝑏2… 𝑏𝑏𝑁𝑁⟩  are called the computational basis states. 
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If the composite system |𝜓𝜓⟩ is composed of mutually independent photons, the state of the complete 
system of 𝑁𝑁 photons is simply: 

|𝜓𝜓⟩ = |𝜓𝜓1⟩⨂|𝜓𝜓2⟩⨂… ⨂|𝜓𝜓𝑁𝑁 ⟩ (153) 

then the relation of the quantum amplitudes is simply: 

𝛼𝛼𝑏𝑏1𝑏𝑏2…𝑏𝑏𝑁𝑁 = 𝛼𝛼𝑏𝑏1

(1) ⋅ 𝛼𝛼𝑏𝑏2

(2) ⋅ … ⋅ 𝛼𝛼𝑏𝑏𝑁𝑁

(𝑁𝑁) (154) 

However, most states in the combined system cannot be rewritten in terms of individual product 
states, as defined above, which becomes immediately clear from simple combinatorial arguments. As-
sume that you have a 𝑁𝑁-Qubit system, then you require 2𝑁𝑁 expansion coefficients 𝛼𝛼𝑏𝑏1𝑏𝑏2…𝑏𝑏𝑁𝑁to de-
scribe any possible state of that system. If you, however, have 𝑁𝑁 individual states there are just 2𝑁𝑁 
expansion coefficients 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 . 

To make that more obvious: assume you have a three-qubit system. There are eight possible combi-
nations of the individual qubit states |𝑏𝑏𝑖𝑖⟩ and thus eight possible basis states |𝑏𝑏1𝑏𝑏2𝑏𝑏3⟩, ranging from 
|000⟩ over |001⟩ to |111⟩, with a total of eight expansion coefficients 𝛼𝛼𝑏𝑏1𝑏𝑏2𝑏𝑏3. If the state was com-

posed of individual states there were only six 𝛼𝛼0
(1) …𝛼𝛼0

(3) and 𝛼𝛼1
(1) … 𝛼𝛼1

(3) 

From this simple argument you immediately see that multi-qubit systems have a much larger complex-
ity than all of their composite systems individually. Moreover, the difference scales exponentially. We 
shall later see that this difference is already apparent for 𝑁𝑁 = 2. Any state that cannot be written as a 
product state shall be called entangled. 

We shall see that entanglement entails correlations between quantum particles, which cannot be ex-
plained by classical physics. We will start to unravel the type of measurement correlations in two-
photon systems, by discussing their differing behaviour under measurement. 

4.1 Product States and Non-Correlation 
For 𝑁𝑁 = 2, the computational basis states are |00⟩, |01⟩, |10⟩, |11⟩ and superpositions thereof to de-
scribe any state of the quantum system |𝜓𝜓⟩ = 𝛼𝛼00|00⟩ + 𝛼𝛼01|01⟩ + 𝛼𝛼10|10⟩ + 𝛼𝛼11|11⟩.  

If the quantum system is composed of two otherwise independent photons it is a product state |𝜓𝜓⟩ =
|𝜓𝜓1⟩|𝜓𝜓2⟩ of the individual photons states |𝜓𝜓1⟩ and |𝜓𝜓2⟩. Since the photons are – per construction – 
independent we expect, that any measurement (i.e. a polarization measurement) on the first Qubit 
does not affect the outcome of the measurement on the second Qubit, whatsoever. Nor does it pro-
duce any information on the state of the second Qubit. 

To show how this maps out in the quantum formalism we assume an arbitrary measurement on Qubit 
one 𝐴̂𝐴1  , which shall be described by its two orthogonal projection operators and measurement results 
of ±1. The basis states of the projection operators shall be called |𝑎𝑎1⟩ and |𝑎𝑎2⟩ without loss of gener-
ality 

𝐴̂𝐴1 = |𝑎𝑎1⟩⟨𝑎𝑎1| − |𝑎𝑎2⟩⟨𝑎𝑎2| (155) 

We can decompose the state of the first qubit into the basis states of the first measurement operator, 
according to |𝜓𝜓1⟩ = cos 𝜃𝜃 |𝑎𝑎1⟩ + sin𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |𝑎𝑎2⟩: 

|𝜓𝜓1⟩|𝜓𝜓2⟩ = (cos 𝜃𝜃 |𝑎𝑎1⟩ + sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |𝑎𝑎2⟩) |𝜓𝜓2⟩ = cos 𝜃𝜃 |𝑎𝑎1𝜓𝜓2⟩ + sin𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |𝑎𝑎2𝜓𝜓2⟩ (156) 

The measurement then collapses the first Qubit onto |𝑎𝑎1⟩ with probability cos2 𝜃𝜃 resulting in a joint 
state of |𝑎𝑎1⟩|𝜓𝜓2⟩ and onto |𝑎𝑎2⟩ with probability sin2 𝜃𝜃 resulting in a joint state of |𝑎𝑎2⟩|𝜓𝜓2⟩. The result 
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is a classically random ensemble and must therefore be treated in the mixed state formalism with a 
density matrix: 

𝜌𝜌� = cos2 𝜃𝜃 |𝑎𝑎1⟩|𝜓𝜓2⟩⟨𝜓𝜓2|⟨𝑎𝑎1| + sin2  𝜃𝜃 |𝑎𝑎2⟩|𝜓𝜓2⟩⟨𝜓𝜓2|⟨𝑎𝑎2|
= (cos2 𝜃𝜃 |𝑎𝑎1⟩⟨𝑎𝑎1| + sin2 𝜃𝜃 |𝑎𝑎2⟩⟨𝑎𝑎2|)⨂|𝜓𝜓2⟩⟨𝜓𝜓2|
= 𝜌𝜌�1⨂|𝜓𝜓2⟩⟨𝜓𝜓2|

(157) 

From this result you can clearly see, that the measurement procedure has neither extracted any infor-
mation from the second qubit, nor has it affected the second qubit in any tangible way or form. The 
measurement results are thus uncorrelated. Moreover, we note that the result has left Qubit 2 in a 
pure state. The same was true, if we had carried out the first measurement on the second QuBit. 

Altogether this seems like a rather classical result: a measurement on Qubit 1 does not affect Qubit 2 
and it also does not produce any prior information on Qubit 2. Or to put it in other terms: product 
states behave like classically independent systems, they are thus kind of boring. 

4.2 Non-Product States, Correlation, and Entanglement 
We shall now see that this classicality is not maintained for non-product states. For this we shall intro-
duce a new basis set for the two-qubit system as an alternative to the CBS |00⟩, |01⟩, |10⟩, |11⟩ . 
Among the many possible set of basis states, one, which stands out particularly, is the set of maximally 
entangled Bell-States �Ψ/Φ±�: 

�Ψ±� =
1

√2
(|01⟩ ± |10⟩)

�Φ±� =
1

√2
(|00⟩ ± |11⟩)

(158) 

These states cannot be expressed in terms of product states. I shall leave the proof thereof for you. 
Let’s repeat our measurement experiment for any of these, say |𝜓𝜓⟩ = |Φ+⟩   

|𝜓𝜓⟩ =
1

√2
(|0102⟩ + |1112⟩) (159) 

We measure the first Qubit in an arbitrary observable, which is again defined by its projection-based 
measurement operator. As a reminder this operator is 

𝐴̂𝐴(𝜃𝜃, 𝜙𝜙)1 = |𝑎𝑎1⟩⟨𝑎𝑎1| − |𝑏𝑏1⟩⟨𝑏𝑏1| (160) 

The measurement corresponds to some arbitrary basis (not necessarily the CBS), which can be repre-
sented by a point on the Bloch sphere for |𝑎𝑎1⟩ and a point on the opposite side for |𝑏𝑏1⟩, which we can 
describe by the two angles 𝜃𝜃 and 𝜙𝜙 according to the equations: 

|𝑎𝑎1⟩ = cos 𝜃𝜃 |01⟩ + sin 𝜃𝜃 exp𝑖𝑖𝑖𝑖 |11⟩|𝑏𝑏1⟩ = sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) |01⟩ − cos 𝜃𝜃 |11⟩ (161) 

This simply means, that 𝜃𝜃 represents how far away on the Bloch-Sphere we are from the CBS. Here 
𝜃𝜃 = 0 and 𝜃𝜃 = 𝜋𝜋

2
 represent measurements in the CBS basis and 𝜃𝜃 = ± 𝜋𝜋

4
 represent measurements on 

the equator of the Bloch-Sphere, e.g. the |±⟩  or the |𝐿𝐿/𝑅𝑅⟩ bases or superpositions thereof. The specific 
choice of factors also automatically ensures that |𝑎𝑎1⟩ and |b1⟩ are orthonormal, i.e. they are a valid 
basis set. 

As we must expand the CBS in which the initial state was defined into these states anyway it makes 
sense to expand the basis states into the eigenstates of the observable: 
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|01⟩ = cos 𝜃𝜃 |𝑎𝑎1⟩ + sin 𝜃𝜃 exp𝑖𝑖𝑖𝑖 |𝑏𝑏1⟩|11⟩ = sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) |𝑎𝑎1⟩ − cos 𝜃𝜃 |b1⟩ (162) 

At any rate, we can now describe the first Qubit’s CBS as a superposition of the measurement basis 
and we just plug that into the definition of |𝜓𝜓⟩: 

|𝜓𝜓⟩ =
1

√2
[(cos 𝜃𝜃 |𝑎𝑎1⟩ + sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |𝑏𝑏1⟩)|02⟩ + (sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) |𝑎𝑎1⟩ − cos 𝜃𝜃 |𝑏𝑏1⟩)|12⟩]

=
1

√2
[(cos 𝜃𝜃 |02⟩ + sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩)|𝑎𝑎1⟩ + (sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |02⟩ − cos 𝜃𝜃)|12⟩|𝑏𝑏1⟩] (163)

 

The measurement then collapses the first Qubit and each of the terms has a certain probability of 
being the resulting state after collapse. The probabilities are: 

𝑝𝑝(𝐴𝐴1 = +1) = �𝜓𝜓�𝑃𝑃�𝑎𝑎�𝜓𝜓�
= ⟨𝜓𝜓|𝑎𝑎1⟩⟨𝑎𝑎1|𝜓𝜓⟩

=
1
2

[(cos 𝜃𝜃 ⟨02| + sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) ⟨12|)][(cos 𝜃𝜃 |02⟩ + sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩)]

=
1
2

[cos2 𝜃𝜃 + sin2  𝜃𝜃]

=
1
2

𝑝𝑝(𝐴𝐴1 = −1) = �𝜓𝜓�𝑃𝑃�𝑏𝑏�𝜓𝜓� =
1
2

(164) 

The states after the measurement are: 

|𝜓𝜓|𝐴𝐴1 = +1⟩ = (cos 𝜃𝜃 |02⟩ + sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩)|𝑎𝑎1⟩
|𝜓𝜓|𝐴𝐴1 = −1⟩ = (sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |02⟩ − cos 𝜃𝜃 |12⟩)|𝑏𝑏1⟩ (165) 

Here we note the first curios thing. The resulting probability distributions of Qubit 1 do not at all de-
pend on the type of measurement applied. From the single particle picture, you would expect that a 
quantum particle must have one specific property (observable), where the result is fixed. Or to put it 
more bluntly: by now you have accepted that it may not be clear what property a Quantum Particle 
may have, but you would surely expect that it should have one property. Yet, ANY possible measure-
ment, which you can apply on Qubit 1 gives the same result. It seems like Qubit 1 has become a particle 
without properties. 

This also means that before the measurement there is no point on the Bloch Sphere, which describes 
the state of Qubit 1 by itself. Hence the initial state is NOT represented by two points in the Bloch 
sphere. In a sense Qubit 1 has ceased to exist as an independent particle. Instead, it is in a state, in 
which it does not make sense to think about the properties of Qubit 1 without resolving its connection 
with Qubit 2. Both Qubits have become ENTANGLED. 

That said, let’s explore the status of the joint system after the measurement on Qubit 1. As it is in a 
mixed state it must be described using the density matrix approach, where we can simply read off the 
entirety of the density operator from the table above 

𝜌𝜌� =
1
2

[|𝜓𝜓|𝐴𝐴1 = +1⟩⟨𝜓𝜓|𝐴𝐴1 = +1| + |𝜓𝜓|𝐴𝐴1 = −1⟩⟨𝜓𝜓|𝐴𝐴1 = −1|] (166) 

Which is clearly not factorizable in the same way, as the non-correlated state from above. Let’s elabo-
rate on this a bit more in-depth by explicitly calculating the state of the second Qubit. This is done by 
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calculating the partial trace over the first Qubit (e.g., a hypothetical measurement with the identity 
operator for Qubit 1). 

𝜌𝜌�2 = Tr1𝜌𝜌� = �⟨𝑎𝑎𝑖𝑖 |𝜌𝜌�|𝑎𝑎𝑖𝑖 ⟩
𝑖𝑖

=
1
2 (cos 𝜃𝜃 |02⟩ + sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩)(cos 𝜃𝜃 ⟨02| + sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖)⟨12|)

+
1
2

(sin𝜃𝜃 exp(𝑖𝑖𝑖𝑖)|02⟩ − cos 𝜃𝜃)|12⟩)(sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) ⟨02| − cos 𝜃𝜃)⟨12|)

=
1
2

(cos2 𝜃𝜃 + sin2 𝜃𝜃)|02⟩⟨02| +
1
2

(cos2 𝜃𝜃 + sin2 𝜃𝜃)|12⟩⟨12|

+
1
2

(cos 𝜃𝜃 sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖) − cos 𝜃𝜃 sin 𝜃𝜃 exp(𝑖𝑖𝑖𝑖))|02⟩⟨12|

+
1
2

(cos 𝜃𝜃 sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) − cos 𝜃𝜃 sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖))|12⟩⟨02|

=
1
2

[|02⟩⟨02| + |12⟩⟨12|] (167)

 

This is not just any mixed state but a maximally mixed state according to the definition in chapter 2.4. 
This means that a measurement in Qubit 1 does not only increase the information content (entropy) 
of Qubit 1 it also increases the entropy of Qubit 2. Indeed, this is much weirder than you would initially 
expect. Let’s set this aside for a second and use this finding as a means to define the entangledness of 
a quantum system: 

The degree of Entanglement of a two-Qubit quantum system in a joined state |𝜓𝜓⟩ is 
measured by testing the purity of the state of Qubit 2 after a measurement 𝐴𝐴1 is applied 
onto Qubit 1, i.e. let 𝜌𝜌� be the state of the joint system after application of measurement 
Then the entanglement 𝐸𝐸 is calculated using 𝐸𝐸 = 2 Tr[(Tr1𝜌𝜌�)2]. 𝐸𝐸 ∈ [0,1] with 𝐸𝐸 = 0 
indicating non-entanglement and 𝐸𝐸 = 1 indicating maximum entanglement. The specific 
kind of measurement of Qubit 1 does not matter. A generalization with larger systems is 
straightforward. 

Let’s return to the weirdness of entangled systems. Previously, we had seen that Quantum Systems 
are transferred from a pure into a mixed state by measurement only. But we have never even touched 
system Qubit 2. We have only measured Qubit 1. Still, in the process we have transformed Qubit 2 into 
a mixed state. This means we must have made implicitly some sort of measurement with Qubit 2. Let’s 
find this out and do so by applying the observable 𝐴̂𝐴(𝜃𝜃, −𝜙𝜙)2, onto Qubit 2 (this is the same as for 
Qubit 1, with the only exception that the phase shift between the two measurement bases is reversed, 
e.g. the sense of the chirality is flipped. 

We rewrite the state of the second Qubit system into two parts, according to the measurement out-
come of 𝐴𝐴2 (we could proceed with the complete 𝜌𝜌� from above but then the equations get somewhat 
lengthy): 

|𝜓𝜓2|𝐴𝐴1 = +1⟩ = cos 𝜃𝜃 |02⟩ + sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩
|𝜓𝜓2|𝐴𝐴1 = −1⟩ = sin𝜃𝜃 exp(𝑖𝑖𝑖𝑖) |02⟩ − cos 𝜃𝜃|12⟩ (168) 

Let’s now apply the same measurement (let’s call it 𝐴𝐴2), which have applied to the first Qubit on the 
second qubit (e.g. we assume that both angles 𝜃𝜃 and 𝜙𝜙 are the same for Qubit 1 and Qubit 2.  We now 
calculate the probabilities of 𝐴𝐴2 by noting that 𝑝𝑝�𝐴𝐴2 = 𝑎𝑎𝑞𝑞|𝐴𝐴1 = 𝑎𝑎𝑟𝑟� = 𝑇𝑇𝑇𝑇(𝜌𝜌�2(𝐴𝐴1 = 𝑎𝑎𝑟𝑟)|𝑎𝑎𝑞𝑞⟩⟨𝑎𝑎𝑞𝑞|) =
∑ ⟨𝑎𝑎𝑖𝑖 𝜌𝜌�2(𝐴𝐴1 = 𝑎𝑎𝑟𝑟)|𝑎𝑎𝑞𝑞⟩⟨𝑎𝑎𝑞𝑞|𝑎𝑎𝑖𝑖 ⟩𝑖𝑖 . We read them off as: 
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𝑝𝑝(𝐴𝐴2 = +1|𝐴𝐴1 = +1) = |⟨𝑎𝑎1|𝜓𝜓2|𝐴𝐴1 = +1⟩|2

= |⟨𝑎𝑎1|(cos𝜃𝜃 |02⟩ + sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|12⟩)|2

= | cos2 𝜃𝜃 + sin2 𝜃𝜃⟩|2

= 1
𝑝𝑝(𝐴𝐴2 = −1|𝐴𝐴1 = +1) = |⟨𝑎𝑎2|𝜓𝜓2|𝐴𝐴2 = +1⟩|2

= |cos 𝜃𝜃 sin 𝜃𝜃 exp(−𝑖𝑖𝑖𝑖) − cos 𝜃𝜃 sin𝜃𝜃 exp(−𝑖𝑖𝑖𝑖)|2

= 0
𝑝𝑝(𝐴𝐴2 = +1|𝐴𝐴1 = −1) = 0
𝑝𝑝(𝐴𝐴2 = −1|𝐴𝐴1 = −1) = 1

(169) 

Note, that we have explicitly shown, how the first solution is obtained and then just given the result 
for the second to fourth. We now group the four cases into two classes. The situation 
(𝐴𝐴2 = +1|𝐴𝐴1 = +1) and (𝐴𝐴2 = −1|𝐴𝐴1 = −1) mean that the measurements on Qubit Number 2 will 
yield the SAME result as the measurement on Qubit Number 1 (correlation). The other two situations 
correspond to measurements with different results (anticorrelation). We find that both members in 
both of the classes are equal and they are 1 and 0 exclusively.  

This result is profound: a measurement of Qubit 1 with observable 𝐴𝐴1 will force Qubit 2 to instantly 
collapse into the same resulting state for observable 𝐴𝐴2 irrespective of the measurement outcome. No 
matter what the results are, they perfectly correlated. Moreover, and this in as important point: the 
correlation is maintained irrespective of the measurement basis! The two Qubit always give the same 
results, irrespective of what you measure, as long as, you make the same measurement. 

Or in other words, the observable in the 𝐴𝐴1 measurement basis is perfectly correlated to the observa-
ble in the same basis, with a flipped phase as represented by the observable 𝐴𝐴2. 

Here we have only discussed this relation for an initial two-Qubit system in the Φ+ state but one can 
show that for the other three Bell-States there is a correlated Basis for Qubit 2 for any possible meas-
urement of Qubit 1 (this is relation is just a slight bit more complicated than just a flip of the 𝜙𝜙-phase). 
This leads us to an alternative definition of entanglement: 

Two Qubits are completely entangled, if for any basis set for Qubit 1 there exists a corre-
sponding basis set for Qubit 2, in which a measurement is guaranteed to yield the identi-
cal result. The degree of entanglement can be quantified by the maximum degree of cor-
relation between a measurement in a basis set in Qubit 1 and the most correlated basis 
set in Qubit 2. 

In other words: measurements in entangled systems produce correlated results, irrespective of the 
measurement!  

4.3 The No-Cloning Theorem 
After getting a better understanding on the thing that you can do with a Two-Qubit-System, we shalle 
now look into something apparently simple, that you cannot do with a Two-Qubit System, not with 
any other quantum system in question. The question is very simple: can we copy the state of one qubit 
onto another qubit, without destroying the initial qubit. 

Remember that the state of a (pure) qubit is represented by an arbitrary point on the Bloch-sphere, 
depending on the chosen basis vectors and the coefficients 𝛼𝛼 and 𝛽𝛽 or equally by the angles Θ and 𝜙𝜙. 
If you attempt to measure its state, you must choose a certain basis in which to measure. This basis is 
represented by a specific Pauli-Operator or a superposition thereof. However, we have learned, that 
these operators are complementary, which in essence means, that you only ever get one chance of 
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measuring your polarization state (with a result of ±1), without permanently and irrevocably destroy-
ing the specific state. 

If you knew the specific basis in which the qubit was operated, then you’d be quite fine (in the sense 
of, that you’d only have to determine, on which side of the sphere your state is). In general, however, 
you end up in a situation, where you have absolutely no chance of measuring the complete state of 
your qubit, unless you have a lot of advance knowledge. Full stop. 

To make it simple: a qubit may be any point on the Bloch-Sphere, i.e. it’s defined by two real numbers, 
but you only ever get to measure on which side of the globe it (most likely) was. And as you cannot 
copy, what you cannot measure, you end up in a situation that in most of the cases you cannot clone 
a qubit. 

This idea can be proven rigorously, with the two-Qubit notation12. Suppose that we have a cloning 
operator 𝑈𝑈�, which operates on two combined qubits with states |𝜙𝜙⟩ and |𝑘𝑘⟩, such that it copies the 
state of |𝜙𝜙⟩ onto |𝑘𝑘⟩, i.e.: 

𝑈𝑈�( |𝜙𝜙⟩⨂|𝑘𝑘⟩) = |𝜙𝜙⟩⨂|𝜙𝜙⟩ (170) 

As a cloning-operator 𝑈𝑈� must of course work in the same way for any other state |𝜓𝜓⟩, too, i.e. 

𝑈𝑈�( |𝜓𝜓⟩⨂|𝑘𝑘⟩) = |𝜓𝜓⟩⨂|𝜓𝜓⟩ (171) 

Needless to say, that 𝑈𝑈� must be connected to a physical process and thus must be unitarian. Let’s now 
compare the two results by taking their scalar product: 

�𝑈𝑈�(|𝜙𝜙⟩⨂|𝑘𝑘⟩)�𝑈𝑈�(|𝜓𝜓⟩⨂|𝑘𝑘⟩)� = ⟨𝜙𝜙⨂𝜙𝜙|𝜓𝜓⨂𝜓𝜓⟩
�𝑈𝑈�(|𝜙𝜙⟩⨂|𝑘𝑘⟩)�𝑈𝑈�(|𝜓𝜓⟩⨂|𝑘𝑘⟩)� = �𝑘𝑘⨂𝜙𝜙|𝑈𝑈�†𝑈𝑈��𝜓𝜓⨂𝑘𝑘� = ⟨𝑘𝑘⨂𝜙𝜙|𝜓𝜓⨂𝑘𝑘⟩

(172) 

The first line is simply taken from the definition of the cloning operator, whereas the last line utilized 
the fact that 𝑈𝑈� is unitarian. Thus we find: 

⟨𝜙𝜙⨂𝜙𝜙|𝜓𝜓⨂𝜓𝜓⟩ = ⟨𝑘𝑘⨂𝜙𝜙|𝜓𝜓⨂𝑘𝑘⟩ (173) 

Because the tensor and the scalar product can be exchanged, we simplify both sides of the equation 
to: 

⟨𝜙𝜙|𝜓𝜓⟩⟨𝜙𝜙|𝜓𝜓⟩ = ⟨𝜙𝜙|𝜓𝜓⟩⟨𝑘𝑘|𝑘𝑘⟩ (174) 

Because ⟨𝑘𝑘|𝑘𝑘⟩ = 1 we get: 

⟨𝜙𝜙|𝜓𝜓⟩2 = ⟨𝜙𝜙|𝜓𝜓⟩ (175) 

This result is crucial. It can either be fulfilled if ⟨𝜙𝜙|𝜓𝜓⟩ = 1, which means that |𝜙𝜙⟩ = |𝜓𝜓⟩, which is trivial 
or if ⟨𝜙𝜙|𝜓𝜓⟩ = 0, which means that |𝜙𝜙⟩ is orthogonal to |𝜓𝜓⟩. In other words: if you have found a cloning 
operator that works on one specific quantum state (e.g. a Qubit), it can only work on orthogonal quan-
tum states as well but it will not work for arbitrary quantum states. Thus, if you cannot find a cloning 
operator, i.e. any physical process, that copies quantum states, then you cannot copy a quantum state. 
As long as you have to stick to the laws of nature, that is. 

The central argument for the derivation of the no-cloning theorem is obviously the unitarity of 𝑈𝑈�. In 
terms of time evolution unitarity is equivalent to time-reversibility and thus to a constant entropy: In 

 
12 In fact, this works for any type of quantum system; qubit or not. 
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other words: quantum operations must not destroy information. The supposed cloning-operator, how-
ever, would just do that: it would destroy any information of the prior state |𝑘𝑘⟩ of the target system 
upon it being overwritten with |𝜙𝜙⟩. Thus cloning, from a thermodynamic point of view, is an irreversi-
ble process and quantum mechanics just does not provide any means to do that. 13 

5 Creating and Characterizing Pho-
tons 

Now that we have understood everything about the na-
ture of photonic qubits, we still have not discussed, how 
real single photon quantified and created. Due to timing 
reasons this chapter is a bit handwaving and a proper in-
troduction can be found in the appendix. 

For the characterization section we’ll discuss two important experiments for there. First the Hanburry-
Brown-Twiss Interferometer, which answers the question: does a source in fact emit single photons 
(and if yes, how frequently)? Then we shall deal with the Hong-Ou-Mandel interferometer, which tell 
us, if the two single photons are indistinguishable; e.g. if two consecutive photons emitted by a single 
photon source are exactly the same or if the source is fluctuating. 

In the photon creation section we shall briefly introduce single photon emitters and photon pair emit-
ters, which are based on the SPDC-process. We shall then briefly show, how the SPDC-process can be 
used to create Bell states; e.g. entangled photons. Also for this subchapter we shall remain somewhat 
handwaving and export a lot of the theory into the appendix. 

The corresponding chapter of the Appendix are A1 for a description of photodetection and photon 
correlation on the framework of quantum fields, A2 for an overview over common single photon de-
tector platforms, A3 for Spontaneous Emission and Single Photon Sources based thereupon and A4 for 
a basic description of the SPDC-process, which is most frequently used to create pairs of photons. 

5.1 Single Photon Sources 
We are now equipped with some of the basic tools required to formally describe the detection process, 
and coherence of quantum fields. In the following, it will be helpful to also have a physical model for 
typical quantum light sources. Here we briefly introduce some of the basic concepts – we will circle 
back to the physical implementation and key characteristics of various sources later on.   

5.1.1 Spontaneous Emission Single Photon Sources 
The process of Spontaneous emission does emit single photons, if a single emitter is considered. The 
simplest of such a emitters is a two-level system, which is initially in an excited state. The excited state 
has a lifetime of 𝜏𝜏 and an energy difference of Δ𝐸𝐸 to its ground state. The excited state will spontane-
ously decay within the lifetime and emit a single photon in the process. The photon will have a center 
frequency ℏ𝜔𝜔 = Δ𝐸𝐸, a duration of 𝜏𝜏 and a Lorentzian spectrum with Δ𝜔𝜔 = 1/𝜏𝜏 . 

 
13 Note that if you replace |𝑘𝑘⟩ with a many-body thermal bath, then you can “hide” the reversibility in the huge 
state-space and the fact that most of these states are in reality very hard to differentiate. Reversibility this thus 
practically impossible.  



Lecture in Quantum Communication, WS 21/22, Friedrich-Schiller-University, Jena 
Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome. 
Version of 11.03.2022, Page 59 

 
Fig. 12: In spontaneous emission an individual atom (or any other two-level system) begins in an excited state with 
a lifetime 𝜏𝜏. It drops into the ground state and the energy difference 𝛥𝛥𝛥𝛥 and a single photon with ℏ𝜔𝜔 = 𝛥𝛥𝛥𝛥. The 
photons wavepacket has a duration of 𝜏𝜏 and a Lorentzian spectrum with a width 𝛥𝛥𝛥𝛥 = 1/𝜏𝜏. Image source: Dialnet-
ModelingABandwidthOfATwoLevelIndependentQuantumLas-6234592.pdf 

 
Fig. 13: Full Quantum-Mechanical simulation of the time-evolution of an initially excited two-level system in a one-
dimensional cavity. The wavepackets can be understood as a single mode (with Lorentzian shape in spectrum) in 
which a single photon is being emitted. Reabsorption is not perfect, because the time-symmetry is wrong (strong-
before-weak). 

While this approach is conceptually extremely simple, it has a few requirements, which are not quite 
easy to fulfil in practice (at least not all of them at the same time): 

• The system must be a near-perfect two-level system, without non-radiative decay (reduction 
of emission probability) or alternative decay channels (leads to mixed state emission and dis-
tinguishability). This is particularly difficult to achieve for emitters embedded in solid state sys-
tems, which can couple to a plethora of excitations such as phonons or hyperfine states. Many 
systems can fulfil this requirement only if they are operated at cryogenic temperatrures 



Lecture in Quantum Communication, WS 21/22, Friedrich-Schiller-University, Jena 
Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome. 
Version of 11.03.2022, Page 60 

• The system must have a short lifetime to produce a high photon rate. This is not true for all 
emitters. 

• The system must not switch its configuration upon excitation, such as many dyes do. This leads 
to blinking and bleaching, e.g. the temporary or permanent interruption of emission. 

• The system must couple efficiently to a photonic state. No reabsorption must take place. Emit-
ted photons must not be trapped in the emitter system, due to, e.g. total internal reflection. 

• Add-on: one should be able to couple the emitter to a single spatial mode, e.g. a waveguide 

5.1.2 Overview over Experimental Systems 
Many such sources exist, however, all of them have one or more drawbacks: 

• Single Atoms and ions are ideal single photons emitters, however, they don’t stay in one place 
naturally. Therefore, one has to trap atoms and ions in a magnetic or optical trap and keep 
them in high vacuum.  

• Dye molecules are cheap and easy to operate with. However, they suffer from blinking and 
bleaching and are thus unsuitable for long-term operation. Moreover, they typically have vey 
wide emission band, making them unsuitable for indistinguishable photons. They also often 
rely on specific chemical environments, making them hard to integrate in optical sytems. 

• Quantum Dots are localized modifications in crystals with a bandgap. These defects act as local 
potential wells and exhibit discrete states. The defects can occur naturally or may be tailor-
made. The host crystal may be a semiconductor (small gap) or a dielectric (large gap). Semi-
conductor QDs often have a small binding-energy (they are shallow in the gap) and must thus 
be operated cryogenically. However, they can be excited electrically. Dielectric QDs can be 
very deep in the band-gap and sometimes operated at room temperature. However, they can-
not be pumped electrically and must be pumped optically. 

Here a small table for comparison: 

 Trapped Atoms / 
Ions 

Dye Molecules Semicon. QDs Dielectric QDs 

Example Rydberg Atoms, 
Rb-Vapor 

Organic dyes III-V QDs, CdSe-
Particles 

Diamond-NV, 
hBN-Defects 

QE high high Mid-high Mid-high 
Purity high low Mid (Phonons) Mid (Phonons) 
Environment High-Cav, Cryo Spec. Chemical Cryo Room. Temp 
Pumping optical optical Optical / electrical Optical 
Integrability nil bad good exceptional 
Emission Rate Low (lifetime) low (lifetime) high High 
ToR-Loss / Sin-
gle-Mode-Cou-
pling 

Possible, yet ex-
pensive (large op-
tics) 

? Possible, yet diffi-
cult (semicon-na-
nooptics) 

Diamond: bad 
hBN: very easy 

A quantum-mechanical description of the emission process shall later be added in an appendix. 
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5.2 Characterizing SPS: the Hanburry-Brown-Twiss Experiment 
The first-order correlation function quantifies the correlation of amplitudes and phases of two fields 
(i.e. the phase coherence). The second-order correlation, on the other hand, tells us about the corre-
lation of intensities of two fields. Fig. 59 depicts a typical experimental setup.  

 
Fig. 14: Hanburry-Brown-Twiss setup is it was first used to measure the 2nd order intensity correlations of classical 
light in stellar interferometry and then for individual light sources. Note that the detectors are now interconnected 
and we thus are mostly interested in the order of clicks at the detectors. 

The general expression for the second-order quantum correlation of fields A and B at times 𝑡𝑡1 and 𝑡𝑡2 
reads  

𝑔𝑔𝐴𝐴𝐴𝐴
(2)(𝑡𝑡1,𝑡𝑡2) =

  〈𝐸𝐸�𝐴𝐴
−(𝑡𝑡1)𝐸𝐸�𝐵𝐵

−(𝑡𝑡2)𝐸𝐸�𝐵𝐵
+(𝑡𝑡2)𝐸𝐸�𝐴𝐴

+(𝑡𝑡1)〉
  〈𝐸𝐸�𝐴𝐴

−(𝑡𝑡1)𝐸𝐸�𝐴𝐴
+(𝑡𝑡1)〉〈𝐸𝐸�𝐵𝐵

−(𝑡𝑡1)𝐸𝐸�𝐵𝐵
+(𝑡𝑡1)〉 (176) 

For classical fields, this reduces to the Intensity-Intensity correlation function: 

𝑔𝑔class
(2) (𝑡𝑡1,𝑡𝑡2) =

〈𝐼𝐼𝐴𝐴 (𝑡𝑡1)𝐼𝐼𝐵𝐵(𝑡𝑡2)〉
〈𝐼𝐼𝐴𝐴 (𝑡𝑡1)〉〈𝐼𝐼𝐵𝐵(𝑡𝑡2)〉 (177) 

An important example is the intensity autocorrelation function of a stationary classical field 

𝑔𝑔class
(2) (𝜏𝜏) =

〈𝐼𝐼(𝑡𝑡 + 𝜏𝜏)𝐼𝐼(𝑡𝑡)〉
〈𝐼𝐼(𝑡𝑡)〉2 (178) 

It is straightforward to show that any classical light field must obey 𝑔𝑔class
(2) (𝜏𝜏) ≤ 𝑔𝑔class

(2) (0)  and 
𝑔𝑔class

(2) (0) ≥ 1. This is not necessarily true for the autocorrelation of a quantum state of light |Ψ⟩  

𝑔𝑔QM
(2)(𝜏𝜏) =

  〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸�−(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡)〉Ψ

  〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸�+(𝑡𝑡)〉〈𝐸𝐸�−(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡 + 𝜏𝜏)〉Ψ
(179) 

While this expression is in general difficult to evaluate, we can get a good understanding of some gen-
eral properties by evaluating it for 𝜏𝜏 = 0 and a single-frequency mode. Here the correlation function 
becomes: 

�𝑔𝑔𝑄𝑄𝑄𝑄
(2) (0)� =

  〈𝑎𝑎�†𝑎𝑎�†𝑎𝑎�𝑎𝑎�〉
〈𝑎𝑎�†𝑎𝑎�〉2 =

〈𝑛𝑛�(𝑛𝑛� − 1)〉 
〈𝑛𝑛�〉2  (180) 

Evaluating this expression for a single photon Fock state |Ψ⟩  = 𝑎𝑎�†|vac⟩ = |1⟩ we immediately see 
that 

�𝑔𝑔𝑄𝑄𝑄𝑄
(2) (0)� = ⟨1|𝑛𝑛�(𝑛𝑛� − 1)|1⟩ = 0 (181) 

Single-photon states of light thus exhibit “anti-bunching”, a purely quantum phenomenon that cannot 
be described in classical coherence theory. Other examples that can be readily verified by the reader:  

STATE 𝒈𝒈(𝟐𝟐) (𝟎𝟎) COMMENT 
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FOCK-STATE|𝒏𝒏⟩,𝒏𝒏 = 𝟏𝟏 0 Perfect Anti-Bunching (one 
photon at a time) 

FOCK-STATE |𝒏𝒏⟩,𝒏𝒏 > 𝟏𝟏 1 − 1/𝑛𝑛 Anti-Bunching 
COHERENT STATE |𝜶𝜶⟩  1 Uncorrelated (a random 

stream of photons) 
THERMAL STATE 
𝝆𝝆

= ∫ 𝒇𝒇(𝝎𝝎) �
𝟏𝟏 − 𝐞𝐞𝐞𝐞 𝐩𝐩 �− ℏ𝝎𝝎

𝒌𝒌𝑩𝑩 𝑻𝑻�

𝐞𝐞𝐞𝐞 𝐩𝐩 �𝒏𝒏ℏ𝝎𝝎
𝒌𝒌𝑩𝑩𝑻𝑻 �

|𝒏𝒏(𝝎𝝎)⟩⟨𝒏𝒏(𝝎𝝎)|
𝒏𝒏

𝒅𝒅𝒅𝒅  

1 + �𝑔𝑔(1)(0)�2
 Bunching of photons of the 

same frequency (the more so 
the more narrowband) 

SQUEEZED STATE (DEGENERATE PDC) 
𝑔𝑔(2)(0) = 3 +

1
〈𝑛𝑛〉 

Super-Bunched (photons al-
ways appear in correlated 
pairs) 

One can also, quite easily show, that 𝑔𝑔QM
(2)(±∞) = 1 and that the transition from the center value to 

the edge value is related to the bandwidth of the source in question, or more specifically its lifetime. 

 
Fig. 15: Artists interpretation of photon arrival times in various sources, resulting in different 𝑔𝑔(2) .  

The Hanburry-Brown-Twiss experiment can thus be used to measure the “single-photon-ness” of a 
light source. It is the gold standard for this kind of characterization.  

  
Fig. 16: (left) A real-life single-photon source  with an integrated HBT-interferometer (fiber ports lead to SPDs and 
TDC). The single-photon source is an hBN-defect-state emitter localized in the brown plate. (right) 𝑔𝑔(2)-curves of 
the bare hBN emitter and the emitter located in a cavity. For the cavity case we measure 𝑔𝑔(2)(0) < 0.006. The 
lifetime of the emitters is just below 1 nanosecond. Image source: ACS Photonics 2019, 6, 8, 1955–1962. 
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5.3 Photon Pair Sources based on SPDC 
Now that we have talked about BSM, we should address the elephant in the room and discuss how 
Bell-States are created in the first place. In the last chapter we had seen, that the conceptually most 
convenient way is to use a CX and Hadamard-Gate, to convert a BS into CBS. If you also remember that 
quantum processes are unitary and thus reversible, we can just use the conversion circuit in reverse 
to convert a CBS into a BS using the operator 

𝑈𝑈� = CXBHADA (182) 

I’ll leave it up to you to prove this actually works. Nevertheless, a CX-Gate is not so easy to implement 
and thus experimentally this is probably not the way to go. The standard approach is rather to use 
nonlinear optics directly and create pairs of photons using the spontaneous parametric downconver-
sion process (SPDC) in a 𝜒𝜒(2)-medium such as BBO or KTP or similar. We shall also see that we can also 
use the process to create heralded single photon sources. 

In SPDC a strong pump field in mode 𝑝𝑝 generates a nonlinear polarization response in a 𝜒𝜒(2) nonlinear 
crystal (non-centro-symmetric materials), that – with very low probability (typically on the order of 1E-
9 per pump photon) results in the emission of a pair of photons, called signal and idler photons. The 
range of possible frequencies and momenta of the signal and idler photons will be subject to energy 
and momentum conservation. Consider for a moment plane wave modes, then the signal 𝑠𝑠 and idler 𝑖𝑖 
will obey the following conservation equations: 

𝒌𝒌𝑝𝑝 = 𝒌𝒌𝑠𝑠 + 𝒌𝒌𝑖𝑖
𝜔𝜔𝑝𝑝 = 𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑖𝑖

(183) 

 
Fig. 17: Conservation Equations in thin-crystal SPDC. 

Of course, this does not work any pair of modes but relies on phase-matching criteria, that in turn 
depend on the type of crystal, its size, orientation, temperature, structuring and the relative angles 
between the k-vectors. More specifically this process will also only work for a certain combination of 
polarization directions 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑖𝑖 for the signal and idler, given a certain polarization of the pump 𝜆𝜆𝑝𝑝. 
For uniaxial nonlinear crystals we differentiate between type-(I) and type-(II) phase matching. In type-
(I) the signal and idler mode are of the same polarization (𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑠𝑠) and in type-(II) they are of opposite 
polarization (𝜆𝜆𝑖𝑖 ≠ 𝜆𝜆𝑠𝑠). 
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The Hamiltonian governing the SPDC process then writes 14: 

ℋ�𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑞𝑞𝜒𝜒(2)𝐿𝐿 𝑎𝑎�†
𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠𝑎𝑎�†

𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖𝑎𝑎�𝒌𝒌𝑝𝑝𝜆𝜆𝑝𝑝 + ℎ. 𝑐𝑐. (184) 

Where 𝐿𝐿 is the length of the nonlinear crystal, 𝜒𝜒(2)is the nonlinear interaction strength and 𝑞𝑞 is a pro-
portionality constant. 

We can describe the time evolution induced by this Hamiltonian either via the modes, or in the time-
dependent quantum state. In the following, we choose the latter approach. The signal and idler modes 
are initially in their respective vacuum states and the pump is a coherent state with a large mean num-
ber of photons 𝛼𝛼: 

|Ψ⟩𝑖𝑖𝑖𝑖 = |α⟩𝒌𝒌𝑝𝑝
|vac⟩𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠

|vac⟩𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖 (185) 

 The state of the field after the interaction is given by:  

|Ψ⟩ = exp �−
𝑖𝑖𝑖𝑖
𝑞𝑞 𝜒𝜒(2)  � 𝑎𝑎�†

𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠𝑎𝑎�†
𝒌𝒌𝑖𝑖𝜆𝜆𝜆𝜆 𝑎𝑎�𝒌𝒌𝑝𝑝 +  h.c. �� |Ψ⟩𝑖𝑖𝑖𝑖 (186) 

Since the pump is a coherent state, which is an eigenstate of the annihilation operator, we can replace 
its operator with the corresponding coherent state amplitude 𝛼𝛼. 

|Ψ⟩𝒌𝒌𝒔𝒔𝜆𝜆𝑠𝑠,𝒌𝒌𝒊𝒊 𝜆𝜆𝑖𝑖
|α⟩𝒌𝒌𝑝𝑝 = exp�−𝑖𝑖𝑖𝑖𝑖𝑖𝜒𝜒(2) � 𝛼𝛼 𝑎𝑎�†

𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠 𝑎𝑎�†
𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖 +  h. c. �� |vac⟩𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠

|vac⟩𝒌𝒌𝑖𝑖 𝜆𝜆𝑖𝑖
|α⟩𝒌𝒌𝑝𝑝   (187) 

Factoring out the state of the signal and idler photons, and noting that the h.c. term containing the 
annihilation operators will not contribute when it acts on vacuum, we have: 

|Ψ⟩SPDC = |Ψ⟩𝒌𝒌𝒔𝒔𝜆𝜆𝑠𝑠𝒌𝒌𝒊𝒊 𝜆𝜆𝑖𝑖 = exp�−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜒𝜒(2) 𝑎𝑎�†
𝒌𝒌𝑠𝑠𝜆𝜆𝑠𝑠𝑎𝑎�†

𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖
� |vac⟩𝒌𝒌𝑠𝑠 𝜆𝜆𝑠𝑠

|vac⟩𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖  (188) 

Application of the BCH-theorem, we obtain the SPDC state in the Fock state basis: 

|Ψ⟩SPDC =
1

cosh|𝛾𝛾|  
�

(−𝛾𝛾)𝑛𝑛

|𝛾𝛾|

∞

𝑛𝑛=0

tanhn|𝛾𝛾| ⋅  |n⟩𝒌𝒌𝑠𝑠 𝜆𝜆𝑠𝑠
|n⟩𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖 (189) 

Where we have introduced the overall gain 𝛾𝛾 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜒𝜒(2). Setting 𝜆𝜆 = tanh|𝛾𝛾|  we can write the SPDC 
state in a more condensed form: 

|Ψ⟩𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1

√1 − 𝜆𝜆2
� 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ⋅  𝜆𝜆𝑛𝑛

∞

𝑛𝑛=0

⋅  |n⟩𝒌𝒌𝑠𝑠 𝜆𝜆𝑠𝑠
|n⟩𝒌𝒌𝑖𝑖𝜆𝜆𝑖𝑖  (190) 

The state is also known as the two-mode squeezed vacuum state. It has the following Important char-
acteristics: 

• The number of photons in modes 𝑘𝑘𝑠𝑠 and 𝑘𝑘𝑖𝑖 are perfectly correlated: ⟨Ψ|(𝑛𝑛�𝑠𝑠 − 𝑛𝑛�𝑖𝑖 )|Ψ⟩ = 0. 

• Average photon number : 𝜇𝜇 =  ⟨Ψ|𝑛𝑛�|Ψ⟩ =sinh2|𝛾𝛾|  

• Probability of n photons:  𝑃𝑃(𝑛𝑛) = ⟨Ψ|𝑃𝑃�𝑛𝑛|Ψ⟩ = tanh2n|𝛾𝛾|
coshn|𝛾𝛾|   

∝ 𝜇𝜇𝑛𝑛

(1+𝜇𝜇)𝑛𝑛+1  

 
14 As dicussed in the previous chapter this literally means: the interaction process can annihilate a photon in 
mode 𝒌𝒌𝑝𝑝 if it creates one in 𝒌𝒌𝑠𝑠 and 𝒌𝒌𝑖𝑖 at the same time and vice versa. 
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In the limit of low gain 𝜆𝜆 ≪ 1, the SPDC state is dominated by a vacuum term, with a small photon pair 
contribution: 

|Ψ⟩𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≈  �1 − 𝜆𝜆2|vac⟩𝑘𝑘𝑠𝑠𝜆𝜆𝑠𝑠
|vac⟩𝑘𝑘𝑖𝑖𝜆𝜆𝑖𝑖 + 𝜆𝜆 |1⟩𝑘𝑘𝑠𝑠 𝜆𝜆𝑠𝑠

|1⟩𝑘𝑘𝑖𝑖𝜆𝜆𝑖𝑖 + 𝑂𝑂(𝜆𝜆2) (191) 

SPDC in the low gain regime is a very simple and practical way of generating photon pairs and single 
photon states. 

A much more detailed analysis of SPDC is presented in the Appendix (A 3). 

5.3.1 Heralded Single Photon Sources 
To produce single photon states we place a detector in the idler mode; when the detector fires (ne-
glecting for the moment the practical issues such as detector noise, i.e. dark counts), we expect at least 
one photon to be present in the signal mode. Since 𝜆𝜆 ≪ 1 the main contribution of this heralded signal 
photon state is the 𝑛𝑛 = 1 Fock-state contribution.  

However, the requirement to operate in the low-gain limit is quite strict, as the ration of photon-pairs 
|1⟩𝑘𝑘𝑠𝑠

|1⟩𝑘𝑘𝑖𝑖  to pairs of pairs |2⟩𝑘𝑘𝑠𝑠
|2⟩𝑘𝑘𝑖𝑖  scales with 𝜆𝜆. As such, SPDC-based single photon sources are usu-

ally quite inefficient in terms of the maximal rate of photons, which can be extracted from a source, 
until the source properties degrade (e.g. HBT-dip changes). 

If the photon lifetime 𝜏𝜏 = 1/Δ𝜔𝜔, which in the case of SPDC is given by the phase-matching bandwidth, 
e.g. the range of frequencies [𝜔𝜔𝑝𝑝 − Δ𝜔𝜔𝑝𝑝, 𝜔𝜔𝑝𝑝 + Δ𝜔𝜔𝑝𝑝] for which Δ𝑘𝑘𝑘𝑘 = �𝒌𝒌𝑝𝑝 − 𝒌𝒌𝑠𝑠 − 𝒌𝒌𝑖𝑖� ≪ 2𝜋𝜋, has a 
given value then the rate of photons must be small compared to Δ𝜔𝜔 (with a factor 𝜆𝜆). 

5.3.2 Bell-State Entangled-Photon-Sources 
So far, we have only created a photon-pair and nothing else. Without loss of generality, we can assume 
that we have type-(I)—phasematching and we also without loss of generality we can assume that the 
phase matching is in H-direction, this we have: 

|1⟩𝑘𝑘𝑠𝑠𝐻𝐻 |1⟩𝑘𝑘𝑖𝑖𝐻𝐻 = |00⟩ (192) 

 

state. This is of course rather similar to a computational basis state. However, this relation will in fact 
hold for an entire set of 𝑘𝑘-vector pairs (typically a cone). 

 
Fig. 18: SPDC in a thin crystal. 
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Assume now that the crystal is designed in such a way that it also supports SPDC for the mode of the 
type: 

|1⟩𝑘𝑘𝑠𝑠𝑉𝑉 |1⟩𝑘𝑘𝑖𝑖𝑉𝑉 = |11⟩ (193) 

and that you have designed the input polarization of your pump-laser in such a way that both processes 
are equally likely. Due to the anisotropy of the crystal the H-polarized photons will experience a differ-
ent dispersion relation and the phase-matching cone will be oriented differently in space. This means 
you have one cone, which emits |00⟩ states and another cone, which emits |11⟩-states; but the two 
processes are distinguishable (e.g. by the propagation direction) and thus they cannot interfere into a 
joint quantum state. 

 
Fig. 19: SPDC in a nonlinear crystal; SPDC-cones and entanglement. Source: Wikipedia. 

However, if the two cones intersect then both processes propagate in the same direct and hence a 
quantum superposition pair is formed, of the type: 

1
√2

�|1⟩𝑘𝑘𝑠𝑠 𝐻𝐻 |1⟩𝑘𝑘𝑖𝑖𝐻𝐻 + |1⟩𝑘𝑘𝑠𝑠 𝑉𝑉 |1⟩𝑘𝑘𝑖𝑖𝑉𝑉 � =
1

√2
(|00⟩ + |11⟩) = |Φ+⟩ (194) 

As this only happens for one particularly set of k-vectors you may now ignore the k-indicies altogether. 
Now that we, in principle now how to use SPDC to generate entangled photon-pairs, I should make at 
least a few comments: 

1. Other BS-states than |Φ+⟩ be created by changing the dispersion and/or the type of phase-
matching. 

2. What the concept in essence means is: if you observe in the overlap direction and you get a 
photon pair, then you cannot know, from which cone the photon pair was coming from. Hence 
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you can’t know if you get a HH or VV pair but since only these two processes are allowed, you 
know that you can get only those. 

3. The example here is about momentum-polarization entanglement. Any other two degrees of 
freedom of light can be entangled given an appropriate geometry and/or pump (time-energy; 
time-momentum; OAM-polarization; guided mode-wavelength). These may then require 
more complicated setups (e.g, structured crystals, waveguides) but may be interesting in their 
own right. Independent of the type of correlation it holds true, that he require at least two 
generations channels, which you cannot distinguish, to create an entangled pair. 

5.3.3 Spontaneous Four Wave Mixing (SFWM) 
SPDC-based processes require a material with non-vanishing 𝜒𝜒(2) coefficients. This is only the case for 
so-called non-centrosymmetric materials. For bulk-materials this is only the case for some special types 
of crystals, which rules out the SPDC-creation of photon-pairs in things such as glass-based optical 
fibers. However, we can instead utilize four-wave mixing, which occurs in all materials. This process is 
described by the 𝜒𝜒(3) coefficient. 

 
Fig. 20: SFWM in 3-rd order nonlinear materials.  

Because a full description on the process is beyond the scope of this script, we shall just note a few 
important stepping stones here (note that 𝑝𝑝1 and 𝑝𝑝2  are pump photons and may in fact be the same 
mode) 

• The phase matching conditions take the form 𝜔𝜔𝑝𝑝1 + 𝜔𝜔𝑝𝑝2 = 𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑖𝑖 and 𝒌𝒌𝑝𝑝1 + 𝒌𝒌𝑝𝑝2 = 𝒌𝒌𝑠𝑠 + 𝒌𝒌𝑖𝑖 

• The Hamiltonian now has a structure : ℋ�𝐹𝐹𝐹𝐹𝐹𝐹 ∝ 𝜒𝜒(3) 𝑎𝑎�†
𝑘𝑘𝑠𝑠𝑎𝑎�†

𝑘𝑘𝑖𝑖𝑎𝑎�𝑘𝑘𝑝𝑝1 𝑎𝑎�𝑘𝑘𝑝𝑝2 + ℎ. 𝑐𝑐., i.e. two pump 
photons are required in the process  

• 𝜒𝜒(3) does can occur in almost any material (even fibers) 

• Involves two pump photons  different scaling with input power  

 

5.4 Characterizing PPS: The Hong-Ou-Mandel-Effect 

 
Fig. 21: HOM Interference on a Beam Splitter  

Paul Dirac stated, that first-order interference effects can be thought of as each photon interfering 
with itself. Hong, Ou and Mandel experimentally showed that this is not the only form of interference 
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we can observe. Let’s consider what happens when single photon states are incident from each of the 
two input ports of a 50:50 beam splitter. Their state is: 

|Ψ⟩𝑠𝑠,𝑖𝑖 =  |1⟩𝑠𝑠|1⟩𝑖𝑖 = 𝑎𝑎�†
𝑠𝑠𝑎𝑎�†

𝑖𝑖 |vac⟩ (195) 

If we then place a detector in each of the two output ports 𝑏𝑏�†
1𝑏𝑏� †

2, then there will be no simultaneous 
detections. To verify this, we can either calculate directly the correlation function for the input state 
⟨Ψ|𝑛𝑛�𝑏𝑏1 𝑛𝑛�𝑏𝑏2

|Ψ⟩, or (faster) express the input state in terms of the detection modes, i.e. we replace 

𝑎𝑎�†
𝑠𝑠 →

1
√2

(𝑏𝑏�†
1 + 𝑏𝑏� †

2)

𝑎𝑎�†
𝑖𝑖 →

1
√2

(𝑏𝑏�†
1 − 𝑏𝑏� †

2)
(196) 

Substituting these expressions into the input state, we find that the terms leading to a joint detection 
at detectors 1 and 2 will cancel 

 |1⟩𝑠𝑠|1⟩𝑖𝑖 → 𝑏𝑏� †
1
2 +  𝑏𝑏� †

1𝑏𝑏�†
2 − 𝑏𝑏�†

2𝑏𝑏� †
1 − 𝑏𝑏�†

2
2  |vac⟩ = |2⟩1|0⟩2 − |0⟩1|2⟩2 (197) 

Both photons will leave the beam splitter bunched into couples. As a result, there will be no coincident 
detection. This can be seen as destructive interference of transmitted and reflected photon pairs15, 
known as Hong-Ou-Mandel interference (see PRL 1987, 59 2044). HOM interference is a valuable tool 
in quantum information processing, and quantum optics – we will encounter it again at many in-
stances.  

After taking a closer look at the equations, we can also infer the HOM-effect from a handwaving ex-
planation. Assume there are two photons, which are incident on a balanced beam splitter from its two-
input port. There are in total four options, as each photon may or may not get reflected: 

 
Fig. 22: Two-Photon Interference representation of the HOM-Experiment. If path 2 and 3 are indistinguishable, then 
they will interfere destructively and only photon pairs csan be observed. Source: Wikipedia. 

Note that the sign in front of the little pictures correspond to a 0 or 𝜋𝜋 phaseshift. The phaseshift is 
particular noteworthy for case 3, here they correspond to the phaseshift accumulated during reflec-
tion. A grossly simplified explanation is the reflection on a denser medium; nevertheless, the phase 
difference of 𝜋𝜋 case 2 and 3 is universal, as it is related to the unitarity of the mixing operation. 

Only indistinguishable photons show interference (that’s why single photon interference is so easy to 
detect; one photon is necessarily indistinguishable from itself). In the HOM experiment this is only the 
case if the input photons are indistinguishable itself. As they interfere and have opposite sign, the 
modal contributions from option 2 and 3 thus cancel each other and the result of two-photon inter-
ference is such, that the two photons will either both go up or both go down (in the sense that they 

 
15 Note that this is a consequence of the commutation operator relationships between the creation operators 
for bosons - what do you expect would happen if we replaced the photons with electrons ? 

https://en.wikipedia.org/wiki/File:Photons_displaying_the_Hong%E2%80%93Ou%E2%80%93Mandel_effect.png
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emerge in a superposition of 1 and 4; i.e. they go up and down simultaneously and their path is just 
decided up if you detect one photon). If you however detect one photon in, say, the upper branch then 
you know the other one is there as well and vice versa. Thus, if two indistinguishable photons meeting 
on a balanced beamsplitter they will leave the beamsplitter as a pair. If a pair is impinging on a 
beamsplitter they will go their separate ways. The beamsplitter can be considered something like the 
civil registry office for indistinguishable photon pairs. 

 
Fig. 23: The adventures of a beam splitter. Parts one and two. To pair and not to pair. Sorry for the silly joke. I could 
not resist. 

The HOM-Interferometer is, however, not just a fancy quantum physical effect, but can be used to 
characterize properties of photon sources. One question you may ask is: are two consecutive photons 
of an SPS indistinguishable, i.e. does the source emit a PURE state? Or does it emit a mixed state, such 
that consecutive photons are this distinguishable? You can use the HOM to infer this question in such 
a way: 

 

 
 

 
Fig. 24: (left) Examples of state diagrams of pure and mixed single photon emitters. (right) A HOM interferometer, 
which is used to test for the purity of a single-photon source. (green) A pure-state source, e.g. consecutive photons 
are indistinguishable and do thus interfere; (red) A mixed-state source, consecutive photons are distinguishable 
and thus do not interfere;  
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A HOM is also an important tool to characterize photon pair sources. Of such sources some come in 
the flavour of emitting indistinguishable photon pairs. Such sources are, e.g. important in Quantum 
Computing, more specificall in boson sampling. A HOM is here utilized in the following way: 

 
Fig. 25: A HOM interferometer, which is used to test for the indistinguishability of a photon pair source. 

5.5 Measuring Photonic Bell-States 
Many quantum protocols utilize Bell states as a measurement basis. This works, because Bell states 
are orthonormal and thus form a complete basis set of the 2-Qubit Hilbert space. As with many other 
things in Quantum Optics, such a measurement is conceptually simple, but in reality, difficult or next 
to impossible to implement. This chapter shall be devoted to discuss two of the most basic ideas, that 
we can use to implement an apparatus that is suitable to measure Bell states. 

 
Fig. 26: Concept of a BS-Measuring device. Two QuBits enter the device and it tells you, which of the four BS the 
photons were in. If the photons have been in a superposition state of BSs then the resulting wavefunction will 
collapse into the one that corresponds to the measurement result. 

The first approach is based on a very direct and brute-force mathematics inspired approach; which 
disentangles Bell states into CBS, which we can then easily measure. We shall see that this approach, 
however, requires the nonlinear interaction of Qubits. While this can be implemented in a Quantum 
Computer, it is generally not suitable for photons. For the case of photons, this approach is essentially 
the time reverse concept of SPDC and would thus require (efficient) sum-frequency generation of sin-
gle photons; which is generally not feasible. 

The second approach, which is the more feasible in quantum optics, is based purely on linear optical 
elements. It is a great simplification from an experimental point of view but this simplification comes 
at the expense of a reduced usability, that either materializes in a certain rate of error (the apparatus 
yields the wrong results) or a certain rate of failure (the apparatus yields no results) or a mixture 
thereof. 

5.5.1 Measurement based on two-Qubit operations 
We know that CBS and BS are both equally valid sets of basis vectors of the two-photon system. Thus, 
there should be a unitary operation, which converts between the two. It is therefore straightforward 
to attempt to use a CBS detector and have a unitary transformer 𝑈𝑈� before it. To do so, we must, how-
ever, introduce an important two-photon operation (A more in-depth discussion is frequently given in 
the context of Quantum-Computing, where these operators take the role of elementary quantum 
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gates, into which any quantum algorithm can be broken down into). The 𝐶𝐶𝐶𝐶-gate (CNOT) applies a flip 
to Bob’s Qubit if and only if Alice’s is in state |1⟩16 

CX = �
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� (198) 

The above-mentioned CBS to BS conversion can actually be written quite easily with these operations. 
It’s composed by applying a 𝐶𝐶𝐶𝐶-gate to Alice’s photon with Bob’s acting as the control photon and 
then a Hadamard-Gate (a simple beam splitter or a half-wave plate) to Alice’s photon: 

𝑈𝑈� = HADA⋅CXB 

=
1

√2
�
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 −1

� ⋅ �
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� 

=
1
2

�
1 0 0 1
0 1 1 0
1 0 0 −1
0 1 −1 0

� 

I’ll leave it as a homework problem to show, that this operation does indeed project the BS onto the 
CBS. 

 
Fig. 27: (left) A CNOT-based BS measurement device in the quantum circuit representation. The single lines repre-
sent QuBits, the double lines classical bits. (right) A complete BS-measurement apparatus based on nonlinear optics 
from PRL 86, 1370 (2001). Note that most of the time the SFG-process does not occur and no measurement is 
recorded. 

Two-photons gates, such as the CNOT, however, require photons to interact; hence nonlinear optics. 
Such gates typically operate at very low probabilities (success rates). so for practical applications we 
will have to resort to linear operations and skip the CNOT-approach. This will necessarily lead to an 
imperfect measurement. 

5.5.2 Linear-optics based BSM 
Thus, consider the following circuit, consisting of a 50:50 Beamsplitter, upon which both of the photons 
of the entangled pair are incident, two sets of polarization beam-splitters at the exit ports of the 
beamsplitter and 4 photon-number-counting detectors attached to a correlation setup. 

 
16  The Matricies have to be multiplied with the Vector [𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿]†  to obtain the processed state vector 
[𝛼𝛼′,𝛽𝛽′,𝛾𝛾′, 𝛿𝛿′]† 
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Fig. 28: A BS-PBS-type linear Bell State Measurement Scheme. 

The non-polarizing beam splitter induces the following mode transformations 17, which should be ob-
vious after the discussion on the HOM interferometer: 

𝑎𝑎�1𝜆𝜆 =
1

√2
�𝑏𝑏�1𝜆𝜆 + 𝑏𝑏�2𝜆𝜆� 𝑎𝑎�2𝜆𝜆 =

1
√2

�𝑏𝑏�1𝜆𝜆 − 𝑏𝑏�2𝜆𝜆� (199) 

Let’s first consider the Bell-State |Ψ−⟩ = 1/√2(|01⟩ − |10⟩), which is in terms of creation operators: 

|Ψ−⟩ =
1

√2
�𝑎𝑎�1𝐻𝐻

† 𝑎𝑎�2𝑉𝑉
† − 𝑎𝑎�1𝑉𝑉

† 𝑎𝑎�2𝐻𝐻
† �|vac⟩ (200) 

After the beam splitter the Photon pair is now in the state: 

|Ψ� −⟩ =
1

2√2
��𝑏𝑏�1𝐻𝐻

† + 𝑏𝑏�2𝐻𝐻
† ��𝑏𝑏�1𝑉𝑉

† − 𝑏𝑏�2𝑉𝑉
† � − �𝑏𝑏�1𝑉𝑉

† + 𝑏𝑏�2𝑉𝑉
† ��𝑏𝑏�1𝐻𝐻

† − 𝑏𝑏� 2𝐻𝐻
† ��|vac⟩

=
1
2

�𝑏𝑏�1𝑉𝑉
† 𝑏𝑏�2𝐻𝐻

† − 𝑏𝑏�1𝐻𝐻
† 𝑏𝑏�2𝑉𝑉

† �|vac⟩

= 1/√2(|01⟩ − |10⟩)
= |Ψ−⟩

(201) 

This means that the |Ψ−⟩-state is fully invariant under the operation of the 50:50 BS. We can apply the 
same set of operations to the other three Bell-States and obtain the following results for the action of 
the initial 50:50 beamsplitter on a Bell-State 

|Ψ−⟩ → 1/√2(|𝐻𝐻, 𝑉𝑉⟩ − |𝑉𝑉, 𝐻𝐻⟩)

|Ψ+⟩ →
1

√2
(|𝐻𝐻𝐻𝐻, 0⟩ + |0, 𝐻𝐻𝐻𝐻⟩)

|Φ+⟩ →
1
2 (|2𝐻𝐻, 0⟩ − |0,2𝐻𝐻⟩ + |2𝑉𝑉, 0⟩ − |0,2𝑉𝑉⟩)

|Φ−⟩ →
1
2 (|2𝐻𝐻, 0⟩ − |0,2𝐻𝐻⟩ − |2𝑉𝑉, 0⟩ + |0,2𝑉𝑉⟩)

(202) 

Note, that we have resorted to the 𝐻𝐻𝐻𝐻-notation to get a better understanding of the action of the 
polarizing beam-splitters to follow. Also note, that 𝐻𝐻𝐻𝐻 and 2𝑉𝑉 mean, that there are two photons of 

 
17 Note that we must resort to state operator representation here, because the beam splitter is used with two 
photons and we cannot guarantee that on the output side there will only be superpositions of number states 
with 𝑛𝑛 = 0  and 𝑛𝑛 = 1. In fact we shall see this is not the case. 
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opposite or equal polarization in any arm of the output of the beamsplitter denoted by the modes 𝑏𝑏�1
† 

or 𝑏𝑏� 2
†, respectively. 

First note that |Ψ−⟩ and only |Ψ−⟩ does produce one photon in each arm of the output port of the 
beam-splitter. Thus, if any of 𝐷𝐷1𝜆𝜆  and 𝐷𝐷2𝜆𝜆  produce a correlated click, we certainly know that  |Ψ−⟩ has 
been measured. |Ψ+⟩ is the only state in which both photons are always bunched in the same exit port 
of the beamsplitter but in different polarization states. Thus if 𝐷𝐷1𝐻𝐻 and 𝐷𝐷1𝑉𝑉 or 𝐷𝐷2𝐻𝐻 and 𝐷𝐷2𝑉𝑉 show cor-
related click, we know that |Ψ+⟩ has been detected. 

|Φ+⟩ and |Φ−⟩ are different though. They are both marked by double-clicks (i.e. the simultaneous de-
tection of two photons) of any of the single detectors. Although they are orthogonal, this orthogonality 
is entirely related to the mutually opposing phase of the vertically-polarized contributions. As phase 
and photon-number are mutually exclusive measureables (they do not commute), we cannot hope to 
distinguish them with our setup or any kind of advanced photon-counter. 

Bell-State Detector Correlation Signature 
|Ψ−⟩ single photons at 𝐷𝐷1𝐻𝐻 and 𝐷𝐷2𝑉𝑉 or 𝐷𝐷1𝑉𝑉 and 𝐷𝐷2𝐻𝐻 
|Ψ+⟩ single photons at 𝐷𝐷1𝐻𝐻 and 𝐷𝐷1𝑉𝑉 or 𝐷𝐷2𝐻𝐻 and 𝐷𝐷2𝑉𝑉 

|Φ+⟩ or |Φ−⟩ two photons at  𝐷𝐷1𝐻𝐻 or  𝐷𝐷1𝑉𝑉 or  𝐷𝐷2𝐻𝐻 or  𝐷𝐷2𝑉𝑉 
Fig. 29: Correlation scheme for a BS-PBS-Type Bell-State-Measurement Setup. 

This is a profound limitation. With a BS-PBS-type scheme, we can only hope to discern three of the 
four possible Bell-States. Moreover, one can show, that this is not a problem with the specific setup 
but that it actually is a limiting case. Lütkenhaus et al. (1999) have in fact shown, that no better result 
can be achieved using only linear optical elements and classical communication (and perfect photon-
counting detectors)18. 

This is really bad news and seems to jeopardize all of the Quantum-Protocols introduced earlier in this 
chapter. However, there are a few strategies on how to deal with this issue: 

1. The setup we have investigated is perfectly correct, i.e. it never returns wrong results, but does 
not produce distinguishable results. Trade-offs can be made here. The most extreme case 
would be to just guess the Bell State. Which would give perfect distinguishability of all four 
states but result in only 25% correct results. Intermediate solutions with more meaningful 
trade-offs are possible. Erroneous results must then be compensated at a high level of the 
experiment. 

2. Post-Selection can be applied, such that only those photon-pairs are used in the quantum ex-
periment, which are distinguishable, i.e. all results attributed to |Φ+⟩ and |Φ−⟩ could just be 
discarded. This results in additional loss of 50% (i.e. ~3 dB), which may not be so bad as com-
pared to transmission and other losses. 

3. Perfect Bell-State-Measurements can be applied if the LOCC-requirement is broken. This is 
particularly true for the “L”. Nonlinear optical setups can be utilized to create perfects BSM-
setups. This, however, require Bob’s and Alice’s photon to interact nonlinearly. As the nonlin-
ear interaction rates of single photons are extremely weak, this typically leads to non-interac-
tion and thus a failed measurement for the vast majority of the photon-pairs. The trade-off is 
effectively similar to the ones above: one sacrifices success-rate for distinguishability. 

 
18 This requirement is commonly termed „LOCC“. 
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Fig. 30: The BSM-dilemma. Using LOCC you can either get correct or meaningful results. Never both. An optimal 
BSM requires nonlinear optics or non-classical communication (which by itself requires BSMs). 

6 EPR and the Bell-Inequalities 
Before we discuss quantum communication protocols, we 
shall first revisit Entanglement itself. We have seen that En-
tanglement is a natural property of multi-body quantum 
system, which occurs, if you apply the concept of superpo-
sition and wave-collapse onto them. As such, it is a direct 
result of the nature of quantum physics. 

Its consequences are, however, subtle and have been a 
source for heated debated among the founders of the field: 
which culminated in the famous work by Albert Einstein, 
Boris Podolsky, and Nathan Rosen in 1935 and the reformu-
lation of the Problem in terms of the Bell inequalities by 
John Bell in 1964 and later experimental demonstrations 
thereof, the first one in 1982 by Alain Aspect and then many later, which did close some existing loop-
holes. 

The core of the problem has already been introduced in Chapter 4.1. Some of these two-particle states 
actually behave in a way that Alice’s measurement immediately determines the result for Bob’s meas-
urement (e.g. the Bell states). The argument, which now arose between Einstein and Bohr manly did 
focus around the one question: if two particles are entangled, are they still two individual particles or 
a are they one unique quantum system? 

Think about it as you and your partner leaving the house in the morning, going to work in opposite 
directions, each grabbing one wallet in the dark. Yours is red and your partner’s is green. Once you 
arrive at work, you can have a look at the wallet and see if it’s yours or your partner’s and you’ll im-
mediately know what your partner’s measurements result is (the opposite of yours). The same applied 
to the coloring. But you’ll also know that the wallets have been the same all along. For entangled 
quantum systems, we’ll see that the latter is not the case and we’ll see how this can be cast into meas-
urable equations. More specifically even if you measure a superposition of color and owner, you’ll still 
retain the connect between the results. 
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6.1 EPR’S Arguments on the Nature of Nature 
The EPR argument basically claimed that Quantum Physics (at the least Copenhagen Interpretation) 
must be incomplete. They put forward the axiomatic claim, that any physical theory must be local and 
real. These words deserve some clarification: 

Physical Realism: All properties of an object may be measured, such that the system may be fully 
determined by a the measurement conducted by the measurements of an (possibly infinitely skilful) 
observer. Any measurement does not affect the measured object, it merely reads off a property. The 
property itself is always determined and is fixed before and without the measurement. 

Locality:  Any object may only influence its immediate surrounding. Any action may propagate from 
the surrounding no faster than the speed of light. Thus, there can only be a causal relation between 
events in space-time that are separated space-like; not time-like. i.e. events that are within each 
other’s light cone. Action at a distance (outside of the light cone) is impossible. 

Keep in mind that we have in this lecture introduced plenty of concepts that are incompatible with 
these ideas. The former is violated by the concept of wave-function collapse and non-commuting 
measurements, whereas the latter is violated by entanglement. The EPR argument then basically sug-
gest that because the Quantum Physics violates Realism and Locality it must therefore be incomplete. 

Incompleteness means that there is something missing, there are some hidden variables, which we 
don’t know (and may not have access to), but which predetermine the outcome of any quantum me-
chanical measurement and merely appear like quantum mechanical randomness to the (non-skilled) 
observer. 

The entire argument can be boiled down to a simple thought experiment. Assume that we have a bi-
photon |𝜙𝜙+⟩ = (|00⟩ + |11⟩)/√2 state. Also assume that we take one of the photons of this state and 
send it to Alice and the other one to Bob and they both measure the polarization of the photon in the 
𝐻𝐻/𝑉𝑉-Basis. Also assume that their labs are sufficiently far away, such that there cannot be a causal  
relation between the two within the time-frame of the measurement. Both may either measure 𝐻𝐻 or 
𝑉𝑉. But they always measure the same polarization, no matter what. Assume Alice is the first to measure 
(which for time-like measurement events is actually not a meaningful statement) and assume she 
measures 𝐻𝐻, how does Bob’s photon know it is supposed to also create an 𝐻𝐻-reading on Bob’s detec-
tor? 

The inventors of the Quantum Theory claimed that the laws of quantum physics create this correlation. 
Full stop. That’s just the way it is, not matter if Einstein likes it or not. Action at a distance is very real 
and quantum physics (and therefore nature itself) thus cannot real AND local at the time time. The 
first measurement has in fact determined (defined) the state of both individual photons non-locally 
and that state simply did not exist before the measurement. 

EPR argued that for locality and reality to hold, the must be hidden variables. Both Alice’s and Bob’s 
photon must have been imprinted at their common point of creation with the information that they 
will both eventually will create an 𝐻𝐻-result. They carried this information via an unknown (and possibly 
unknowable) hidden variable to both detectors. The detectors merely measured (revealed) the content 
of the hidden variables, its values had been fixed all along. 

Note that because any property of any quantum system can be entangled, this argument basically 
expands to the full state of nature. We all know how the story went: the existence of proposed hidden 
variable was eventually disproven in experiment. Keep in mind however, that the EPR paper is still an 
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awesome work of science, because it strips down the conceptual differences between classical theo-
ries and quantum theories to two very basic concepts. It is a feat of trying to understand and disprove 
the arguments of the opposing side in the most honest way possible. 

6.2 Bell’s Inequalities 
Funnily enough it took almost thirty years for John Bell to reformulate the arguments of EPR in a quan-
tifiable manner. He was the first to realize that the existence of (unknowable) hidden variables is not 
a matter of taste, which you can believe in or not, but that their sheer existence leads one to predict 
different results for a certain type of correlation measurements on entangled system from those re-
sults predicted by quantum theory. This feat would later allow scientists to test in an experimental 
way, if EPR has indeed been right or if the world is in fact an unreal and/or non-causal place to live in. 

The argument hinges on EPR’s thought experiment but with a slightly modified setting. Namely, Alice 
and Bob now measure the polarization of each photon of the |𝜙𝜙+ ⟩-pair along three different angles 
off the 𝐻𝐻-basis (𝜙𝜙𝑎𝑎 = 0° and 𝜙𝜙𝑏𝑏 = 𝛼𝛼 and 𝜙𝜙𝑐𝑐 = 𝜋𝜋

2
− 𝛼𝛼) where they select the measurement basis ran-

domly and independently of each other for every individual photon. For any measurement they get 
one of two states, which we shall still call |0𝑖𝑖 ⟩ and |1𝑖𝑖 ⟩ with 𝑖𝑖 = 𝑎𝑎, 𝑏𝑏,𝑐𝑐 to denote that they are different 
states for each setting of the polarizer. See section 4.2. for the precise definition and the mathematical 
formulation of the measurement process. 

The Bell-inequalities are now particularly concerned with the correlation probabilities, which can be 
determined after many repeated measurements. One example is  𝑝𝑝(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏), which is the 
fraction of all measurements were Alice has measured 0 in the 𝑎𝑎-Basis (with an 𝛼𝛼𝑎𝑎 rotated polarizer) 
and Bob has measured 0 in the 𝑏𝑏-Basis (with an 𝛼𝛼𝑏𝑏rotated polarizer). Keep in mind that because Alice 
and Bob set their polarizers to randomly selected bases all the time, we may switch between probabil-
ities 𝑝𝑝 and measurement numbers 𝑁𝑁. 

 
Fig. 31 Experimental Scheme of the Bell-Test, which is used to validate or invalidate Bell’s inequality. Source: Wik-
ipedia. 

Let’s stick with the German Wikipedia for a while and switch to code words. For the different meas-
urement bases and results (0 or 1, respectively). The results in Basis 𝑎𝑎 are termed 0𝑎𝑎 =short, 1𝑎𝑎 =tall, 
in basis 𝑏𝑏 0𝑏𝑏 =blond, 1𝑏𝑏 =dark, and in basis 𝑐𝑐 0𝑐𝑐 =female, 1𝑐𝑐 =male. 
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Fig. 32 Selected bases for the polarization measurement in Alice’s and Bob’s lab for a Bell test. The words next to 
the results are used as code-word for ease of interpretation. 

In the hidden-variables explanation each photon of the entangled pair corresponds to a twin of the 
other partner, e.g. they may both be short, blond females or both be short, dark males. Alice and Bob 
may however only ask each twin one single question and they thus can measure two properties of the 
pair. E.g. size and color of hair. 

For combinatorial reasons the number of tall, blond photons can be measured if Alice measured in 
basis 𝑎𝑎 and Bob measures in basis 𝑏𝑏 or vice versa. Its number is given by 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏). It must 
be the same as the sum of tall, blond females plus the number of tall blond males: 

𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏) = 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏|𝑐𝑐 = 0) + 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏|𝑐𝑐 = 1) (203) 

The first summand of the right-hand side will each not shrink, if we leave out the second condition 
(𝐵𝐵 = 0𝑏𝑏) for the left summand, e.g. we ignore or just not carry out the measurement on color of hair 
by Bob in the first summand.  Because Bob is now basically unemployed, we can now use him to test 
for the gender instead. 

𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏|𝑐𝑐 = 0) ≤ 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎|𝑐𝑐 = 0)
= 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑐𝑐) (204) 

The same can be said for the second summand if the Alice’s measurement size is ignored and she 
measures gender instead. We can now also switch the roles of Alice and Bob, this will not change 
anything because the measured objects are identical twins: 

𝑁𝑁(𝐴𝐴 = 0𝑎𝑎,𝐵𝐵 = 0𝑏𝑏|𝑐𝑐 = 1) ≤ 𝑁𝑁(𝐵𝐵 = 0𝑏𝑏|𝑐𝑐 = 1)
= 𝑁𝑁(𝐴𝐴 = 1𝑐𝑐 , 𝐵𝐵 = 0𝑏𝑏)
= 𝑁𝑁(𝐴𝐴 = 0𝑏𝑏 , 𝐵𝐵 = 1𝑐𝑐)

(205) 

The entire formula thus reads as 

𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑏𝑏) ≤ 𝑁𝑁(𝐴𝐴 = 0𝑎𝑎, 𝐵𝐵 = 0𝑐𝑐) + 𝑁𝑁(𝐴𝐴 = 0𝑏𝑏 ,𝐵𝐵 = 1𝑐𝑐) (206) 

Thus, if hidden variables really exist (doesn’t matter if they are measurable or not) this inequality must 
always hold. 

Now we return to photons, for which we know quantum mechanics holds true and see if this relation 
is actually fulfilled. For a sufficiently large number of photons the terms in the last equations can be 
easily interpreted as probabilities and also as transmission ratios of particular filter settings. 
𝑁𝑁�𝐴𝐴 = 0𝑖𝑖 ,𝐵𝐵 = 0𝑗𝑗� describes an event, in which a photon passed a polarizer rotated by 𝛼𝛼𝑖𝑖   in Alice’s 
Lab and a polarizer with 𝛼𝛼𝑗𝑗rotation in Bob’s lab. As the initial state was a |𝜙𝜙+ ⟩ state we know that that 
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the probability for such an event is simply cos2(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗). The same is true for 𝑁𝑁�𝐴𝐴 = 1𝑖𝑖 ,𝐵𝐵 = 1𝑗𝑗�. The 
result for 𝑁𝑁�𝐴𝐴 = 0𝑖𝑖 ,𝐵𝐵 = 1𝑗𝑗� and 𝑁𝑁�𝐴𝐴 = 1𝑖𝑖 ,𝐵𝐵 = 0𝑗𝑗� is likewise sin2(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗).  

The above inequality thus reads as: 

cos2(𝜙𝜙𝑎𝑎 − 𝜙𝜙𝑏𝑏) ≤ cos2(𝜙𝜙𝑎𝑎 − 𝜙𝜙𝑐𝑐) + sin2(𝜙𝜙𝑏𝑏 − 𝜙𝜙𝑐𝑐) (207) 

If we assume the situation as discussed above, namely 𝜙𝜙𝑎𝑎 = 0, 𝜙𝜙𝑏𝑏 = 𝛼𝛼, and 𝜙𝜙𝑐𝑐 = 𝜋𝜋
2

− 𝛼𝛼, this simplifies 
to 

cos2(𝛼𝛼) ≤ sin2 𝛼𝛼 + cos2(2𝛼𝛼) 

Which is obviously NOT true, unless 𝛼𝛼 = 0 or 𝛼𝛼 = 45°. It is “most untrue” for 𝛼𝛼 = 30° with a differ-
ence of the LHS and RHS of 0.25. 

 
Fig. 33 Comparison of LHS and RHS of Bell inequalities for the quantum case. Classically the RHS should be equal or 
LARGER the LHS. 

This means that we can guarantee (except for very specific angles) that the results we will measure in 
fact do violate the inequality, which we derived from the assumption of a hidden-variable theory. This 
is a deeply profund finding. There is a measurable difference between a theory with and without hid-
den variables and this difference can be tested for experimentally by evaluation of Bell’s inequalities 
(you can just MEASURE both sides of the inequality and if you find that your results violate it then, 
voilà). Should they hold then we know that Quantum Physics is indeed incomplete and hidden variables 
do exist. Should they not hold, then we can rule out hidden variables and we know that nature is not 
real and/or not causal. 

6.3 A generalization: CHSH-Inequalities 
Practical Bell-tests actually do not implement the scheme as proposed by Bell but they rely on a gen-
eralization of Bell’s scheme put forward by Clausner, Horne, Shimony, and Holt five years after Bell’s 
seminal breakthrough. The CHSH inequality is – as Bell’s original inequality – a constraint on the coin-
cidences in a correlated set of measurements on a pair of entangled photons, which is smaller for a 
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classical (hidden-variables) geometry and larger for a quantum theory. To cut a long story short, the 
CHSH test also measures, if quantum particles are more strongly correlated than classical particles ever 
could be. 

The CHSH inequality is again concerned with correlation measurements 𝐸𝐸(𝑖𝑖, 𝑗𝑗) of two different prop-
erties of the constituents of an entangled system, e.g. the results of an outcome of a polarization meas-
urement where Alice measures along two different bases 𝑖𝑖 = 𝑎𝑎1 ,𝑎𝑎2   and Bob along 𝑗𝑗 = 𝑏𝑏1 ,𝑏𝑏2, each of 
which have eigenstates |±𝑖𝑖/𝑗𝑗⟩ and eigenvalues ±1 or just ± in shorthand notation. Also note that we 
briefly deviate from the established notation for the eigenvalues here, for ease of calculation of the 
number, i.e. |+⟩ = |0⟩ and |−⟩ = |1⟩. 

Experimentally these correlations 𝐸𝐸Exp(𝑖𝑖, 𝑗𝑗) are determined by long-term averages of the number of 
simultaneous clicks in Alice’s and Bob’s detectors for a fixed selection of bases 𝑖𝑖, 𝑗𝑗   (of which there are 
four possible combinations). Here 𝑁𝑁±±

𝑖𝑖,𝑗𝑗  denotes correlation, i.e. simultaneous clicks at both + for or 

both – detectors in Alice and Bob’s labs. Likewise, 𝑁𝑁±∓
𝑖𝑖,𝑗𝑗  denotes anti-correlation, i.e. where one detec-

tor clicks at + and the other one at − , e.g. Alice and Bob record different values. The correlation of 
particle pairs for such a setting is then given by: 

𝐸𝐸Exp (𝑖𝑖, 𝑗𝑗) =
𝑁𝑁++

𝑖𝑖,𝑗𝑗 − 𝑁𝑁+−
𝑖𝑖,𝑗𝑗 − 𝑁𝑁−+

𝑖𝑖,𝑗𝑗 + 𝑁𝑁−−
𝑖𝑖,𝑗𝑗

𝑁𝑁++
𝑖𝑖,𝑗𝑗 + 𝑁𝑁+−

𝑖𝑖,𝑗𝑗 + 𝑁𝑁−+
𝑖𝑖,𝑗𝑗 + 𝑁𝑁−−

𝑖𝑖,𝑗𝑗 (208) 

A CHSH-type Bell test does then measure the quantity: 

𝑆𝑆 = 𝐸𝐸(𝑎𝑎1,𝑏𝑏1) − 𝐸𝐸(𝑎𝑎1,𝑏𝑏2) + 𝐸𝐸(𝑎𝑎2, 𝑏𝑏1)+ 𝐸𝐸(𝑎𝑎2 ,𝑏𝑏2 ) (209) 

What we’ll now see, is that we get different upper bounds for 𝑆𝑆 if we calculate it according to the rules 
of Quantum meachanics and accordingly to the assumption of hidden variables. 

 
Fig. 34 Schematic of a two-channel Bell-test with polarization splitters using two time-like separated observer Alice 
and Bob. The test has to be re-run at least four times for all combinations of two different settings Aa, Ab of the left 
and Bc, Bd of the right polarizer. The strongest deviation for the classical prediction of 𝑆𝑆 = 2 √2  can be found at 
a=0°, b=45° and c=22.5°, d=67.5° (Tsirelson’s bound) 

According to the rules of quantum mechanics the correlation terms 𝐸𝐸𝑄𝑄(𝑖𝑖, 𝑗𝑗) can be calculated from the 
system’s biphoton state |𝜓𝜓⟩ using the expectation value 
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𝐸𝐸𝑄𝑄(𝑖𝑖, 𝑗𝑗) = �𝜓𝜓�𝜎𝜎�𝑖𝑖
𝑎𝑎 ⊗ 𝜎𝜎�𝑗𝑗

𝑏𝑏�𝜓𝜓� = 〈𝜎𝜎�𝑖𝑖
𝑎𝑎𝜎𝜎�𝑗𝑗

𝑏𝑏〉 (210) 

where 𝜎𝜎�𝑖𝑖
𝑎𝑎 denotes the Polarization measurement-operator for the appropriate measurement direc-

tion 𝑎𝑎𝑖𝑖 acting on the photon in Alice’s lab. 𝜎𝜎�𝑗𝑗
𝑏𝑏  is likewise 𝑏𝑏𝑗𝑗 acting on the photon in Bob’s lab. Here 𝑖𝑖 

and 𝑗𝑗 denote the specific orientation of the polarization beams splitter.  Without loss of generality, we 
assume that all measurements are in a linear polarization basis. Thus, the Polarization measurement 
operator can be obtained from the set of Pauli-matrices 𝜎𝜎�1,2,3 and the measurement direction vector 
𝑎𝑎𝑖𝑖 = [cos 2𝜙𝜙𝑖𝑖

𝑎𝑎 , sin 2𝜙𝜙𝑖𝑖
𝑎𝑎 , 0]  denoted by the rotation angle 𝜙𝜙𝑖𝑖 for measurement basis 𝑎𝑎𝑖𝑖   according to 

𝜎𝜎�𝑖𝑖
𝑎𝑎 = [𝜎𝜎�1 ,𝜎𝜎�2 ,𝜎𝜎�3] ⋅ 𝑎𝑎𝑖𝑖

†  (211) 

The same holds true for the 𝜎𝜎�𝑗𝑗
𝑏𝑏  operators. For example, if the measurement is oriented along the 𝑥𝑥-

direction, e.g. we are measuring H/V-polarization we get 𝜎𝜎�𝑖𝑖
𝑎𝑎 = 𝜎𝜎�1. Because 𝑆𝑆 is composed of a sum of 

expectation values, we can introduce an appropriate measurement operator composed of the sum of 
four separate measurements 𝜎𝜎�𝑖𝑖

𝑎𝑎 ⊗ 𝜎𝜎�𝑗𝑗
𝑏𝑏, which will have the same expectation values, simply as 

𝑆̂𝑆 = 𝜎𝜎�1
𝑎𝑎𝜎𝜎�1

𝑏𝑏 − 𝜎𝜎�1
𝑎𝑎𝜎𝜎�2

𝑏𝑏 + 𝜎𝜎�2
𝑎𝑎𝜎𝜎�1

𝑏𝑏 + 𝜎𝜎�2
𝑎𝑎𝜎𝜎�2

𝑏𝑏 (212) 

We note, that the outcome of the measurement does not depend on the order that Alice and Bob 
make their measurement, because Alice’s and Bob’s measurement operators commute: �𝜎𝜎�𝑖𝑖

𝑎𝑎, 𝜎𝜎�𝑗𝑗
𝑏𝑏� = 0, 

irrespective of their specific basis choice.  Using this we can make use of the Khalfin-Tsirelson-Landau 
identity for the square of the CHSH-Operator 𝑆̂𝑆. 

𝑆̂𝑆 2 = 4𝕀𝕀 −  [𝜎𝜎�1
𝑎𝑎, 𝜎𝜎�2

𝑎𝑎] �𝜎𝜎�1
𝑏𝑏 ,𝜎𝜎�2

𝑏𝑏� (213) 

The classical notion of hidden variables entirely hinges on the idea, that all quantities be determined 
and thus any classical theory must provide for [𝜎𝜎�1

𝑎𝑎,𝜎𝜎�2
𝑎𝑎] = �𝜎𝜎�1

𝑏𝑏 , 𝜎𝜎�2
𝑏𝑏� = 0. We thus get as the classical 

bound: 

𝑆𝑆𝐶𝐶 ≤ �〈𝑆̂𝑆2〉 = 2 (214) 

In quantum physics, however, the commutators do not vanish. We note, that (𝜎𝜎�𝑖𝑖
𝑎𝑎)2 = �𝜎𝜎�𝑗𝑗

𝑏𝑏�2
= 𝕀𝕀, 

which can be easily seen from the fact that their eigenvalues are ± 1. We may use this fact to derive 
an upper bound for the commutators, as ‖𝜎𝜎�1

𝑎𝑎, 𝜎𝜎�2
𝑎𝑎‖ ≤ 2‖𝜎𝜎�1

𝑎𝑎‖‖𝜎𝜎�2
𝑎𝑎‖ ≤ 2. The same is true for Bob’s 

commutator. Thus, we get for the expectation value of their product: −4 ≤ 〈[𝜎𝜎�1
𝑎𝑎, 𝜎𝜎�2

𝑎𝑎] �𝜎𝜎�1
𝑏𝑏 ,𝜎𝜎�2

𝑏𝑏�〉 ≤ 4. 
The CHSH-measurement is maximized for the case of −4 and we get: 

𝑆𝑆𝑄𝑄 ≤ �〈𝑆̂𝑆2〉 ≤ �4 − (−2)2 = 2√2. (215) 

Thus, any value of 2 < 𝑆𝑆 ≤ 2√2 is a clear indicator of non-classical behaviour. However, these values 
can only be reached if  〈[𝜎𝜎�1

𝑎𝑎, 𝜎𝜎�2
𝑎𝑎] �𝜎𝜎�1

𝑏𝑏 ,𝜎𝜎�2
𝑏𝑏�〉 ≈ −4. In practice this can be enforced by an appropriate 

choice initial states |𝜓𝜓⟩ and of the measurement bases 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑗𝑗 (which also means that not all choice 
of measurement bases allow for stronger than classical correlations!). For the sake of simplicity we 
restrict ourselves to |𝜓𝜓⟩ = |𝜙𝜙+⟩ and linear polarization states for the measurement. It is then further 
helpful to choose the respective measurement basis in each lab to be rotated by 45°. Thus, without 
loos of generality we chose for Alice to measure in linear polarization |𝐻𝐻/𝑉𝑉⟩ and in diagonal polariza-
tion | +/−⟩: 

𝜙𝜙1
𝑎𝑎 = 0,𝜙𝜙2

𝑎𝑎 =
𝜋𝜋
4 (216) 
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The measurement bases for Bob are then simply rotated by a given angle 𝜙𝜙�  with respect to Alice’s 
bases, i.e.  

𝜙𝜙1
𝑏𝑏 = 0 + 𝜙𝜙� , 𝜙𝜙2

𝑏𝑏 =
𝜋𝜋
4 + 𝜙𝜙� (217) 

It can be shown that the expectation value 𝑆𝑆𝑄𝑄 can then be maximized at 𝜙𝜙� = 𝜋𝜋
8

 and at this values we 

get exactly 𝑆𝑆 = 2√2. This result is called Tsirelion’s bound and the respective basis angles 0, 45° and 
22.5°,67.5° are typically referred to as the Bell-Test angles. 

6.3.1 CHSH on a Quantum Simulator 
Since the Bell Test / CHSH experiment is such a milestone of Quantum Physics (keep in mind, it did not 
only settle a half-century old debate between titans of modern physics but it tell us something about 
the nature of the physical universe we live in, in general), we shall like to take the opportunity and 
experimentally verify its validity. We do so by quickly switching to the realm of quantum computation, 
but as we have discussed earlier; a Qubit is a Qubit. Keep in mind: the first demonstration of experi-
mentally violating the CHSH inequality is merely forty years old and now we can repeat the experiment 
in a classroom. 

We first construct a quantum circuit, that implements the CHSH-experiment with the appropriate set-
ting for measurement angles: 

 

 
Fig. 35 A CHSH-Experiment with 𝜙𝜙� = 22.5° implemented for a Quantum Computer. The basis selection is carried 
out via quantum random number generators for which two separate Qubits are consumed. Note that the measEve1 
result line is unused in this experiment. 

We then run the circuit (for the moment on a quantum simulator) and get the following results: 
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Fig. 36 Results for 1024 runs of the above displayed experiment. The x-axis labels are already modified from simple 
bitwise notation to the notation used in the formula above. 

This representation is probably still a bit hard to really understand, therefore it makes sense to arrange 
the data in a table and use a bit of excel magic to mark up the results. 

 
Fig. 37 Same results as above but with a bit of excel-magic attached to visualize the data. The weight-column just 
shows, if this specific type of basis choice corresponds to the one 𝐸𝐸-term which has a negative sign. The even-
column shows if the measurement was even (same detector clicked for Alice and Bob; either -- or ++) or odd (dif-
ferent detector clicked for Alice and Bob; either +- or -+). 

The rest is really just book-keeping. We calculate each value for 𝐸𝐸(𝑖𝑖, 𝑗𝑗) by selecting the proper four 
rows from the table and make sure to add them up with the correct sign (according to the even-col-
umn!) in the denominator. We then add up all the 𝐸𝐸(𝑖𝑖, 𝑗𝑗)’s and again make sure to use the correct sign 
(according to the weight-column). In this case we get an estimate of: 

𝑆𝑆 = 2.98 > 2 (218) 

Don’t you find this amazing? I do! We have found a clear violation if the CHSH inequality and thus have 
demonstrated that Quantum Physics is a reality, indeed! 

Measuremen  Frequency rngA rngB Weight measAmeasB Even
b1 ++ a1 128 a1 b1 1 + + 1
b1 ++ a2 15 a2 b1 -1 + + 1
b1 +- a1 19 a1 b1 1 - + -1
b1 +- a2 111 a2 b1 -1 - + -1
b1 -+ a1 16 a1 b1 1 + - -1
b1 -+ a2 123 a2 b1 -1 + - -1
b1 -- a1 96 a1 b1 1 - - 1
b1 -- a2 18 a2 b1 -1 - - 1
b2 ++ a1 99 a1 b2 1 + + 1
b2 ++ a2 114 a2 b2 1 + + 1
b2 +- a1 12 a1 b2 1 - + -1
b2 +- a2 18 a2 b2 1 - + -1
b2 -+ a1 17 a1 b2 1 + - -1
b2 -+ a2 15 a2 b2 1 + - -1
b2 -- a1 97 a1 b2 1 - - 1
b2 -- a2 126 a2 b2 1 - - 1
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Note that in this specific case we aso get 𝑆𝑆 > 2√2 but this is because we have used a measured num-
ber of occurences to estimate expectation value �𝑆̂𝑆�. If you wanted to really get a serious fix on the 
violation of CHSH you’d have to rerun the experiment very frequently and then do proper statistics on 
the result. The distribution of estimated expectation values would then approach a gauss shape with 
a center of gravity on 2√2 and a width that is hopefully much smaller than 2√2 − 2. 

6.3.2 CHSH for a Classical System / Eavesdropping 
Because I am feeling lucky (do you feel lucky, punk? Do you?) let’s push the limits and see that the we 
can’t get beyond 𝑆𝑆 = 2 for a classical system. To do so, we again use our quantum computer script 
from above albeit with a tiny modification. We will introduce an eavesdropper Eve, that attempts to 
make a copy of Alice’s Qubit, like so: 

 
Fig. 38 We destroy the entanglement between Alice’s and Bob’s Qubit before their respective measurement (and 
basis selection) by introducing an eavesdropper “Eve”. Eve conducts a measurement on Alice’s Qubit and stores the 
result in the previously unused classical bit “measEve”. Alice and Bob then proceed to measure in their respective 
bases and calculate ⟨𝑆𝑆⟩. 

Let’s run the so-modified Quantum Circuit and we get: 

 
Fig. 39 Results for 1024 runs of the above displayed experiment. The x-axis labels are already modified from simple 
bitwise notation to the notation used in the formula above. Th middle +/- corresponds to Eve’s measurement result 
and is not used in the calculation of 𝑆𝑆. 

The rest is again just book-keeping. We calculate each value for 𝐸𝐸(𝑖𝑖, 𝑗𝑗) by selecting the proper four 
rows from the table and make sure to add them up with the correct sign (according to the even-col-
umn!) in the denominator. We then add up all the 𝐸𝐸(𝑖𝑖, 𝑗𝑗)’s and again make sure to use the correct sign 
(according to the weight-column). In this case we get an estimate of: 
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𝑆𝑆 = 1.42 < 2 (219) 

This means that we find a result that can be explained by classical correlations and hence Alice’s and 
Bob’s photons may not have been in a highly-correlated state of entanglement by the time they have 
been measured by Alice and Bob. This is an important train of thought later on for secret communica-
tion: if your communication is based on entangled photons, your can use a CHSH-test like this to check 
for non-classical correlation. If you find 𝑆𝑆 > 2 then you are guaranteed that no one broke the entan-
glement and hence you can guarantee that no one has eavesdropped on your communication, there-
fore you are in a state of secrecy. 

6.3.3 Beyond Tsirelion’s Bound and a Real QC-Script 
In the chapter above we had discussed that the “magic” Bell angles are the ones that achieve a maxi-
mum of 𝑆𝑆 = 2√2. In this chapter I would like to discuss, what happens at different angles, i.e. we want 
to systematically vary 𝜙𝜙� . Moreover in the last two chapters we have not run the measurement scripts 
on a real quantum computer but on a quantum simulator. 

The simple reason for that is, that the QCs that I have access to do not support internal measurements 
and hence the idea of using a QRND to randomly select mutual measurement bases does not work. 
Instead we can just run, for every value of 𝜙𝜙�  four difference script according to the combinations 
𝑎𝑎1𝑏𝑏1 ,𝑎𝑎1𝑏𝑏2, 𝑎𝑎2𝑏𝑏1, and 𝑎𝑎2𝑏𝑏2 and determine respective 𝐸𝐸(𝑖𝑖, 𝑗𝑗)  separately. This is in fact a little bit prob-
lematic because we run into a possible loophole (discussed below) but let’s not worry about this too 
much for the moment. 

I will not give you the script for this specific quantum experiment, because if could not do it better nor 
more elegantly as the solution found in the QISKIT book.  

 
Fig. 40 A quadruplet of circuits for a CHSH-Test 𝜙𝜙� = 𝜋𝜋/14. (From top left to bottom right): 𝑎𝑎1𝑏𝑏1,𝑎𝑎1𝑏𝑏2, 𝑎𝑎2𝑏𝑏1, and 
𝑎𝑎2𝑏𝑏2. These four circuit are run sequentially, one value of 𝐸𝐸(𝑖𝑖, 𝑗𝑗) is computed from each circuit. The four values are 
compiled into an estimate for 𝑆𝑆(𝜙𝜙�). 

The resulting values for 𝑆𝑆(𝜙𝜙�) are found to be: 
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Fig. 41 𝑆𝑆(𝜙𝜙�) for a quantum simulation (noiseless) and measured on a real quantum computer (Quito). Note that 
the angle is called 𝜃𝜃 in this experiment. The red lines mark the classical limits. Everything beyond the red lines is 
quantum and disproved hidden variables. Note that reals QCs are inherently noisy and thus do not reach far beyond 
𝑆𝑆 = 2. Also note that there is an ambiguity in the definition of the equation for 𝑆𝑆 (the position of the “–“ sign). Here 
both cases are determined. Source: QISKIT. 

This shows two things. First it shows that Tsirelion’s bound is really reached for 22.5° and also that we 
can REALLY, REALLY, REALLY see non-classical correlation in a REAL quantum experiment, although the 
intrinsic noise for such systems limits the correlation strength somewhat, however it is still well beyond 
𝑆𝑆 = 2. 

6.4 Experimental Validation and some notes on loopholes 
The first measurement of a non-classical value for the CHSH-measure 𝑆𝑆 have been carried out by As-
pect, Dalibard and Roger in 1982. Critics, however, did come up a set of so-called “loopholes”. These 
loopholes question hidden assumptions or claim imperfections in experiments to lead to higher 
measures for 𝑆𝑆 than allowed classically, without requiring quantum physics for an explanation. 

 
Fig. 42 Scheme of the Aspect-experiment, the first to successfully demonstrate 𝑆𝑆 > 2. PRL 49 1804 (1982). 

Here we shall only briefly discuss these loopholes and present some mitigation strategies, which may 
or may not have been used in experiments, so far. More specifically, some of the loopholes may be 
extended to the point of non-testability and we may have to resort to Okham’s razor to discount them. 

Locality Loophole: Alice’s and Bob’s measurements have to be separated such that they cannot know 
of each other according to special relativity. While for the initial Aspect-paper this had been true for 
the measurement, this had not been true for the setting selection of the measurement basis, which 
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must be carried out late enough, such that a light-speed action may not propagate from Alice to Bob 
in time. Works by Zeilinger et al. closed this loophole. 

Fair Sampling Loophole: In practice any detector has a quantum efficiency < 1 and thus only detects 
a fraction of the photons. This process must be “fair” in the sense that the detector must not detect 
correlated photon pairs with a higher probability then uncorrelated photon pairs. Initially this was 
indeed a big concern as detector did have QE in the range of 5% (modern ones can reach well beyond 
50% or more, see chapter below). Rowe et al. did close this loophole by using a lasing medium that 
was triggered by the presence of an ion (no ion  no lasing  no light; ion  lasing  lots of light). 

Freedom of Choice Loophole: This loophole disputes that independent and random selection of bases 
is possible. It can be shown, that if one assumes that a prior interaction of the random number gener-
ators (or their constituents) would induce correlations in their randomness mechanism a local hidden 
variable theory may be constructed. In practice one can use very old events to trigger the random 
number generator to push back the time of purported interaction. Zeilinger et al. right now hold the 
record, by using light from two very far away Quasars at opposing side of the sky to trigger the random 
number generators, back to 7.8 billion years. From a conceptual point of view this only makes “Non-
freedom of Choice” interpretations less likely, as everything has interacted with everything else at the 
big bang. This interpretation would however imply that literally everything is predetermined (super-
determinism) and there just is no freedom of choice in this universe. This seems equally queasy. 

 
Fig. 43 Scheme of a Bell-Test with random number generators triggered by very old light (7.8 Gyr). PRL 121 080403 
(2018). 
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7 Quantum Key Distribution  
In the preceding chapters we introduced all of 
the basics required to discuss quantum physi-
cal communication protocols. Before we start, 
however, one needs to keep in mind that any 
kind of data-based communication architec-
ture can usually be described in a layered ap-
proach. For any quantum physical communica-
tion this is not different and the same is true for communication architectures, that generate and dis-
tribute quantum keys, that allow two or more users to communicate securely. A layered model for this 
case could look like this: 

 
Fig. 44: A possible layer model for a secure quantum communication architecture. For a logical point of view each 
layer communicates with its counterpart, but uses the layer beneath to do so. In the end, the system serves the 
purpose of Alice communicating with Bob. 

Note that the purpose of the communication architecture is for Alice to communicate with Bob. They 
do so with a User Application (for example a quantum secured messenger…let’s call it QuatsApp). The 
two user applications, however, secure the data communication with quantum secure keys, which they 
somehow have to use and manage in some form. Their generation is done in a QKD-protocol. The QKD-
protocol itself must use a specific physical implementation, consisting of devices to prepare, transfer 
and detect physical quantum states. They may also use quantum repeaters. 

In this chapter we shall exclusively deal with the light blue QKD protocol layer, which takes an arbitrary 
physical implementation of Qubits for granted and utilizes these to generate a secure key, that only 
Alice and Bob do know, in order to use it for secure communication. We shall discuss the dark blue 
physical layer in later chapters. The yellow and orange layers will just be discussed very briefly here 
together with a more general introduction on cryptography and its role today. 
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7.1 Fundamentals of Cryptography 
 

Until recently, cryptography (from greek kryptos: hidden, secret) was synonymous with the process of 
encryption, that is, the art and science of making messages un-readable to anyone but the intended 
receiver. Nowadays, cryptography covers everything from authentication and digital signatures (con-
firming identity and/or authorship of messages), contract signature and commitment protocols (allow-
ing you to sign a contract without anyone knowing who signed it until a disclosure condition is met, 
e.g. a certain date passes), private information retrieval (reading data from a server without the server 
knowing what the query is), asymmetric encryption protocols (public key for encryption of messages 
and private key for reading the message), symmetric key encryption protocols (requiring identical 
shared secret keys), to the generation of random numbers. All of which playing together have given us 
online banking, cryptocurrencies, distributed ledger technologies, personal messengers, social net-
works or in short: the internet the way we know it today. 

Without encryption an attacker can empty your bank account, read your messages, steal your identity, 
shop with your credit card. Without it, you could switch off power stations, crash airplanes, change 
mixtures for medicine, have cars built together the wrong way, in short: without it we’d be screwed 
pretty badly (that doesn’t mean we aren’t anyway, but that’s a whole different story). 

While the field of quantum cryptography relates to many of these applications 19, we will focus on one 
of the most widely pursued applications in this lecture: quantum key distribution for symmetric en-
cryption protocols.  

Let us now focus on the task of secret communication between our protagonists: Alice and Bob. Alice 
has a precious manuscript that she wants to send to Bob, without anyone else – least of all a malicious 
eavesdropper (Eve) – being able to read it.  

The very first step towards secret communication between Alice and Bob, is for them to prove to one 
another that: i) they are indeed who they claim to be and ii) Alice’s message has not been tampered 
with; this process is called authentication. For example, when you read this text, you know that it was 
uploaded by someone with password access to the uni’s moodle server.  Another historic example is 
the wax seal: if the seal was unbroken, Bob could be sure that a letter is indeed from Alice, and that it 
had not been tampered with. So, without going into any detail on this, let’s think of the authentication 
process as either a unique seal or a secret that only Alice and Bob know.  

The second key component is encryption; even if the seal is broken, Alice wants to be sure that the 
message is meaningless or incoherent 20 to anyone but the intended recipient, Bob. Alice can do this 
by scrambling the message (“plaintext”) into a cyphertext according to a certain algorithm. An example 
for such a procedure is a transposition cypher. The plaintext: 

“Hello world” 

becomes  

“Ifmmp xpsme” 

 when each letter is shifted by one letter in the alphabet. Bob can readily decipher the cyphertext 
(Ifmmp xpsme) by the inverse procedure and recover the original plaintext. Of course, this example 
would be rather easy for Eve to break even without knowledge of the algorithm; for example, using 

 
19 Incidentally, the first proposed application was tamperproof quantum money. 
20 (yes, quantum coherence will play a role in the following…) 
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knowledge of the English language, Eve would immediately infer that the sequence –mm- in the cy-
phertext is more likely to correspond to the letters “ss ee tt ff ll mm oo” than to “hh jj qq”. If the 
message were longer, Eve could also sort the symbols by the number of occurrences, and compare 
with the frequency at which we expect particular letters appear; for example in English, the letter “e“ 
occurs more often than the letters “f, g, y, p, b, v, k, j, x, g, z“ combined.   

7.1.1 Symmetric Encryption 
Ok, so how could one improve this? Alice and Bob can improve the security of this approach by com-
bining the transposition algorithm with a secret key. To be specific, Alice and Bob could agree to shift 
each letter in the plaintext by a different amount, according to some sequence they agreed upon in 
advance. Since Alice and Bob need an identical key for encryption and decryption the message, such a 
scheme is referred to as a symmetric key cryptosystem.  

In fact, this type of symmetric encryption can be made perfectly secure if the key is completely random 
and sufficiently long. This is known as a Vernam cypher, or a one-time pad encryption protocol. To 
understand the Vernam cypher it will be more convenient to consider Alice’s message as a binary bit 
sequence, say “1110 0111”. Alice and Bob share a secret key “1001 1001”. Alice uses the key sequence 
to transpose the bits of the plaintext (in the case of bits this corresponds to a bit flip). Mathematically, 
this operation is nothing but the bit-wise modulo-2 addition “⊕” of the key and the plaintext.  

Plaintext ⨁Key = Cipher (220) 

Bob can then recover the original message using the exact same procedure: 

Cipher⨁Key = Plaintext (221) 

This protocol is perfectly secure if: 

• The key is perfectly random and known only to Alice and Bob 
• The key length is as long as the message 
• The key is only used once (one-time pad) 

If these conditions are met, then the ciphertext is just as random as the secret key and the encryption 
protocol is unconditionally secure: the Vernam cipher contains no information about the message 
whatsoever, and no code-breaker may ever extract any meaning from the ciphertext, regardless of 
computational power and ingenuity. In practice the 2nd requirement may be relaxed and good estima-
tions suggest that a very reasonable security can be obtained with state of the art symmetric ciphers 
if there is one secret key but for every 106 data bit, which need communication. 

Such symmetric encryption ciphers are, however, rarely used (at least not on their own), because they 
require that Alice and Bob have to exchange secret keys using a secure channel, before they could 
even start to communicate. A classic example for this are TAN-lists, that have been used for quite some 
time in online banking: you get a letter (as in paper) by the bank with a list of secret keys and for every 
transaction the bank will ask you to enter one specific key. In practice you tend to lose the list and it is 
quite cumbersome. Quantum Key Distribution Systems solve just exactly this problem: they use the 
properties of Qubits and the laws of quantum physics to generate secret key, which are guaranteed to 
only be known to Alice and Bob. 

7.1.2 Asymmetric Encryption 
Before moving on to the implementation of quantum key distribution, a short note on how this issue 
is solved in contemporary communication systems. The solution is based on so-called asymmetric cryp-
tographic protocols. A prominent example is a public / private key encryption protocol: Alice, wants to 
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receive secret messages from Bob (and maybe even Chloe and Dave). She produces two types of keys: 
a public key, that she – as the name suggests – makes publicly available and a private key, known only 
to her. The public key allows Bob to encrypt a message; but the message can only be deciphered using 
Alice’s private key. To illustrate this, think of Alice sending out open combination padlocks to Bob, 
Chloe, and Dave; they can lock the padlock by simply closing and setting any number (which is a simple 
problem) – but only Alice can open the lock and make the message readable (for everybody else this 
is a hard problem, they would have to try all the numbers). 

In practice Asymmetric Encryption schemes are rather slow (as is the case with QKD) and thus often 
used to exchange keys, that are then used with symmetric ciphers to encrypt larger sets of data. The 
most common scheme is termed Diffie-Hellman-Scheme. A brief explanation using the trapdoor-func-
tion “Color-mixing” is displayed in Fig. 45. 

 
Fig. 45: The Diffie-Hellman-Scheme uses asymmetric encryption to established a shared secret, i.e. it distributes 
keys, using trap-door type functions. The most comm trap-door is the discrete log 𝑙𝑙 = 𝑎𝑎𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐, where 𝑙𝑙 easy to 
calculate if 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are given but 𝑏𝑏 is hard to calculate if 𝑎𝑎, 𝑐𝑐, 𝑙𝑙  are known. (red) Secret Data, (green) public data, 
(yellow) shared secret. 

In practice, these open padlocks can be coded using mathematical problems that are hard to solve, 
but easy to verify, so-called trap-door functions. In the example above this trapdoor function is the 
discrete log 𝑙𝑙 = abmod c, where l easy to calculate if a, b,c are given but b is hard to calculate if a, c, l 
are known. This is used e.g. the RSA protocol. The usage of the words “easy” and “hard” implies a 
certain qualitative nature of the argument and it remains valid only if: 

• the inverse problem is really hard, in the sense that no faster algorithm for the specific problem 
exists (not proven) 

• the supposed attacker is not willing and capable to spend exceeding amounts of resources into 
brute-forcing the attack (the digital communication is valuable, the more an expensive attack 
is viable) 

• the supposed attacker does not simply wait (and store the information) to let Moore’s Law 
turn the hard problem into an easy one. 

In fact, all of the above security assumptions are flawed. For example, having a good algorithm for 
factoring large numbers: while such algorithms are not known for classical computers, there is an effi-
cient way of doing this on a quantum computer. And these may become operational in a matter of 
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years and certainly within decades. This has in fact, inspired a new field of cryptography: post-quantum 
cryptography, that is, the development of crypto algorithms that are at least assumed to be hard to 
also solve on a quantum computer. However: “assumed to be” is the scary key word. Do you want 
paypal to rely on assumptions? 

The second assumption is certainly not true for large nation states, which may spend virtually infinite 
resources in brute-forcing codes. As the amount of values, which we protect with such codes grow, 
there is also a growing incentive into investing large amounts of resources and money into breaking 
codes. So, the more ubiquitous digital infrastructures get, the more worthwhile expenses required for 
an attack may become and the more efficient they become from a cost-value point of view. 

The third is also not true. We know that a large portion of the internet’s traffic was copied and stored 
for possible later decryption and there is no reason to believe this has changed. Moreover, many crit-
ical, cryptographically protected systems have exceedingly long deployment times and must be de-
signed such that they remain secure for their entire life span (one prime example being navigation 
satellites: time from development to end of life > 20 years). 

To cut a long story short: we need encryption, and we need more every day. Classical systems for 
encryption are, however, fundamentally flawed. 

But – and that’s why we are here together – quantum theory also provides us with the means to solve 
this potential security issue: information-theoretically secure communication via one-time pad encryp-
tion with secret and random keys that are generated via quantum key distribution. With measurable, 
physical security for each message, which cannot be broken by anyone that has to obey to the laws of 
nature. 

7.2 Physical Security Fundamentals  
In thus chapter we shall use single qubit to transmit data secretly from Alice to Bob. The security of 
this approach is entire based upon the no-cloning theorem (see section 4.3). We shall reiterate its 
consequences here: Alice has a single photon that she wishes to transmit to Bob via a quantum chan-
nel. Let’s say she can prepare the photon in one of two states: |𝜙𝜙⟩ or |𝜓𝜓⟩. 

What Alice doesn’t know, is that Eve is listening in to the transmission of the quantum state. Let’s 
assume Eve has a very sneaky quantum measurement device that can somehow infer the state of the 
photon without destroying it. The readout register of Eves devices is initialized in a state |𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖⟩  and 
should switch to the state |𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓⟩ or |𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙⟩ depending on the state sent by Alice. Additionally, 
since Eve wants to go entirely undetected, the operation should leave the state sent by Alice un-
changed. 

From the no-cloning theorem we know, that   

⟨𝜓𝜓|𝜙𝜙⟩ = ⟨𝜓𝜓|𝜙𝜙⟩⟨𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙⟩ (222) 

Which admits only two possible solutions; either ⟨𝜓𝜓|𝜙𝜙⟩ = 0, which means that Alice sent orthogonal 
states; or ⟨𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜓𝜓|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙⟩ = 1, that is, the readout is the same, irrespective of the state 
sent by Alice, which doesn’t convey any information about the transmitted state and would beat the 
purpose of the listening device.  

With this knowledge, we can identify a crucial ingredient on secure communication: Alice must use 
non-orthogonal states in her communication. The first and most-well known implementation of a such 
a protocol of call BB84 and is discussed in the next section. 
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7.3 QKD with Single Qubits / BB84 
The BB8421 Protocol allows Alice and Bob to establish a secret key that they can use to encrypt subse-
quent messages; hence the name quantum key distribution. Alice and Bob are connected via a Quan-
tum Channel that conserves qubit states and a classical communication channel (public channel, e.g. 
internet). To implement the protocol Alice will need a single-photon source, a random number gener-
ator, and a polarization modulator. Bob needs is a single-photon detector, a random number genera-
tor, and a polarization detection module.  

 
Fig. 46 BB84 with single-photon polarization states. Additional graphical support provided in the lecture slides. 

The basic idea is to use two types of non-orthogonal quantum states to encode the bit values of the 
subsequent key. Alice chooses according to some random pattern how to encode the bit values of the 
key onto each photon, e.g. 1=H, V=0 and D=0, A=1. Bob analyses the photons, either in the D/A basis 
or the H/V basis. After the transmission of photons is complete, Alice and Bob publicly announce the 
encoding and analysis basis they used for each photon. They discard all bits that correspond to mis-
matching encoding and analysis basis. If no one interfered with the quantum state transmission, then 
the remaining bits should be strongly correlated. They verify that this is the case, by comparing a frac-
tion of the – ideally perfectly – correlated bit sequence. To see what happens if an eavesdropper in-
terferes, let’s assume Eve intercepts a fraction of the transmitted photons, measures their polarization, 
and transmits a (different) photon, that she encodes according to the result she obtained. However, 
since Eve does not know which basis the photons are encoded in, she can only guess. When she guesses 
correctly, she will know the correct bit value and the attack will go undetected. However, if she guesses 
incorrectly, then she will introduce an Error with 50% probability. Alice and Bob can thus identify the 
attack when they compare parts of their key.  

Alice & Bob agree on the two different encoding bases (i.e. H/V or U/D) and on an encoding pattern in 
these bases for the bit values (0=H or U, 1=V or D) via a classic communication channel.  

Private randomness generation: Alice generates two random number sequences, one for the bit value 
(Alice’s raw key) and one for the encoding basis  

 
21 C. H. Bennett and G. Brassard, Proc. Internat. Conf. Computer Systems and Signal Processing (1984). 
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Transmission: Alice sends single photons with polarizations according her random number sequences 
over the quantum channel to bob. 

Detection: Bob receives photons and measures polarization. For each photon he chooses randomly 
between the {H,V} and the {D,A} measurement basis. The detected bit sequence is Bob’s raw key. 

At this stage Alice and Bob each have a raw key, where some of the bit values should be identical 
(namely those where Alice and Bob use the same polarization basis to encode and detect, respectively) 

Basis reconciliation: Alice and Bob announce measurement basis they chose for each photon sent/de-
tected via a public communication channel, but keep the corresponding bit value secret. Alice and Bob 
keep only bits values where they chose the same polarization basis for encoding/detection. Hence, 
they discard approximately half of the raw key that is received by Bob (they will have chosen the same 
basis only approx. 50% of the time, and Bob’s key will be shorter than Alice’s due to photon losses in 
the transmission channel). If everything has gone well, then the resulting bit sequence should be nearly 
identical for Alice and Bob. The bit sequence at this stage of the protocol is called the sifted Key. The 
concept is summarized below, for the case of some loss, perfect detectors and no eavesdropping. 

Time Code 1 2 3 4 5 6 7 8 9 10 11 12 
Alice’s Bits Value 1 1 0 0 0 1 0 1 1 0 1 0 
Alice’s Basis Choice H/V U/D H/V U/D H/V U/D U/D U/D U/D H/V H/V U/D 
Polarization Sent V D H U H D U D D H V U 
Bob’s Basis Choice U/D H/V H/V H/V U/D U/D H/V U/D H/V H/V U/D U/D 
Bob’s Detection U V H H D D - D - H D U 
Sift Filter n n y n n y n y n y n y 
Sifted Key   0   1  1  0  0 

Table 1: Transmission, detection, determination of raw keys and generation of a sifted key. 

QBER estimation: Alice and Bob have to assume that any errors in the key are due to an eavesdropper. 
In the case of an “intercept and resend” eavesdropping attack, Eve will have to decide on a measure-
ment basis beforehand, which will be correct in 50% of the cases. In this case, Eve gets to resend the 
qubit and does not influence Bob’s measurement (we are in the case of orthogonality or equality in 
the no-cloning theorem). If Eve selects the wrong basis then she will randomly flip Bob’s result. Bob 
will again get the proper result in 50% of these cases by pure coincidence. For so any qubit Eve tampers 
with, she’ll have a probability of 25% to change the result between Alice and Bob. If Eve tampers with 
a fraction 𝜀𝜀 of all keys, she’ll induce differences in a fraction of 𝜀𝜀/4  keys. 

To identify any tampering of the key, Alice (or Bob) sends a fraction of the key across a public channel. 
Bob (or Alice) compares it with his (her) fraction of the sifted key to estimate the quantum bit error 
rate (QBER). As one example: assume Eve tampers with every Qubit and Bob and Alice invest only 72 
bits of their sifted key for QBER detection. Assuming no measurement noise, they will detect that bits 
have been changed in 

𝑝𝑝 = 1 − �
3
4

�
72

= 1 − 10−9 (223) 

of all cases. In practice, detector noise, non-perfect modulation and background light will always intro-
duce a certain QBER and one has to agree on an upper acceptable threshold after which the key is 
assumed to be compromised and has to be resent. The acceptable threshold level is determined by a 
security proof, based on the ability of the following steps to exclude erroneous bits (error correc-
tion/information consolation) and invalidate the value of Eve’s residual knowledge on the key (privacy 
amplification).  
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Alice’s Bit 1 1 0 0 0 1 0 1 1 0 1 0  
A&B Basis H/V U/D H/V U/D H/V U/D U/D U/D U/D H/V H/V U/D  
Pol. Sent V D H U H D U D D H V U  
Eve’s Basis  U/D H/V H/V H/V U/D U/D H/V U/D H/V H/V H/V U/D 50% 
Eve’s Pol. U V H H D D H D V H V U  
Eve’s Bit 0 1 0 0 1 1 0 1 1 0 0 0  
Eve is Correct? n y y y n y y y y y n y 75% 
Bob’s Pol. H D H U V D U D U H V U  
Bob’s Bit  0 1 0 0 1 1 0 1 0 0 1 0  
Error? y n n n y n n n y n n n 25% 

Table 2: Consequences of a complete (e.g. 𝜀𝜀 = 1) measure-and-resend attack on the part of sifted key, which is 
announced publicly and thus sacrificed to determine a QBER rate. 

Error correction: If the QBER is lower than the threshold value for security, Alice and Bob proceed with 
the remaining bits of their respective sifted key. As they should have the same QBER as the publicly 
compared one, one can be quite sure that these bits are in fact not completely equal. In this step we 
should identify those bits and correct them (or throw them away), all the while not exposing too much 
information about the rest of the key. This is important because at this state Eve may in fact know 
quite a few bits of the sifted key and she knows certainly, which of these are correct. 

For error correction Alice and Bob can for example use a low density parity check on blocks of bits 
(block-wise XOR of all the bits). Alice and Bob compare the parity of their blocks, which will and only 
expose one additional bit per block. The block’s parity will only mismatch if the block contains an error, 
if the block size is chosen such that the probability of it containing more than one faulty bit value is 
small22. 

If an error is detected, Alice and Bob can either discard the entire block (which would be wasteful) or 
they can break the block down into smaller chunks to pinpoint the faulty bit value. During this proce-
dure Alice and Bob are leaking information about the key to Eve. This information leakage + the initial 
fraction 2*QBER must be taken into account in the next, and final step of the protocol, the privacy 
amplification. To cut a long story short. You’ll get an estimate on the minimum number of bits Eve still 
cannot know of the corrected and sifted key under the least favourable scenario. If this number is large 
enough (e.g. 128 or 1024 bits) you can now construct a secret key, of the same (guaranteed) strength. 

As an example. Assume the QBER was roughly 1/16. You can now safely assume that Eve does not 
know more than 3 ⋅ QBER = 3/16. For this QBER you could select a good error correction block length 
of, say 8 bits. Which will mean that Eve will gain another 1/8 = 2/16 information of the sifted bit. The 
actual numbers are a bit worse but in this case you’ll know that Eve may not know more than a fraction 
of 5/16 of all the bits of the key. If you want to create a secret of length 1024 bits then you’ll have to 
have an original sifted key length of roughly 1490 bits. 

Both contributions to the maximum number of bits that Eve may know scale with the QBER so there is 
a practical minimum limit on the QBER that can be tolerated. This is typically in the order of 11%. 

Privacy amplification: At this stage Alice and Bob share an identical bit sequence, but the sequence is 
not completely private since Eve knows a fraction of the bits. To counteract this, Alice and Bob use a 
privacy amplification protocol. This procedure allows them to increase the secrecy, i.e. to “invalidate” 

 
22 There are other schemes possible here. You can, e.g. select larger blocks (which may have multiple errors) and 
then reshuffle the key and repeat the process a few times. 
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the information Eve may have about the key. Of course, this procedure consumes some of the key, so 
that A and B end up with a shorter, but more private/secret/secure, bit sequence. 

This is done by using the partially secret key as an input value to a universal hash function. A hash 
function is a function that reduces a long number into a short one in a way, that minor changes in the 
input lead to major changes of the output but in an unpredictable manner. A sought-after property for 
such a hash-function is the waterfall property: this means that any single bit-flip in the input will change 
any output bit with a probability of 50% in an uncorrelated way. If the hash-function (there are tons) 
behaves sufficiently unpredictable then any approximate knowledge of the input (i.e. Eve’s info) will 
not give away info on the final result (i.e. resistance against differential key analysis). 

Alice and Bob now share a secret key; they can set an information-theoretic upper bound on the 
privacy of this key. If the bound is too high for their liking, then they can continue amplifying its privacy 
at the expense of total key length until they get to the level of security they wish to ensure.  

7.3.1 Implementation with laser sources / Decoy State Sources 
The security of the BB84 protocols relies on single-photon qubits, which may be difficult to build and 
characterize. So, what if Alice were to implement the protocol using a weak laser pulse source instead 
of a true single-photon emitter? 

We recall that a laser with an average photon number 𝜇𝜇 emits photons according to a Poissonian num-
ber distribution: 

  
𝑝𝑝(𝑛𝑛|𝜇𝜇) =

𝜇𝜇𝑛𝑛

𝑛𝑛! 𝑒𝑒 −𝜇𝜇 
 

This means that every once in a while, the source will emit more than one photon. This opens the door 
to a so-called “photon number splitting attack” (PNS). The idea behind this attack is that Eve, using a 
quantum non-demolition measurement (i.e. one that does not absorb the photon state upon detec-
tion), can identify which of the pulses contain more than one photon. After identifying the photon 
number in each pulse, she selectively blocks out all of the pulses that contain only one photon. In the 
remaining multi-photon pulses she “splits” off one of the photons and stores it in a perfect quantum 
memory.  

Eve now has a photon in her memory that is in the same state as the photon received by Bob; if her 
quantum memory is good enough, she can just sit and wait until unsuspecting Alice and Bob compare 
their measurement basis in the key sifting step of the BB84 protocol. Once Eve knows the basis, she 
performs the same measurement on her photon, and thus gets a perfect copy of the now-not-so-secret 
key (without introducing any errors). Admittedly, this scenario might seem somewhat academic: after 
all, Eve needs a quantum memory, a quantum non-demolition measurement, and a way of hiding the 
loss she introduces in the transmission channel. But if you boldly claim “unconditional security” you’d 
better find a way to solve this issue.  

Fortunately, this type of attack can be identified by a slight modification of the protocol. For Eve to 
perform a PNS his attack, she will have to block many of the pulses (assuming that 𝜇𝜇 < 1) and intro-
duce an unnaturally high loss for the single photon pulses. The idea of the decoy state BB84 protocol, 
is to purposely introduce multi-photon pulses into the BB84 sequence and to detect the photon num-
ber statistics of both the signal pulses with average photon number 𝜇𝜇𝑠𝑠  and decoy pulses with a differ-
ent average photon number 𝜇𝜇𝑑𝑑. For each pulse Alice varies the average photon number according to 
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(another) random sequence. She now has two types of pulses (more typically 3). When Alice and Bob 
compare the transmission probability for the different pulse types, Eve’s attack will lead to a higher-
than-expected transmission probability for pulses with a higher average photon number and can be 
detected as well. 23 

7.3.2 Extension to Entangled Qubits (BBM92) 
Entangled photons may be used to extend the BB84-scheme, with the source now not being operated 
by Alice but located in the middle of the link, operated by Charlie. Alice and Bob use the same state 
encoding and steps as in the original BB84 with single photons. The only difference is that Alice is now 
a receiver and no longer a sender of photons. 

If the source emits, without loss of generality, |𝜙𝜙± ⟩-states, then Alice and Bob will share an identical 
key from all measurements, in which they measure in the same basis. The measurements in different 
bases are still discarded. The rest of the protocol remains unchanged. The protocol was invented in 
1992 by Bennett, Barssard, and Mermin after the seminal work by Eckert, that first suggested the usage 
of entangled states for QKD. Eckert’s protocol is discussed below in a separate section. Just as Eckert91 
BBM92 has so-called unconditional security; e.g. the protocol itself is secure, if (and only if) properly 
implemented. 

7.4 QKD with Entangled Qubits / Eckert 91 
One of the key points in the previous chapters was the notion, that entangled photons are more 
strongly correlated than classically correlated pairs of photons. We had also seen in chapter 4.1, that 
a measurement on either partner of the entangled qubit pair destroys the entanglement and leads to 
a mixed states, which is classically correlated. Also remember that the most promising mode of attack 
for QKD-based communication is an intercept-and-resend attack, which requires a measurement to be 
made; thus leaving an entangled photon pair in a now classical state. 

If Alice and Bob each receive a Qubit from an entangled source, they can now conduct a Bell-test. If 
the test ends up with 𝑆𝑆 ≤ 2, then they know, that have only received classically correlated photons 
and there is an eavesdropper present. This is one of the two key ideas of the Eckert91-protocoll. 

The second idea is, that in the original implementation of the Bell-test (see chapter 6.2) all the events 
where Alice and Bob have measured along the same basis (e.g. both measure along 𝑎𝑎, meaning both 
measure in a H/V-basis) are discarded. However, in this situation we know that both Alice and Bob will 
always measure the same (the opposite) result because the initial state was a |𝜙𝜙±⟩-state (�𝜓𝜓±�-state). 
These previously used qubit can then be used to establish a secret key. 

 
23 For an example of a state-of-the-art polarization-based decoy state QKD source, refer to Jofre et al. 
Optics Express, Vol. 19, 2011. For an example of a state-of-the-art time-bin encoded decoy state QKD 
source refer to Baaron et al. 2018, https://arxiv.org/pdf/1804.05426.pdf 
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Fig. 47 Sketch of the Eckert91-Scheme. Entangled Photons are measured in independent bases (called a,b,c). Bases 
are the compared publicly. Different bases are used for Bell-testing. Same bases are used for secret key generation. 

A sketch of the protocol can be seen in Fig. 47. First Alice and Bob each measure a series of polarization 
values for randomly selected bases for a proper set of three basis vectors, called a, b, and c. They then 
publish their basis selection. Different base measurements are used to establish 𝑆𝑆. If 𝑆𝑆 > 2 then we 
know the photons are still entangled and can use the equal base measurements to establish a secret 
key. 

Time Stamp 1 2 3 4 5 6 7 8 9 10 11 12 13 
Alice’s Basis a b c b a c a a c b b c a 
Alice’s Result 1 0 1 1 0 1 1 0 0 0 1 0 1 
Bob’s Basis b c c a a B c b a c b b a 
Bob’s Result 0 1 1 0 0 0 1 0 1 0 1 1 1 
Equal n n y N y n n n n n y n y 
Used for 𝑺𝑺 -+ +-  -+  -+ -- ++ +- ++  +-  
Key Bit   1  0      1  1 

Table 3: An example for the Eckert91 protocol. 

A simple example for the operation of the scheme is given in Table 3. Note that this is the plain vanilla 
implementation. In a practical implementation one still has to deal with loss, errors and has to apply 
privacy amplification. 

The role of loss is very similar to its role in the BB84-protocoll. Loss will induce time-stamps, where 
Alice or Bob simply did not get any click and these have to be discarded in the public announcement 
stage. As with BB84 loss does reduce the data transmission rate to the point, where the number of 
true events is smaller than the number of dark-count, leading to an initial continuous drop off in the 
key bit rate and then a sudden failure of the protocol. 

Errors (both induced by the eavesdropper, as well as bad entanglement, detector noise, stray light, 
etc…) are all classical noise sources and induce (false) classical correlations in the measurement. They 
thus reduce 𝑆𝑆. If 𝑆𝑆 < 2 then secrecy cannot be guaranteed and the protocol has failed (we may need 
to try again). For values of 2 < 𝑆𝑆 < 2√2 we may derive an upper boundary for the fraction of photons 
Eve may know and may use privacy amplification to deny her any useful knowledge on the secret key. 
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As with BB84 this amplification happens at the cost of secret bits per transmitted Qubit and thus re-
duces the data rate further. 

One major advantage over BB84 is the independence of the secrecy with respect to the source. The 
secrecy hinges on the entanglement of the source, which is measured in every step and does not need 
to be claimed by the operator of the source. As such any manipulation of the source, which may lead 
to the operator of the source gaining knowledge on the key would reduce 𝑆𝑆 the same way as any other 
attack. Thus, entangled photon QKD has the advantage that you need not even trust the operator of 
the infrastructure for his integrity. In fact, the source may be built, operated, or manipulated by the 
NSA, Huawei, or your overly nosy neighbour: they still cannot attain any knowledge about the secret 
key Alice has shared with Bob. 

7.5 Overview over other security issues and mitigation strategies  
After having discussed some of the theoretical concepts underlying quantum cryptography, let us re-
call the purpose of quantum key distribution, and equally important, the issues that it does not address 
as well as possible issues with the implementation. 

In quantum key distribution, as the name suggests, allows Alice and Bob to share a secret key, that 
they can subsequently use to encrypt classical messages. If they do this using the one-time pad (Ver-
nam Cypher), then the encryption level is said to be information-theoretically secure – that is – as 
secure as the key itself. QKD protocols such as BB84 provide a means of distributing such keys as secure 
as required. In technical terms: Alice and Bob can establish by information-theoretical means: an 
eavesdropper who attempts to interfere with the quantum state transmission involved in the protocol 
will leave a detectable trace, that Alice and Bob can measure and thus establish an upper bound of the 
amount of information such an attack may have revealed. 

However, QKD does not address the issue of how this key is used in an encryption system24 which as 
only as strong as its weakest component. For example, QKD cannot protect Alice and Bob from Eve 
“looking over their shoulder” and obtaining their secrets directly at the source e.g. via malware in-
stalled on their PC. Ensuring that the entire encryption chain is secure, that is, ensuring end-to-end 
security is an important issue that occupies many scientist and engineers in the IT security community. 
As QKD is only a part of a complete encryption system, this leaves room for attacker to focus on break-
ing, upstream of downstream components of this chain. Upstream components, not covered by QKD, 
involve e.g. attacks on the user authentication system. In other words: QKD does not provide Alice any 
type of guarantee that she is really talking to Bob and not some imposter. Downstream parts of the 
encryption chain may involve attacks on the symmetric cipher used for the data payload or attacks on 
the devices that Alice and Bob use to process data or Alice and Bob themselves. 

However, even in the face of protocols with unconditional security, a new generation of “quantum 
hackers” have identified or at least proposed feasible ways to even break the QKD-process itself. These 
attacks rely on the notion that unconditional security does only apply to the protocol and not neces-
sarily to the physical device that the protocol is implemented upon. Thus, even QKD-system are vul-

 
24 – Strictly speaking, the information theoretical argument only holds if the Vernam cypher is used for 
encryption. This one-time-pad encryption requires a key of equal length as the message to be securely 
transmitted, and, in practice, state-of-the-art QKD systems do not yet provide the required key rates. 
QKD is thus often combined with other encryption standards such as the Advanced Encryption Stand-
ard (AES). 
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nerable to so-called side-channel attacks, that exploit or enforce information leakage out of the sys-
tem. In this specific case quantum mechanics is also no help, as we know from the discussion on en-
tropy and the measurement process we know that a macroscopic measurement system must leave 
traces of the measured quantum information in its thermodynamic state. Or to put it in other words: 
quantum mechanics guarantees that there are side channels in your system, no matter what. These 
must be protected within the implementation itself. 

To give a concrete and very real example, the very first implementation of the BB84 protocol used 
electro-optic modulators that were driven by kV voltages that resulted in an audible signal each time 
the basis was changed – paraphrasing Bennet’s take on this in a recent conference: “we demonstrated 
QKD that was information-theoretically secure against a deaf eavesdropper”. Any attacker with a mi-
crophone could this have gained enough side-channel information to break the supposed uncondi-
tional security. 

 
Fig. 48: Potential attacks due to imperfect implementation of QKD. Table taken from: https://www.etsi.org/im-
ages/files/ETSIWhitePapers/etsi_wp27_qkd_imp_sec_FINAL.pdf) 

Obviously, we can’t discuss all possible modes of attacks in this script. So, we have just summarized 
some of the most important attacks and mitigation strategies for them in Fig. 48. Also keep in mind 
that the promise of unconditional security of the protocol tends to embolden scientists and engineers 
alike to the point that they may start to become particularity sloppy in the implementation. So, if you 
ever develop a QKD system, be double wary of possible quantum hacks and other side channel vulner-
abilities. At least initially QKD systems will protect high-value assets and will be a prime target for an 
attack. If the system is successful and scales into a mass market it may protect lower value targets but 
many, many more of them. It will also operate in a plethora of much less well-defined environments. 
In other words: your system will become an even more exposed target for attack. So take such issues 
seriously and don’t get fooled by the beauty of the protocol into a false sense of security. 
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7.6 Transmission rate and lim-
its on transmission distance 

So far, we have only looked at the protocol 
level of the communication infrastructure (at 
the key-distribution infrastructure, to be pre-
cise), not at the physical level. I.e. we have not 
yet dealt with the problem of how we shall ac-
tually get the Qubits (e.g. the photons) from 
Alice to Bob. While this, of course, depends 
somewhat on the specific implementation of 
the Qubit, we shall treat this rather generically 
here, as the key point is the modified role of 
loss in transmission systems. 

Because of the no-cloning theorem, we cannot use signal amplifiers and must either live with the loss 
of any given transmission line or chose a non-lossy transmission line. In this chapter we shall discuss 
the two most commonly implemented schemes and see how loss in such schemes scales with distance. 
We shall also discuss the impact of unavoidable noise sources and their interaction with loss in the 
derivation of QBER; which determines how likely it is to extract a secure bit from a physical qubit. 

7.6.1 Noise Sources / Dark Count Rate 
The security of QKD-protocol evolves around the notion that no-cloning-theorem forces an eavesdrop-
per to induce involuntary and random changes into the qubits exchanged between Alice and Bob. 
These changes lead to a measurable mismatch between Alice and Bob, which is recorded in the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄. 
The nature of the protocols guarantees that Alice and Bob can distil a secure sequence of bits if 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 < 𝑄𝑄𝑄𝑄𝑄𝑄𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀, e.g. is below a critical value. In practice you want to be well below this threshold 
because as the number of secure bits (e.g. the key rate) vs the number of received qubits (the trans-
mission rate) drops towards zero, if the 𝑄𝑄𝑄𝑄𝐸𝐸𝑅𝑅 approaches 𝑄𝑄𝑄𝑄𝑄𝑄𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀. 

This critical value 𝑄𝑄𝑄𝑄𝑄𝑄𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 is calculated under the worst-case assumption that any contribution to 
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 is caused by an attempted eavesdropping. In reality there are many sources for quantum errors, 
which are totally unrelated to someone listening to your system, some of which cannot be avoided for 
the system in question. The most important noise sources are those that create a constant level of 
erroneous measurements per time. The most prominent among them is the dark-count rate 𝜚𝜚 of your 
single-photon detectors: this means that any single photon detector will report the arrival of a photon 
every now and so often, even if there really was none. In general, this dark-count rate is exponentially 
dependent on the wavelength the detector is sensitive at; also exponentially dependent on its tem-
perature and also on its material and measurement principle. As a rule of thumb: you want to have 
cold detectors and short wavelength. A typical rate for state-of-the-art silicon-based single photon 
avalanche detectors (SPADS) is in the range of 𝜚𝜚 = 10 … 1000s−1. Let’s assume = 100s−1 for brevity. 

As a rule of thumb, you want to have 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ≪ 1  an thus you need a signal rate 𝑅𝑅 ≫ 𝜌𝜌 or in other 
words: the brightness of your source and the loss of your transmission system must be designed such 
that a signal rate of 𝑅𝑅 is received that is well above the detectors dark count rate 𝜚𝜚 because otherwise 
you’ll never get a secure key from the number of photons that you receive. 
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7.6.2 Fiber-Based Transmission 
Some practical considerations using real numbers. Let’s assume 
that Alice and Bob are connected via a single mode fiber (typical 
loss value: 𝛾𝛾 = 0.3𝑑𝑑𝑑𝑑

𝑘𝑘𝑘𝑘
). Alice sends out single photons at a repe-

tition rate R=100 MHz – i.e. one photon per 10ns. Due to loss in 
the transmission fiber, Bob will only receive a fraction of these 
photons. After 𝐿𝐿 km of lossy fiber Bob receives photons at a 
rate of:  

𝑅𝑅𝑡𝑡(𝐿𝐿) = 𝑅𝑅0 × 10−𝐿𝐿[𝑘𝑘𝑘𝑘]× 𝛾𝛾
10 (224) 

For a transmission distance of 100 km, for example, Bob only receives 100.000 photons per second, 
not yet taking into account losses in his receiver of the efficiency of single-photon detectors. 

At the same time Bob’s receiver will occasionally produce a signal, without there being a photon alto-
gether (or Bob may detect a “faulty” photon for whatever reason). This will give him a wrong result. If 
the detectors dark-count rate is roughly 1000 s−1 then 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 0.01, which is quite acceptable. 

If the length of the line however goes up to, say 166 km, then the count rate will go down to 1000 s−1 
and 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 1 and you can’t run QKD anymore because every key might be compromised. Thus, for 
a given transmission line the transmissible but rate drops exponentially with distance and at some 
distance the protocol fails, because the QBER becomes too large. As fiber transmission losses are al-
ready close to the theoretical minimum these number are not bound to change dramatically to, say, 
planetary scale. 
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Fig. 49: Channel loss (top) and secret bit rate (bottom) as a function of distance for various physical implementation 
of the BB84 protocol (left) fiber-based, 0.21 dB/km loss, (right) free space communication, d=5 cm on satellite and 
d=20 cm on groud. (Source: T.Vogl et al. “Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Bo-
ron Nitride”, ACS Photonics 6 1955 (2019)). 

7.6.3 Satellite-Based Transmission 
While glass (as in a telecom-fiber) is probably the most 
transparent solid state material which we know, vac-
uum is still more transparent and diffraction losses have 
a much more favourable scaling than exponential. It is 
this a straightforward idea to use a satellite (or a con-
stellation thereof) to exchange qubits between Alice 
and Bob. 
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Fig. 50:  Chinese Quantum Science Satellite (Micius) sends entangled photons to optical ground stations separated 
by 1200 km on ground © Jian-Wei Pan.  

For practical reasons it is most convenient to place a Qubit source on a satellite and a similar order-of-
magnitude-calculation for the loss can be given. We assume that the Alice’s photon source is mounted 
on a satellite and that both the satellite as well as the detector are equipped with a 𝑑𝑑 = 20 cm tele-
scope; for the sake of simplicity, we also assume that the beam is a Gaussian with 1/𝑒𝑒2 diameter of 𝑑𝑑. 
At 𝜆𝜆 = 800 nm, we get a Rayleigh length of 𝑧𝑧0 ≈ 40 km. For a 𝑑𝑑 = 200 cm telescope we get 𝑧𝑧0 ≈
4000 km. After a certain disctance the beam thus covers an area of  

𝐴𝐴(𝑧𝑧)~𝐴𝐴0 �
𝑧𝑧
𝑧𝑧0

�
−2

(225) 

Division by the area of the detector (which we here assume to be of the same size 𝐴𝐴0) will give you the 
relative loss. You also must account for the effects of the turbulence in the atmosphere 𝐿𝐿𝑇𝑇 , which can 
be approximated as anywhere between 10… 20 dB for the downlink case and  30 …60 dB for an up-
link case (because the angular divergence, which is introduced by mainly the lower part of the atmos-
phere can act on a longer path in the uplink-case), this is called the “shower curtain effect”. 

At any rate, here are some losses, which you can expect: 

Orbit Type Telescope Diameter (both) Orbital Height 𝒛𝒛 Loss (-𝑳𝑳𝑻𝑻) 
Low earth orbit 20 cm 300 km 18 dB 
 200 cm 300 km 2 dB 
Geostationary 20 cm 30.000 km 56 dB 
 200 cm 30.000 km 18 dB 

Table 4: Diffractive signal loss estimation for a signal wavelength of 𝜆𝜆 = 800 nm, in various orbital heights. Does 
not include scattering / turbulence loss. 

Because we know from the discussion above, that 30 dB loss is acceptable, we can immediately con-
clude, that a low-earth-orbit approach with a constellation of small and (comparatively) cheap satel-
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lites is feasible as well as a geostationary solution with a VERY expensive single satellite and VERY ex-
pansive ground stations. We also see that direct reception on a mobile phone scale device will also not 
be an option (unless you have a very large mobile phone). 

At any rate, the situation remains as above: for a given implementation you will experience a drop of 
data rate and a relative increase of QBER, which will rapidly kill off your protocol, if it approaches a 
certain critical threshold and thus impose a hard limit on the length of your communication line. 

7.6.4 Alternative Schemes 
Of course, there are alternative schemes on how to deal with the physical level of the communication 
hardware, which have been developed in particular with respect to the issue of loss and non-amplifi-
cation. Some research directions are given below (without any claim for completeness), with a rough 
grouping into general strategies 

 
Fig. 51: The largest trusted-node network at the time of writing of this script, running over 2000 km from Beijing to 
Shanghai. Note, that a trusted node network does not guarantee secrecy against the operator of the network 
nodes. 

1. Modifications to the Single-Photon-Sources (see chapter on sources) 
• higher single photon rate 
• shorter photon lifetime (this allows you to synchronize the detector and effectively reduce the 

dark count rate) 
• sources at particular wavelengths (atmospheric windows, low-loss fibers, Fraunhofer-Lines) 

2. Modification to the detectors (see chapter on detectors) 
• lower dark count rate 
• higher quantum efficiency 

3. Modification to the Qubit and its physical implementation 
• non-polarization Qubits (orbital angular momentum, multi-mode in specialty fibers) 
• implementation as Qudits (Qubit with more basis states than just two) 

4. Modifications to the protocol, with some loss of security 
• trusted node networks 

https://www.google.de/url?sa=i&url=http%3A%2F%2Fiopscience.iop.org%2Fbook%2F978-1-6817-4653-1%2Fchapter%2Fbk978-1-6817-4653-1ch4&psig=AOvVaw0HyG5bIYipkt9GDXhT3sJ4&ust=1576665100084000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJCj_q69vOYCFQAAAAAdAAAAABAD
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• put the source in the middle between Alice and Bob (can be extended to use entangled pho-
tons) 

5. Advanced Quantum Magic (see chapter on Quantum Teleportation) 
• The quantum repeater 

8 Advanced Quantum Communication Schemes 
This chapter shall be devoted to non-cryptographic protocols in quantum communication. These have 
a slightly different take on the role and outcome of the quantum-ness. Whereas in Quantum Commu-
nication, you are specifically looking for violations of the Quantum State of light transmitted from Alice 
to Bob, we are in this case assuming that no perturbation is present (at least initially) and we will 
explore, what Alice and Bob can do, if they connect their mutual photons with local particles of their 
own. 

If the connection is made on a Quantum level, then we will see that this leads to Quantum Teleporta-
tion, e.g. that a local destruction of the quantum state in Alice’s lab and its reappearance in Bob’s. If 
the connection is made on a classical level, this leads to the concept of dense coding, where many 
classical bits of information can be transmitted from Alice to Bob, using a single qubit. 

8.1 Quantum Teleportation 
We shall now see, how Entanglement can be 
transferred between previously unentangled sys-
tems. Suppose that Alice has a Qubit in quantum 
state |𝜓𝜓⟩𝐴𝐴 = 𝛼𝛼|0⟩𝐴𝐴 + 𝛽𝛽|1⟩𝐴𝐴 , with |𝛼𝛼| 2 + |𝛽𝛽| 2 =
1, which may be unknown to Alice herself. The 
subscript 𝐴𝐴 denotes the location of the photons 
as being in Alice’s lab. 

Also suppose that there is a photon-pair source, which is emitting biphotons in the maximally entan-
gled Bell-State |𝜓𝜓−⟩𝐴𝐴𝐴𝐴 = 1/√2(|0⟩𝐴𝐴 |1⟩𝐵𝐵 − |1⟩𝐴𝐴 |0⟩𝐵𝐵), where the A-part of the bi-photon is emitted 
towards Alice and the B-part is emitted towards Bob. Note, that the specific choice of the |𝜓𝜓−⟩-Bell-
State is arbitrary; any Bell-State may, in fact, be chosen, as long as it is known. 

The total state of the system of the three photons can be written as the Tensor-Product of the two 
states, namely 

|𝜓𝜓⟩𝐴𝐴 |𝜓𝜓−⟩𝐴𝐴𝐴𝐴 = (𝛼𝛼|0⟩𝐴𝐴 + 𝛽𝛽|1⟩𝐴𝐴 ) ⊗
|0⟩𝐴𝐴 |1⟩𝐵𝐵 − |1⟩𝐴𝐴 |0⟩𝐵𝐵

√2

=
𝛼𝛼|00⟩𝐴𝐴 |1⟩𝐵𝐵 − 𝛼𝛼|01⟩𝐴𝐴 |0⟩𝐵𝐵 + 𝛽𝛽|10⟩𝐴𝐴 |1⟩𝐵𝐵 − 𝛽𝛽|11⟩𝐴𝐴 |0⟩𝐵𝐵

√2

(226) 

In a next step we rewrite the Alice’s Photon, which is written in the Computational Basis-State into 
Bell-States, using the relations: 

|00⟩ =
|Φ+⟩ + |Φ−⟩

√2
|11⟩ =

|Φ+⟩ − |Φ−⟩

√2

|01⟩ =
|ψ+⟩ + |Ψ−⟩

√2
|10⟩ =

|Ψ+⟩ − |Ψ−⟩

√2

(227) 

Which we then substitute into the above relation, yielding: 
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|𝜓𝜓⟩𝐴𝐴 |𝜓𝜓−⟩𝐴𝐴𝐴𝐴 =
|Φ+⟩𝐴𝐴

√2
(𝛼𝛼|1⟩𝐵𝐵 − 𝛽𝛽|0⟩𝐵𝐵) +

|Φ−⟩𝐴𝐴

√2
(𝛼𝛼|1⟩𝐵𝐵 + 𝛽𝛽|0⟩𝐵𝐵)

−
|Ψ+⟩𝐴𝐴

√2
(𝛼𝛼|0⟩𝐵𝐵 − 𝛽𝛽|1⟩𝐵𝐵) −

|Ψ−⟩𝐴𝐴

√2
(𝛼𝛼|0⟩𝐵𝐵 + 𝛽𝛽|1⟩𝐵𝐵)

(228) 

In a next step Alice can make a Bell-State-Measurement, with an appropriate setup (this has some 
caveats in its own rights, we’ll get to that later) and Bob’s state will collapse into one of the terms in 
the parenthesis with equal probability. Suppose that Alice’s measurement yields a |Ψ−⟩-state. Then 
we know, that the state of Bob’s photon is now 𝛼𝛼|0⟩𝐵𝐵 + 𝛽𝛽|1⟩𝐵𝐵, which is an exact copy of the initial 
state of the (unknown) photon Alice has. Of course, we cannot guarantee that Alice will measure this 
state (in fact this only happens in 25% of all cases) so we must and another step to complete the pro-
cedure. 

 
Fig. 52: Schematic of the Quantum-Teleportation Scheme. Alice and Bob share Qubits of an entangled photons of 
an entangled Qubit-source. Alice uses her photons together with an unknown photon to conduct Bell-State meas-
urements. She transmits the results to Bob who now manipulates his photon according to the Bell-measurement 
result and obtains a perfect copy of the (still unknown and now destroyed) photon Alice once had. The outcome is 
a transfer of the quantum state of Alice to Bob. 

First Alice measures the Bell-State of her system. The result can be any of four �Φ±� or �Ψ±�. Alice can 
now transmit the result of her measurement to Bob on a classical communication channel, using two 
ordinary bits. According to these two bits, Bob can make the following manipulations to his state: 

Alice 
measures 

Bob needs to Bob applies Polarization Implementation 

|Ψ+⟩ nothing nothing nothing 
|Ψ−⟩ Phase shift |1⟩ by 𝜋𝜋 𝜎𝜎𝑍𝑍 HWP with angle 𝜃𝜃 = 0 wrt. |𝐻𝐻⟩-axis 
|Φ−⟩ bit flip 𝜎𝜎𝑋𝑋  HWP with angle 𝜃𝜃 = 45 wrt. |𝐻𝐻⟩-axis 
|Φ+⟩ Phase shift |1⟩  by 𝜋𝜋 

then bit flip 
𝜎𝜎𝑍𝑍 then 𝜎𝜎𝑋𝑋  HWP with angle 𝜃𝜃 = 0 wrt. |𝐻𝐻⟩-axis then  

HWP with angle 𝜃𝜃 = 45 wrt. |𝐻𝐻⟩-axis  
After these modifications Bob always ends up with a Qubit in the same initial state as Alice used to 
have originally. The quantum state has been teleported from Alice to Bob. 

A few remarks on this, however, need to be made 
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1. This protocol does not violate the no-cloning-theorem. Alice’s state is destroyed in the Bell-
State-Measurement-Process. During this measurement she learns nothing of her state. There 
is only ever the one copy of the initial state. 

2. This protocol does not violate the no-signalling-theorem. While the entanglement is trans-
ferred instantaneously, Bob can only measure Alice’s state with 25% probability before the 
information of the result of Alice’s measurement has arrived. In fact, on may show, that due 
to the equal distribution of probabilities, Bob may infer no meaningful information at all (in 
the sense of better than pure guesswork) about Alice’s state before the arrival of her result 
whatsoever. 

3. The application of above protocol requires Bob to retain his Qubit until the information of 
Alice’s result has arrived. For photons this is difficult. However, for a lot of situations Bob may 
proceed to use his state instantaneously, i.e. to make a measurement, but needs the results 
from Alice’s measurement to a-posteriori make any sense of his measurement result. 

4. Alice can only carry out her Bell-State measurement, if both of her photons are in the same 
set of modes |0⟩ and |1⟩. They must thus interfere. They must thus arrive within a time-frame 
defined by their mutual coherence-time. This makes such experiments very hard, if no photons 
are available “on demand”. If they are only available in a heralded manner, one needs to resort 
to post-selection detection (more later). 

8.2 Entanglement Swapping and The Quantum Repeater 
We will now generalize the concept of Quantum Teleportation by replacing the Single Qubit Source, 
which is residing in Alice’s lab by another entangled photon source. We’ll also shuffle around the 
names of the lab’s owners somewhat and label them according to cities. This will help you get in touch 
with the local geography and also bring you closer to a possible applications. 

 
Fig. 53: Schematic of the Entanglement Swapping Scheme and its application as a Quantum Repeater. Andreas and 
Thomas, how reside in Weimar and Hermsdorf, respectively. Each are in command of an Entangle Photon Pair 
Source (EPS). Andreas sends on of his Photons to Erfurt, where Alice resides and his second photon to Jena into 
Fabian’s lab. Thomas sends the first to Jena, too and the second to Bob, who lives in Gera. Fabian is conducting a 
Bell-State-Measurement in his lab. As a consequence of the measurement Alice and Bob now have an entangled 
photon pair in a Bell-State. If Fabian communicates them the result then Alice and Bob also now, which Bell-State 
their photons pair is in. As an added benefit, the loss in this scenario scales only polynomial with the loss of each 
section, whereas for direct sending, it would scale exponentially. 
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Assume that the two Entangled-Photons-Sources (EPS) are located in Jena’s neighbouring towns of 
Weimar (to the West) and Hermsdorf (to the East). They are placed in such a way, that they both send 
one photon to Jena (denoted with 𝐽𝐽 for the Weimar source and 𝐽𝐽′ for the Hermsdorf source) into an 
auxiliary lab, run by Fabian. The other photons are going further west to Erfurt (for the Weimar-source) 
and further East to Gera for the Hermsdorf-source). They are denoted with 𝐸𝐸 and 𝐺𝐺, respectively. Er-
furt and Gera also happen to be the location of the labs of Alice and Bob respectively. Let’s also assume 
that both sources are constructed in a way, that they emit in the |Ψ−⟩ state. The combined system is 
then in the following state: 

|𝜓𝜓⟩ = |Ψ−⟩EJ|Ψ−⟩J'G

=
1

√2
(|01⟩ − |10⟩)EJ

1
√2

(|01⟩ − |10⟩)J'G

=
1
2

(|0101⟩ − |0110⟩ − |1001⟩ + |1010⟩)EJJ'G

=
1
2

�|Ψ+⟩J'J|Ψ+⟩EG − |Ψ−⟩J'J|Ψ−⟩EG − |Φ+⟩J'J|Φ+⟩EG + |Φ−⟩J'J|Φ−⟩EG�

(229) 

Fabian in Jena now makes a Bell-State-Measurement on the photon pair 𝐽𝐽𝐽𝐽′ the photon pair 𝐸𝐸𝐸𝐸  
owned by Alice and Bob will also collapse into a Bell-State. If Fabian now communicates his result of 
the Bell-State-Measurement to Alice and Bob they also know, which Bell-State their System collapsed 
into. As a consequence Alice in Bob now share a maximally entangled photon pair, although each of 
these photons have never interacted directly, apart from the interaction mediated by the entangle-
ment of their initial partner photons. The measurement of the Bell-State by Fabian has basically trans-
ferred (i.e. “swapped”) the entanglement onto another pair of photons. 

This is quite an amazing result. We already know, that Entanglement is not bound to local action. This 
scheme, however, shows that Entanglement can also be created nonlocally. In a sense Photons-Pairs 
are not twins, which are created side-by-side in the same process, but pairs which may obtain their 
bond much later. 

The process of entanglement swapping has two immediate applications. The first is related to Quan-
tum Physics itself. While we use Photon pairs as model systems for entanglement, we may also create, 
e.g. entangled states of Photons and Spins. If two these are created and their photonic partners are 
subjected to a BSM, we are left with entangled Spins, which we may now exist at remote locations 
without having to transport either of the Spins, which may be very hard to achieve indeed. 

The second may have even more profound practical applications. Assume that the communication 
lines from the EPS-Sources are subject to loss (fiber loss, scattering loss, diffraction loss). Let’s also 
assume that each section has an equal length of 𝑙𝑙 and loss which scales linearly with the length, such 
that the probability of a Photon-Pair to make the trip from the source to Alice/Fabian or Fabian/Bob is 
𝑝𝑝 = exp (− 𝑙𝑙

𝑙𝑙0
). Let’s also assume that Fabian first waits for the photon from the Weimar source to 

arrive and is somehow able to detect its existence and its entangledness with the photon in Erfurt. For 
this to happen we have to invest in average 𝑁𝑁 = 𝑝𝑝−1 photon pairs. Let’s then assume that Fabian can 
store this 𝐽𝐽-photon until the 𝐽𝐽′-photon from Hermsdorf arrives. This will cost another 𝑁𝑁 photon pairs. 
The total cost of photon pairs to invest is thus 2𝑁𝑁 photons. If we where to place a EPS directly in the 
lab of Fabian and then attempt to directly share a photons pair directly between Alice and Bob, we’d 
require to have them survive a travel over twice the length 2𝑙𝑙 and thus, we’d thus need 𝑁𝑁2 photons, 
which is of course much more expensive. 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 
Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome. 
Version of 11.03.2022, Page 109 

Let’s further assume Alice and Bob where much further away and connected by a network of 𝑀𝑀 iden-
tical nodes of length 𝑙𝑙. The cost is then 𝑁𝑁𝑁𝑁 as opposed to the 𝑁𝑁𝑀𝑀 for a direct link. The latter cost of 
course prohibitive, whereas the multiple-entanglement-swapping scheme is, in principle, acceptable. 
Because the cost-reduction scaling and the overall topology of such a scheme is comparable to the 
repeater-scheme for classical communication this is called the Quantum Repeater Protocol and may 
be used for fiber-based secure communication in combination with Eckert91. 

Before you get too carried away, a few words of caution, which are absolutely necessary because there 
is – as of yet – no practical Quantum Repeater and basically no hope of seeing one in the next few 
years, although it is conceptually quite elegant: 

1. Fabian will have to store photons (in their quantum state) and release them on demand, to 
synchronize the (inherently unpredictable) arrival for the BSM. No such device exists. State-of-
the-Art systems attempt to store the photon by converting it to Spin-Waves in Ultracold atomic 
gases. Hardly scalable. 

2. Fabian must inspect the photons, which he received, for existence and entangledness. Partic-
ularly, for the latter no such device exists. 

3. The scheme scales only well with Photon-Pair-On-Demand sources as all other sources need 
extensive synchronization techniques. None of the well-developed EPS work in an On-Demand 
mode.  

8.3 Superdense Coding 
So far we have used bits obtained by Bell-State-Measurement, being 
transmitted in a classical manner, to help us transfer or exchange entan-
glement, using Quantum Teleportation and Entanglement Swapping. We 
may also revert the scheme and use Entanglement to transmit infor-
mation; and do so in a secure manner. While Eckert91 is the most straight-
forward approach to do so, it is by no means the end of the line. In fact, 
we may retain the safety of Eckert91 and transmit more than two classical 
bits of information encoded in a single Qubit. 25 

 
25 This is the limit for Qubits. However, photon pairs may be entangled in more than just a binary degree of 
freedom (called QuDits and Hyperentanglement). In this case we may transmit an arbitrary number of bits per 
photon pair. This has been shown and can be used to mitigate some of the issues with photonic BSMs as dis-
cussed in the next chapter. What, there is no next chapter? Bummer. 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 
Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome. 
Version of 11.03.2022, Page 110 

 
Fig. 54: The superdense coding scheme. Alice and Bob share an entangled photon pair. Alice 
manipulates her photons in four possible ways, switching between the Bell-States and sends 
her photon back to Bob. Bob performs a BSM and retains two bits of information from Alice 
from a single photon pair. 

Let’s assume that Alice and Bob share the two photons of the Bell-State |Φ+⟩. Alice may now manipu-
late her photon in such a way that the photon-pair is in any of the four Bell-States. As she can create 
four possible Bell-States, her action can be interpreted as a message composed of two-classical bits. 
After doing so, she transmits her photon back to Bob, who makes a BSM with the re-united photon-
pair. The measurement reveals Alice’s action and thus the two bits of her message. The actions per-
formed by Alice may be encoded like this: 

Alice’s 
mes-
sage 

Bell-State Alice Needs to Alice applies Polarization Implementation 

00 |Φ+⟩ Nothing nothing nothing 
01 |Φ−⟩ Phase shift |1⟩  by 

𝜋𝜋 
𝜎𝜎𝑍𝑍 HWP with angle 𝜃𝜃 = 0 wrt. |𝐻𝐻⟩-axis 

10 |Ψ+ ⟩ bit flip 𝜎𝜎𝑋𝑋  HWP with angle 𝜃𝜃 = 45 wrt. |𝐻𝐻⟩-axis 
11 |Ψ−⟩ Phase shift |1⟩  by 

𝜋𝜋 
then bit flip 

𝜎𝜎𝑍𝑍 then 𝜎𝜎𝑋𝑋  HWP with angle 𝜃𝜃 = 0  wrt. |𝐻𝐻⟩ -axis 
then  
HWP with angle 𝜃𝜃 = 45 wrt. |𝐻𝐻⟩-axis  

There are two particularly noteworthy feature of this scheme. First, the action-table above is pretty 
much the same as the one for Quantum-Teleportation. In fact, as discussed above, superdense coding 
may be thought of as being reciprocal to Quantum-Teleportation. 

The second noteworthy feature is the security. Any eavesdropper, who catches the photon  send from 
Alice back to Bob cannot make sense of its state; the retrieval of Alice’s information requires command 
over the second photon, which only Bob has. If the eavesdropper, however, intercepts the photon on 
the way from Bob to Alice and replaces it with any photon of his own, the results of Bob’s BSM will not 
reflect the data Alice has sent. If Alice occasionally sprinkles in Test-Data, which she then compares 
with Bob on an open channel, such a man-in-the-middle-attack would be noticed and communication 
could be cancelled. 
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As a side remark: the doubling of the channel capacity wrt. Eckert91 is dearly payed for. The photons 
has to travel twice the connection (square the losses) and Bob has to story his photon somehow (see 
Quantum Repeater). 
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A 1 Theoretical Description of Photon Detection 
In the initial parts of the lecture we had introduced modes as excitable states in the quantum descrip-
tion of the electromagnetic field. When a field mode is excited to a certain discrete energy level we 
consider it as being occupied with a certain (or uncertain) number of Photons. This yields observations 
that cannot be explained by classical electromagnetic theory, such as the Bell-tests. 

In order to describe such non-classical observations, we must first understand how to link between 
optical quantum states and experimentally accessible properties, such as classical voltages and cur-
rents; we must understand how the photo-detection process is described in quantum optics, both from 
a fundamental and a conceptual point of view. This shall be done with this and the following chapter.  

A 1.1 Photon Detection  
Photodetectors allow the experimenter to link optical fields she wishes to detect with electrical cur-
rents and voltages that are conveniently analysed using oscilloscopes, pulse counters, etc. and play an 
essential role in all of optics experimentation. Despite being equipped with a pair of quite remarkable 
photon receivers, obvious issues with practicality as well as limited time resolution, make them quite 
unsuitable for use in a controlled laboratory environment 26. The simplest practical method for detect-
ing light is called “direct detection” (in contrast to Homodyne detection, which is not subject of this 
chapter). Direct photo detection is based on the absorption of photons, e.g. in a semiconductor diode, 
photocathode, bolometric detector…) whereby the deposited energy produces an electronic response 
that is proportional to the intensity of the incoming radiation. When the detector is sufficiently sensi-
tive, a single photon already suffices to trigger a measurable electronic response with high probability 
(photo-detection efficiency, PDE). For example, in commercial Si-based single-photon Avalanche Di-
odes (SPAD, typical PDE >50%) a single absorbed photon results in the emission of an electron and an 
electron avalanche current (i.e. they operated in Geiger Mode), that, upon further amplification and 
pulse shaping yields an electronic pulse response or “click” (Fig. 55).  

 
Fig. 55: photo detection Process: photons excite an electron, which goes through several amplification stages to 
give a detectable electrical signal “a click”.    

A 1.1.1 Glauber’s quantum model for photodetection 
The quantum theory of photo detection was established by Glauber in the 1960s. In the following we 
give a brief outline of his approach. Let’s consider an ideal detector consisting of a single atom (Fig. 56) 
that is localized at a position 𝑟𝑟 = 0 and initially in its ground state |𝑔𝑔⟩. The interaction Hamiltonian 
that describes the coupling between the atom and the EM field is: 

ℋ�𝐼𝐼 = −𝑝̂𝑝 ⋅ 𝐸𝐸� (𝑡𝑡) (230) 

 
26  Notable recent exceptions include experiments on the single-photon responsivity of the human eye:  
Tinsley et al. “Detection of a single photon by humans”, Nature Communications 7, 12172 (2016) 
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where 𝑝̂𝑝 = 𝑑𝑑 ⋅ (|𝑒𝑒⟩⟨𝑔𝑔| + |𝑔𝑔⟩⟨𝑒𝑒|) is the operator for the transition from the atomic ground state |𝑔𝑔⟩ to 
the excited state |𝑒𝑒⟩, which are separated by an energy difference Δ𝐸𝐸 . 𝑑𝑑 is the atom’s dipole moment, 
describing the efficiency of the interaction and can in reality be tuned using resonant antennas in the 
vicinity of the atom in question, but this is a question for nanophotonics. 

Note that |𝑒𝑒⟩⟨𝑔𝑔|, which is the excitation/absorption operator, and |𝑔𝑔⟩⟨𝑒𝑒|, which is the deexcita-
tion/emission operator appear symmetrically, otherwise the Hamiltonian would not be symmetric and 
would thus violate time-reversal symmetry among others. In fact, you may know from laser physics 
that absorption and emission must be symmetric, because otherwise you may violate the 2nd law of 
thermodynamics (which is again all about violating time inversion symmetries).  

The electric field operator is given by the superposition of all modal creation and annihilation operators 
at their specific frequencies (the spatial dependence is left for brevity; the atom samples the spatial 
behaviour at a very small point, this can be integrated into the dipole moment 𝑑𝑑). The electric field 
operator 𝐸𝐸� ∝ 𝐴̇𝐴 is thus: 

𝐸𝐸� (𝑡𝑡) ∝ ��𝑎𝑎�(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎�†(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝑑𝑑𝑑𝑑 = 𝐸𝐸� +(𝑡𝑡) + 𝐸𝐸� −(𝑡𝑡) (231) 

Next, let us assume that the incident optical field is described by the quantum state |Ψ𝑖𝑖 ⟩. During the 
interaction with this field, the atom may absorb a photon and transition from the atomic ground state 
|𝑔𝑔⟩ to the excited state |𝑒𝑒⟩, which we shall call a photo electron. This electron may, e.g. then be free 
to travel in the material of the detector and can itself be amplified and detected electronically. Since 
the optical field deposits energy in this process, it will transition to some lower-energy final state27 
�Ψ𝑓𝑓�. 

 
 

Fig. 56: Interaction of quantum field with two-level atom used in Glauber’s model for the photo detection process.   

To describe the resulting electrical photocurrent we must determine the rate at which electrons are 
excited via this interaction. Since we’re interested in the absorption of photons, the relevant part of 
the electromagnetic field operator is that containing the annihilation operator (i.e. the positive fre-
quency part of the field operator). The relevant matrix element of the interaction Hamiltonian is thus:  

 
27 Up to now, quantum states were constant in time and all time dependence was determined by the 
evolution of operators under unitary time evolution generated by the Hamiltonian ℋ�0, i.e. we were 
operating in the Heisenberg picture. We’re now entering the interaction picture, where the states can 
undergo transitions due to the interaction part ℋ�I  of the total Hamiltonian ℋ�𝑇𝑇 = ℋ�I + ℋ�0 .  
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�𝑒𝑒��Ψ𝑓𝑓�ℋ�𝐼𝐼�Ψ𝑖𝑖 �|𝑔𝑔⟩ = 𝑑𝑑 ⋅ �Ψ𝑓𝑓�𝐸𝐸� +(𝑡𝑡)|Ψ𝑖𝑖 ⟩ (232) 

The calculation of this rate is a lengthy and non-trivial exercise in second-order time-dependent per-
turbation theory, which is beyond the scope of this lecture. The result of this calculation is known as 
Fermi’s golden rule. It states that the transition rate is nonzero if and only if the energy difference 
between Δ𝐸𝐸=ℏ𝜔𝜔 and then the time-dependent transition rate (i.e. the probability density for a transi-
tion event to occur) between the Eigenstates of the free Hamiltonian 〈𝑝𝑝𝑔𝑔→𝑒𝑒,𝑖𝑖→𝑓𝑓(𝑡𝑡)〉 is proportional to: 

〈𝑝𝑝𝑔𝑔→𝑒𝑒,𝑖𝑖→𝑓𝑓 , (𝑡𝑡)〉 ∝ ��Ψ𝑓𝑓�𝐸𝐸� +(𝑡𝑡)|Ψ𝑖𝑖 ⟩�2
(233) 

This gives us the rate of photoelectrons emitted when the field makes a transition to a particular final 
state �Ψ𝑓𝑓�.  Since we are interested in the final state of the detector (i.e. the photoelectron), and not 
the final state of the field, we must take the sum over all possible final states for the field: 

〈𝑝𝑝𝑔𝑔→𝑒𝑒(𝑡𝑡)〉 ∝ ���Ψ𝑓𝑓�𝐸𝐸� +(𝑡𝑡)|Ψ𝑖𝑖⟩�2

𝑓𝑓

= �⟨Ψ𝑖𝑖 |𝐸𝐸�−(𝑡𝑡)�Ψ𝑓𝑓��Ψ𝑓𝑓�𝐸𝐸�+(𝑡𝑡)|Ψ𝑖𝑖 ⟩ 
𝑓𝑓

(234) 

Assuming a complete basis ∑ �Ψ𝑓𝑓��Ψ𝑓𝑓�𝑓𝑓 = 𝕀𝕀 for these states, we obtain Glauber’s result for the rate of 
excitation of photoelectrons: 

〈𝑝𝑝𝑔𝑔→𝑒𝑒 (𝑡𝑡)〉 ∝ ⟨Ψ𝑖𝑖 |𝐸𝐸�−(𝑡𝑡)𝐸𝐸� +(𝑡𝑡)|Ψ𝑖𝑖⟩ (235) 

The number of photoelectrons 𝑁𝑁𝑒𝑒 promoted to the excited state |𝑒𝑒⟩ in a finite time interval 𝑇𝑇 is then  

𝑁𝑁𝑒𝑒 = 𝜂𝜂 � 𝑑𝑑𝑑𝑑
𝑇𝑇

〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸� +(𝑡𝑡)〉Ψ𝑖𝑖 (236) 

Where we have grouped all relevant constants into a single coefficient 𝜂𝜂, that describes the quantum 
efficiency of the photo detector.  

8.3.1 Coincidence detection 
The expression above links the quantum state of the field to the electronic response in a single detec-
tor. In the description of quantum phenomena, in particular quantum entanglement, correlations of 
detection events play a central role. We thus must extend the theory of photo detection to two, or 
more, detectors. Glauber also considered this case, and showed that the joint probability density for 
the excitation of an electron at each of two detectors A and B at times 𝑡𝑡𝐴𝐴 and 𝑡𝑡𝐵𝐵 is given by: 

〈𝑝𝑝𝑔𝑔𝐴𝐴→𝑒𝑒𝐴𝐴,𝑔𝑔𝐵𝐵→𝑒𝑒𝐵𝐵
(𝑡𝑡𝐴𝐴,𝑡𝑡𝐵𝐵)〉 ∝ ⟨Ψ𝑖𝑖 |𝐸𝐸�𝐴𝐴

−(𝑡𝑡1)𝐸𝐸�𝐵𝐵
−(𝑡𝑡2)𝐸𝐸�𝐵𝐵

+(𝑡𝑡2)𝐸𝐸�𝐴𝐴
+(𝑡𝑡1)|Ψ𝑖𝑖⟩ (237) 

Integration over a finite time intervals [𝑇𝑇𝐴𝐴
(1), 𝑇𝑇𝐴𝐴

(2)] and [𝑇𝑇𝐵𝐵
(1), 𝑇𝑇𝐵𝐵

(2)] gives us the expected number of 
electrons to be detected in A and B and the according time slots: 

𝑁𝑁𝐴𝐴,𝐵𝐵 = 𝜂𝜂𝐴𝐴 𝜂𝜂𝐵𝐵 � � 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2

𝑇𝑇𝐵𝐵
(2)

𝑇𝑇𝐵𝐵
(1)

〈𝐸𝐸�𝐴𝐴
−(𝑡𝑡1)𝐸𝐸�𝐵𝐵

−(𝑡𝑡2)𝐸𝐸�𝐵𝐵
+(𝑡𝑡2)𝐸𝐸�𝐴𝐴

+(𝑡𝑡1)〉Ψ𝑖𝑖

𝑇𝑇𝐴𝐴
(2)

𝑇𝑇𝐴𝐴
(1)

(238) 

where 𝜂𝜂𝐴𝐴 𝜂𝜂𝐵𝐵 denotes the efficiency of detectors A and B, respectively. Note that here, even more so, 
the quantum efficiency of the detectors play a crucial role, as they enter the equation quadratically. 

Experimentally, the detection of coincident photoelectrons can be performed in a variety of ways. In 
a time-tagging configuration each detection event “click” at A and B is given a unique time tag 
 𝑡𝑡𝐴𝐴/𝐵𝐵

(1) … 𝑡𝑡𝐴𝐴/𝐵𝐵
(𝑁𝑁) which is then stored for post-processing. If the optical fields A and B are time correlated, 
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then the time tags will exhibit a pronounced peak around some delay 𝜏𝜏 = 𝑡𝑡𝐴𝐴
(𝑖𝑖) − 𝑡𝑡𝐵𝐵

(𝑗𝑗). This procedure 
allows any correlation to be analysed at a later point, but requires on 𝒪𝒪(𝑁𝑁2) delays to be measured, 
and large amounts of data to be stored. 

More practically, the correlation of photo-detection events can also be evaluated directly using an 
electronic AND gate with a short coincidence window Δ𝑇𝑇𝑐𝑐  (typically on the order of somewhere be-
tween 1 ns and 1 ps), as depicted in Fig. 57. To put this approach into context with the expression 
above, we transform the absolute time coordinates as: 

 
𝑡𝑡𝐴𝐴 ,𝑡𝑡𝐵𝐵 → 𝑡𝑡, 𝑡𝑡 + 𝜏𝜏 (239) 

For notational brevity, we define 𝑝𝑝(𝑡𝑡𝐴𝐴 ,𝑡𝑡𝐵𝐵) = 𝜂𝜂𝐴𝐴 𝜂𝜂𝐵𝐵〈𝐸𝐸�𝐴𝐴
−(𝑡𝑡𝐴𝐴)𝐸𝐸�𝐵𝐵

−(𝑡𝑡𝐵𝐵)𝐸𝐸�𝐵𝐵
+(𝑡𝑡𝐴𝐴)𝐸𝐸�𝐴𝐴

+(𝑡𝑡𝐵𝐵)〉. Written this way, 
the total number of double-detection events 𝑁𝑁𝐴𝐴,𝐵𝐵  in the interval 𝑡𝑡 ∈ [𝑇𝑇(1),𝑇𝑇(2)] 

 𝑁𝑁𝐴𝐴,𝐵𝐵 = � � 𝑑𝑑𝑑𝑑
Δ𝑇𝑇𝑐𝑐

𝑝𝑝(𝑡𝑡 + 𝜏𝜏, 𝑡𝑡)
𝑇𝑇(2)

𝑇𝑇(1)

≝  � 𝑑𝑑𝑑𝑑 
𝑇𝑇(2)

𝑇𝑇(1)

𝑅𝑅𝑐𝑐(𝑡𝑡) (240) 

Where 𝑅𝑅𝑐𝑐(𝑡𝑡) = ∫ 𝑑𝑑𝑑𝑑Δ𝑇𝑇𝑐𝑐
𝑝𝑝(𝑡𝑡 + 𝜏𝜏, 𝑡𝑡) is the coincidence rate, that is, the probability of simultaneous de-

tector clicks in A and B within the coincidence window Δ𝑇𝑇𝑐𝑐. 

Similar approaches can also be extended to higher-order coincidence detection events. Coincidence 
measurements are a practical and powerful tool that find application in a variety of quantum commu-
nication experiments.  

 
Fig. 57: Basic electronic coincidence counting circuit. The coincidence window approximately corresponds to the 
timing resolution. 

A 1.2 Threshold (“bucket/click”) detectors 
In the discussion so far, we have related the electronic detector response to expected values of prod-
ucts of Field operators. For a single detector, these are of the form 〈𝐸𝐸� −𝐸𝐸�+〉. Restricting the following 
discussion to the case of a single detection mode, this reduces to the expected value of the photon 
number operator  〈𝑛𝑛�〉 , i.e. the detector response depends on the number of photons (using 
𝐸𝐸� +𝐸𝐸�−~𝑎𝑎�†𝑎𝑎�, if there is only a single mode present). 

Typical photon detectors, such as single-photon avalanche photo diodes (SPAD), however, do not have 
this “photon-number resolution” capability. They click upon the detection of a photon (or more) but 
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are blind to the number of photons in a field. To see how we model such “bucket” detectors, let us 
first formalize the photon-number resolving capability that such detectors lack, in order to later throw 
them away. Glauber’s theory of photo detection relates the number of photo electrons to the photon 
number operator  

𝑛𝑛� = � 𝑛𝑛
∞

𝑛𝑛=0

|𝑛𝑛⟩⟨𝑛𝑛| (241) 

Where |𝑛𝑛⟩⟨𝑛𝑛| denotes the projection operator onto a particular Fock state, i.e. the projection operator 
for an “n-photon detection event”. A detector that has photon number resolution is thus described via 
a set of projection operators: 

𝑃𝑃�𝑛𝑛 = |𝑛𝑛⟩⟨𝑛𝑛| (242) 

where 𝑛𝑛 denotes the respective measurement result. The probability of such an n-photon detection 
event, when the field is prepared in a pure state |Ψ⟩ is then: 

𝑝𝑝(Detect 𝑛𝑛 Photons) = ⟨Ψ|𝑃𝑃�𝑛𝑛|Ψ⟩ (243) 

Or in the case of a mixed input state 𝜌𝜌� 

𝑝𝑝(Detect 𝑛𝑛 Photons) = Tr�𝑃𝑃�𝑛𝑛𝜌𝜌�� (244) 

To model a detector that lacks the capability of discriminate between these detection outcomes, we 
must sum over all n-photon detection probabilities, that is: 

𝑝𝑝(Detect at least 1 Photon) = �⟨Ψ|𝑃𝑃�𝑛𝑛|Ψ⟩
∞

𝑛𝑛=1

(245) 

Which naturally leads to the definition of the projection operator for a bucket detector: 

𝑃𝑃�click = � 𝑃𝑃�𝑛𝑛

∞

𝑛𝑛=1

(246) 

Likewise, the operator for calculating probabilities of no detection writes: 

𝑃𝑃�no click = 1 −  𝑃𝑃�click = |0⟩⟨0| (247) 

This projection operator notation will turn out to be more practical in some of the following chapters.  

A coarse description of the practical implementation of contemporary single-photon-detectors is given 
in the Appendix to this script (A 2). 

A 1.3 Correlation functions and coherence 
So far, we have introduced correlation functions, because they can be described easily using the for-
malism of quantum photonics and they can also be measured quite easily (more details, see appendix 
on photodetectors). However, we shall now see, that such functions are not merely a mathematical 
toy and experimentally convenient measure but that they also have deep and fundamental meaning, 
which can help us understand the quantum nature of a light field and also allows us to redefine and 
expend our understanding of the vital concept of interference. 
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8.3.2  First-order correlation function 
Returning for a moment to the case of a single detector, we note that we can interpret Glauber’s result 
for the excitation rate of photoelectrons 𝑝𝑝(𝑡𝑡) ≡ 𝐺𝐺(𝑡𝑡,𝑡𝑡) = 〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸�+(𝑡𝑡)〉, as a correlation of the field 
operator with itself at time t, i.e. at delay 𝜏𝜏 = 0. We can generalize this expression to arbitrary times 
𝑡𝑡1 and 𝑡𝑡2 and to two distinct modes, denoted with 𝐴𝐴 and 𝐵𝐵: 

𝐺𝐺𝐴𝐴𝐴𝐴(𝑡𝑡1, 𝑡𝑡2) = 〈𝐸𝐸�𝐴𝐴
−(𝑡𝑡1)𝐸𝐸�𝐵𝐵

+(𝑡𝑡2)〉 (248) 

 or its more commonly used normalized version:  

𝑔𝑔(1)(𝑡𝑡1 ,𝑡𝑡2) =
𝐺𝐺𝐴𝐴𝐴𝐴(𝑡𝑡1 ,𝑡𝑡2)

�𝐺𝐺𝐴𝐴𝐴𝐴(𝑡𝑡1 ,𝑡𝑡1) ⋅ 𝐺𝐺𝐴𝐴𝐴𝐴(𝑡𝑡2,𝑡𝑡2) 
(249) 

As we will see in the following, this quantity determines the maximum fringe visibility in an interfer-
ence experiment. Consider the setup depicted in Fig. 58, where two (for the sake of illustration and 
notational brevity) classical fields originating from points A and B are superimposed on a balanced 
beam splitter (BS) and mixed into the output modes, denoted with 𝐴𝐴′ and 𝐵𝐵′. To study the interference 
of these fields, it is convenient to apply an additional phase shift to field 𝐵𝐵, such that the field 𝐸𝐸𝐴𝐴′ and 
𝐸𝐸𝐵𝐵′ in the output ports 𝐴𝐴′ and 𝐵𝐵′ of the beamsplitter is given by: 

𝐸𝐸𝐴𝐴′,𝐵𝐵′ (𝑡𝑡) =
1

√2
(𝐸𝐸𝐴𝐴 (𝑡𝑡) ± exp(𝑖𝑖𝑖𝑖) 𝐸𝐸𝐵𝐵(𝑡𝑡)) (250) 

The instantaneous count rate of photodetectors on the output modes is then:  

𝑝𝑝𝐴𝐴′,𝐵𝐵′ (𝑡𝑡) ∝ |𝐸𝐸∗(𝑡𝑡)𝐸𝐸(𝑡𝑡)| ∝ |𝐸𝐸𝐴𝐴 (𝑡𝑡)|2 + |𝐸𝐸𝐵𝐵(𝑡𝑡)|2 ±  2 ℜ {exp(𝑖𝑖𝑖𝑖) 𝐸𝐸𝐴𝐴 (𝑡𝑡)𝐸𝐸𝐵𝐵(𝑡𝑡)} (251) 

Noting that typical detectors are rather slow (compared to the timescales of the source), we should 
take the average the over the response time 𝑇𝑇, i.e: 

〈𝑓𝑓(𝑡𝑡)〉𝑇𝑇 =
1
𝑇𝑇

� 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑡𝑡)
𝑇𝑇

0

(252) 

Which gives us the time average photocurrent 𝐼𝐼(𝜙𝜙): 

𝐼𝐼(𝜙𝜙) = 〈𝑝𝑝𝐴𝐴′,𝐵𝐵′ (𝑡𝑡)〉𝜙𝜙 ∝ 〈|𝐸𝐸𝐴𝐴 (𝑡𝑡)|2〉 + 〈|𝐸𝐸𝐵𝐵(𝑡𝑡)|2〉 ±  2 ℜ {exp(𝑖𝑖𝑖𝑖) 〈𝐸𝐸𝐴𝐴 (𝑡𝑡)𝐸𝐸𝐵𝐵(𝑡𝑡)〉}
=  𝐼𝐼𝐴𝐴 + 𝐼𝐼𝐵𝐵 ±  2 ℜ {exp(𝑖𝑖𝑖𝑖)〈𝐸𝐸𝐴𝐴 (𝑡𝑡)𝐸𝐸𝐵𝐵(𝑡𝑡)〉} (253)

Where the subscript 𝜙𝜙 denotes, that the time averaged photocurrent depends explicitly on the phase 
shift between the two interferometer arms. We can thus vary 𝜙𝜙 to find the minimum and maximum 
photocurrents observed: 

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚 ∝  𝐼𝐼𝐴𝐴 + 𝐼𝐼𝐵𝐵 ± 2�𝐼𝐼𝐵𝐵𝐼𝐼𝐴𝐴 �𝑔𝑔𝐴𝐴𝐴𝐴
(1)� (254) 

Using the definition of the fringe visibility V:  

𝑉𝑉 =
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∝
2�𝐼𝐼𝐴𝐴 𝐼𝐼𝐵𝐵  
𝐼𝐼𝐴𝐴 + 𝐼𝐼𝐵𝐵

 �𝑔𝑔𝐴𝐴𝐴𝐴
(1)� (255) 

 We can distinguish three scenarios, depending on the magnitude of �𝑔𝑔(1)� : 

• complete coherence:  �𝑔𝑔(1)� = 1  

• partial coherence:  �𝑔𝑔(1)� < 1  
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• incoherence:   �𝑔𝑔(1)� = 0  

For classical light, i.e. coherent states of light, we know that 𝑔𝑔(1) is mostly dependent on the spectral 
width of the light; e.g. perfectly monochromatic light will be completely coherent, whereas for any 
other light there is certain coherence length (i.e. a maximum path difference for 𝐴𝐴 and 𝐵𝐵) inversely 
proportional to the bandwidth of the light in question. 

 
Fig. 58: First-order interference on a beam splitter. The Fringe Visibility observed when scanning the phase 𝜙𝜙 is 
determined by the First-order coherence function 𝑔𝑔(1). Note that the detector are not interconnected, they give 
individual readings and thus no recording of the order of events at the two detectors may be recorded. 

So let’s see if we get any different result for a monochromatic Fock-State |𝑛𝑛⟩ ∼  𝑎𝑎�†(𝜔𝜔0)𝑛𝑛 |𝑣𝑣𝑣𝑣𝑣𝑣⟩, with 
frequency 𝜔𝜔0 .  We substitute the one-dimensional field operators ( 𝐸𝐸� (𝑡𝑡) ∝ ∫�𝑎𝑎�(𝜔𝜔)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑎𝑎�†(𝜔𝜔)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖� 𝑑𝑑𝑑𝑑′ ) into  

𝑔𝑔(1)(𝑡𝑡1,𝑡𝑡2) =
〈𝐸𝐸� −(𝑡𝑡1)𝐸𝐸� +(𝑡𝑡2)〉

�〈𝐸𝐸� −(𝑡𝑡1)𝐸𝐸�+(𝑡𝑡1)〉 ⋅ 〈𝐸𝐸� −(𝑡𝑡2)𝐸𝐸�+(𝑡𝑡2)〉 
(256) 

After performing some delta-function acrobatics, we find: 

𝑔𝑔1(𝑡𝑡1 − 𝑡𝑡2) = exp(𝑡𝑡(𝑡𝑡1 − 𝑡𝑡2)𝜔𝜔0) (257) 

That is, we observe perfect first-order coherence, i.e. �𝑔𝑔(1)� = 1. Unsurprisingly, a single frequency 
mode state is perfectly coherent for all time, irrespective of the photon number excitation. A number 
of interference experiments (Young’s double slit experiment etc.) give the exact same result for Fock 
states, as we would expect in classical optics. 

This also means, that first-order coherence does not allow us to distinguish between quantum states 
and classical states. This also gives another a-priori justification of the importance of double detector 
experiments as these measure second order coherence and it is only here that the differences between 
classical fields and quantum fields truly becomes apparent. 

8.3.3 Second-order correlation and the Hanburry-Brown-Twiss Experiments 
The first-order correlation function quantifies the correlation of amplitudes and phases of two fields 
(i.e. the phase coherence). The second-order correlation, on the other hand, tells us about the corre-
lation of intensities of two fields. Fig. 59 depicts a typical experimental setup.  
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Fig. 59: Hanburry-Brown-Twiss setup is it was first used to measure the 2nd order intensity correlations of classical 
light in stellar interferometry and then for individual light sources. Note that the detectors are now interconnected 
and we thus are mostly interested in the order of clicks at the detectors. 

The general expression for the second-order quantum correlation of fields A and B at times 𝑡𝑡1 and 𝑡𝑡2 
reads  

𝑔𝑔𝐴𝐴𝐴𝐴
(2)(𝑡𝑡1,𝑡𝑡2) =

  〈𝐸𝐸�𝐴𝐴
−(𝑡𝑡1)𝐸𝐸�𝐵𝐵

−(𝑡𝑡2)𝐸𝐸�𝐵𝐵
+(𝑡𝑡2)𝐸𝐸�𝐴𝐴

+(𝑡𝑡1)〉
  〈𝐸𝐸�𝐴𝐴

−(𝑡𝑡1)𝐸𝐸�𝐴𝐴
+(𝑡𝑡1)〉〈𝐸𝐸�𝐵𝐵

−(𝑡𝑡1)𝐸𝐸�𝐵𝐵
+(𝑡𝑡1)〉 (258) 

For classical fields, this reduces to the Intensity-Intensity correlation function: 

𝑔𝑔class
(2) (𝑡𝑡1,𝑡𝑡2) =

〈𝐼𝐼𝐴𝐴 (𝑡𝑡1)𝐼𝐼𝐵𝐵(𝑡𝑡2)〉
〈𝐼𝐼𝐴𝐴 (𝑡𝑡1)〉〈𝐼𝐼𝐵𝐵(𝑡𝑡2)〉 (259) 

An important example is the intensity autocorrelation function of a stationary classical field 

𝑔𝑔class
(2) (𝜏𝜏) =

〈𝐼𝐼(𝑡𝑡 + 𝜏𝜏)𝐼𝐼(𝑡𝑡)〉
〈𝐼𝐼(𝑡𝑡)〉2 (260) 

It is straightforward to show that any classical light field must obey 𝑔𝑔class
(2) (𝜏𝜏) ≤ 𝑔𝑔class

(2) (0)  and 
𝑔𝑔class

(2) (0) ≥ 1. This is not necessarily true for the autocorrelation of a quantum state of light |Ψ⟩  

𝑔𝑔QM
(2)(𝜏𝜏) =

  〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸�−(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡)〉Ψ

  〈𝐸𝐸� −(𝑡𝑡)𝐸𝐸�+(𝑡𝑡)〉〈𝐸𝐸�−(𝑡𝑡 + 𝜏𝜏)𝐸𝐸� +(𝑡𝑡 + 𝜏𝜏)〉Ψ
(261) 

While this expression is in general difficult to evaluate, we can get a good understanding of some gen-
eral properties by evaluating it for 𝜏𝜏 = 0 and a single-frequency mode. Here the correlation function 
becomes: 

�𝑔𝑔𝑄𝑄𝑄𝑄
(2) (0)� =

  〈𝑎𝑎�†𝑎𝑎�†𝑎𝑎�𝑎𝑎�〉
〈𝑎𝑎�†𝑎𝑎�〉2 =

〈𝑛𝑛�(𝑛𝑛� − 1)〉 
〈𝑛𝑛�〉2  (262) 

Evaluating this expression for a single photon Fock state |Ψ⟩  = 𝑎𝑎�†|vac⟩ = |1⟩ we immediately see 
that 

�𝑔𝑔𝑄𝑄𝑄𝑄
(2) (0)� = ⟨1|𝑛𝑛�(𝑛𝑛� − 1)|1⟩ = 0 (263) 

Single-photon states of light thus exhibit “anti-bunching”, a purely quantum phenomenon that cannot 
be described in classical coherence theory. Other examples that can be readily verified by the reader:  

STATE 𝒈𝒈(𝟐𝟐) (𝟎𝟎) COMMENT 
FOCK-STATE|𝒏𝒏⟩,𝒏𝒏 = 𝟏𝟏 0 Perfect Anti-Bunching (one 

photon at a time) 
FOCK-STATE |𝒏𝒏⟩,𝒏𝒏 > 𝟏𝟏 1 − 1/𝑛𝑛 Anti-Bunching 
COHERENT STATE |𝜶𝜶⟩  1 Uncorrelated (a random 

stream of photons) 
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THERMAL STATE 
𝝆𝝆

= ∫ 𝒇𝒇(𝝎𝝎) �
𝟏𝟏 − 𝐞𝐞𝐞𝐞 𝐩𝐩 �− ℏ𝝎𝝎

𝒌𝒌𝑩𝑩 𝑻𝑻�

𝐞𝐞𝐞𝐞 𝐩𝐩 �𝒏𝒏ℏ𝝎𝝎
𝒌𝒌𝑩𝑩𝑻𝑻 �

|𝒏𝒏(𝝎𝝎)⟩⟨𝒏𝒏(𝝎𝝎)|
𝒏𝒏

𝒅𝒅𝒅𝒅  

1 + �𝑔𝑔(1)(0)�2
 Bunching of photons of the 

same frequency (the more so 
the more narrowband) 

SQUEEZED STATE (DEGENERATE PDC) 
𝑔𝑔(2)(0) = 3 +

1
〈𝑛𝑛〉 

Super-Bunched (photons al-
ways appear in correlated 
pairs) 

One can also, quite easily show, that 𝑔𝑔QM
(2)(±∞) = 1 and that the transition from the center value to 

the edge value is related to the bandwidth of the source in question, or more specifically its lifetime. 

 
Fig. 60: Artists interpretation of photon arrival times in various sources, resulting in different 𝑔𝑔(2) .  

The Hanburry-Brown-Twiss experiment can thus be used to measure the “single-photon-ness” of a 
light source is the gold standard for this kind of characterization. 

A 1.4 Quantum Interference and the Hong-Ou-Mandel-Effect 

 
Fig. 61: HOM Interference on a Beam Splitter  

Paul Dirac noted, that first-order interference effects can be thought of as each photon interfering with 
itself. Hong, Ou and Mandel experimentally showed that this is not the only form of interference we 
can observe. Let’s consider what happens when single photon states are incident from each of the two 
input ports of a 50:50 beam splitter. Their state is: 

|Ψ⟩𝑠𝑠,𝑖𝑖 =  |1⟩𝑠𝑠|1⟩𝑖𝑖 = 𝑎𝑎�†
𝑠𝑠𝑎𝑎�†

𝑖𝑖 |vac⟩ (264) 

Claim: If we place a detector in each of the two output ports 𝑏𝑏�†
1𝑏𝑏� †

2, then there will be no simultane-
ous detections. To verify this we can either calculate directly the correlation function for the input 
state ⟨Ψ|𝑛𝑛�𝑏𝑏1 𝑛𝑛�𝑏𝑏2

|Ψ⟩, or (faster) express the input state in terms of the detection modes, i.e. we replace 
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𝑎𝑎�†
𝑠𝑠 →

1
√2

(𝑏𝑏�†
1 + 𝑏𝑏� †

2)

𝑎𝑎�†
𝑖𝑖 →

1
√2

(𝑏𝑏�†
1 − 𝑏𝑏� †

2)
(265) 

Substituting these expressions into the input state, we find that the terms leading to a joint detection 
at detectors 1 and 2 will cancel 

 |1⟩𝑠𝑠|1⟩𝑖𝑖 → 𝑏𝑏� †
1
2 +  𝑏𝑏� †

1𝑏𝑏�†
2 − 𝑏𝑏�†

2𝑏𝑏� †
1 − 𝑏𝑏�†

2
2  |vac⟩ = |2⟩1|0⟩2 − |0⟩1|2⟩2 (266) 

 

Both photons will leave the beam splitter bunched into couples. As a result, there will be no coincident 
detection. This can be seen as destructive interference of transmitted and reflected photon pairs28, 
known as Hong-Ou-Mandel interference (see PRL 1987, 59 2044). HOM interference is a valuable tool 
in quantum information processing, and quantum optics – we will encounter it again at many in-
stances.  

8.3.4 HOM-interference for phase sensing 
The output states produced in the HOM interferometer,  

|2⟩1|0⟩2 + |0⟩1|2⟩2 (267) 

 or more generally states of the form  

|N⟩1|0⟩2 + |0⟩1|N⟩2 (268) 

are a useful tool in Metrology (so-called N00N states). To see why, let us feed such a N00N state into 
a MZ interferometer where one arm experiences an additional phase shift (caused e.g. by a small dis-
placement of one of the mirrors in the interferometer). Using the phase shift operator defined in the 
previous Lectures, we note that this transforms the N00N state as:   

|N⟩1|0⟩2 + |0⟩1|N⟩2 → |N⟩1|0⟩2 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖|0⟩1|N⟩2 (269) 

Depending on the photon number, the phase factor is multiplied to 𝑁𝑁𝑁𝑁. This feature is known as super-
resolution. Compared to single-photon states and coherent states, N00N states allow measuring phase 
shifts with better precision; unfortunately, they are notoriously hard to produce for N>2 in experiment.  

 
Fig. 62: Using HOM interference to produce a N00N state (N=2)  

8.3.5 An interpretative note on HOM 
After taking a closer look at the equations, we can also infer the HOM-effect from a hand waving ex-
planation. Assume there are two photons, which are incident on a balanced beam splitter from its two-
input port. There are in total four options, as each photon may or may not get reflected: 

 
28 Note that this is a consequence of the commutation operator relationships between the creation operators 
for bosons - what do you expect would happen if we replaced the photons with electrons ? 
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Fig. 63: Two-Photon Interference representation of the HOM-Experiment. If path 2 and 3 are indistinguishable, then 
they will interfere destructively and only photon pairs csan be observed. 

 
Note that the sign in front of the little pictures correspond to a 0 or 𝜋𝜋 phaseshift. The phaseshift is 
particular noteworthy for case 3, here they correspond to the phaseshift accumulated during reflec-
tion. A grossly simplified explanation is the reflection on a denser medium; nevertheless the phase 
difference of 𝜋𝜋 case 2 and 3 is universal, as it is related to the unitarity of the mixing operation. 

Only indistinguishable photons show interference (that’s why single photon interference is so easy to 
detect; one photons is necessarily indistinguishable from itself). In the HOM experiment this is only 
the case for paths 2 and 3 and only if the input photons are indistinguishable itself. As they interfere 
and have opposite sign, the modal contributions from option 2 and 3 thus cancel each other and the 
result of two-photon interference is such, that the two photons will either both go up or both go down 
(in the sense that they emerge in a superposition of 1 and 4; i.e. they go up and down simultaneously 
and their path is just decided up if you detect one photon). If you however detect one photon in, say, 
the upper branch then you know the other one is there as well and vice versa. This is example of en-
tanglement. 

 
Fig. 64: Example of a level diagrams of single molecules or QDs, which emit pure and mixed states. A molecule or 
a QD is excite and decays non-radiatively into a single or two upper states, which emit fluorescence light. If only 
one path is possible the emitted state is pure (i.e. emission always in the same mode), if two paths are possible with 
a certain probability then the emitted states are mixed. 

Summary: if two indistinguishable photons meeting on a balanced beamsplitter they will leave the 
beamsplitter as a pair. If a pair is impinging on a beamsplitter they will go their separate ways. The 
beamsplitter can be considered something like the civil registry office for photon pairs. 

https://en.wikipedia.org/wiki/File:Photons_displaying_the_Hong%E2%80%93Ou%E2%80%93Mandel_effect.png
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Fig. 65: The adventures of a beam splitter. Parts one and two. To pair and not to pair. Sorry for the silly joke. I could 
not resist. 

A 1.5 Applications of HBT and HOM 
Both the HBT and the HOM-Effects are not just experiments, whose results can only by interpreted by 
a Quantum theory of light, as they can be conducted with any light source, quantum, or not. As such, 
their result gives a fairly comprehensive measure of the quality of any source as a single photons 
source. They can therefore be used to define the characteristics of a photon source, from a measure-
ment point of view. They are the foremost experimental tool to characterize the quantum properties 
of light sources and their results are typically used directly to classify quantum light sources. 

In this regard 

- HBT gives us information on the single photon character of a light source; i.e. the quantity 1 −
𝑔𝑔(2)(𝜏𝜏 = 0) is an answer to the question, if a light source is emitting single photons and single 
photons only. HBT, is however, agnostic to the purity of the state of light. This means, in par-
ticular, that a light source may randomly emit in distinguishable modes 𝑘𝑘, as long as each of 
them is a |1𝑘𝑘⟩-mode you will see a perfect HBT-dip. 

- The depth of the HOM-dip gives us information on the (in-)distinguishability of two light 
sources or two beam paths, which emanate from a the same light source. 

o if HOM is used with a single photon source (HBT-checked) and two consecutive pho-
tons the depth of the HOM-dip will give you information of the purity of the emitted 
state 
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o if HOM is used with a two-photon source and one photon in each mode the depth of 
the dip tells you something about the similarity (indistinguishability of the photons) 

 

o if HOM is used with two distinct light sources, it tells us, if these two light sources emit 
the same quantum state of light all the time. In particular this rules out the possibility 
of the emission of mixed states. 

 

 

- The width of the HOM-dip is directly related to the coherence length of the light source, i.e. 
the inverse of its spectral bandwidth, i.e. the photon lifetime 

While the implementation with a beam-splitter and two separate detectors is the canonical one, note 
that both HBT and HOM just require any kind of mixing process for two distinct modes and two coin-
cidence detectors. In the simplest case the mixing may be simply achieved by diffraction and the de-
tector may just be a single photon sensitive camera. 
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-  
Fig. 66: Camera based HOM with two-photon source. Part a) generates two photon states with SPDC. The central 
part is used to define the polarization of the state (QWP), the delay 𝜏𝜏 (delay stage), and select a single spatial mode 
(fiber). Part b is a classical HOM setup. Part C is a camera based HOM. Jachua et al., Opt. Lett. 40, 1540 (2015) 

 

 
Fig. 67: Results: On the left the result for HH, VV and HV in the case of large 𝜏𝜏 (i.e. distinguishable beam paths and 
thus distinguishable modes) and HV in the case of 𝜏𝜏 = 0 (i.e. polarization distinguishability) and on the right side 
for HH and VV for 𝜏𝜏 = 0. Jachua et al., Opt. Lett. 40, 1540 (2015). 

A 2 Single Photon Resolving Detectors: an Overview 
We shall have a (non-exhaustive) overview over some types of single-photon detectors, which are used 
oftentimes in experiments in quantum photonics. 

 
Fig. 68: Quantum efficiency (i.e. the probability of detection of a photon) of some common VIS 
platforms. (Left) Single-Channel detectors. (right) Pixelated Detectors. Source: Michalet et al., 
Phil Trans R Soc B 368, 20120035 (2012). Note the data is quite old, some of the values have 
improved drastically (e.g. BT-sCMOS now with up to 85% QE). 
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A 2.1.1 Single Channel Detectors (Bucket Type) 
These are historically the first single-photon-capable detectors. They are typically stand-alone devices 
with superior quantum efficiency, count-rate and very low dark-count rates. They can thought of as 
click-detectors; i.e. they produce a measure current or voltage spike upon the detection of a photon. 

The spike is typically very short (~10…100 ps), i.e. the time of detection of a photon can be measured 
very accurately and thus they are oftentimes combined with advanced correlation electronics or 
timestamp-electronics. However, the detection of an event is typically accompanied by a dead-time; 
i.e. a certain amount of time that is needed to restore the system in its single-photon sensitive state. 
During this time the system is generally incapable of measuring photons. This dead-time is typically 
much larger than the timing resolution (~1…100 ns). 

For all detectors temperature is an issue. The detectors are in a thermal equilibrium and thus subject 
to internal black-body radiation. They necessarily cannot discern between the detection of a photon 
from an external source or from the reabsorption of a thermal photon. This is of particular influence 
for detectors sensitive in the IR; these typically have to be cooled; not so much for detectors for the 
visible. Thermal dark-count rates typically scale exponentially with temperature (Boson-Distribution!). 
Thermal dark-count rates also typically scale with the quality of detector materials; they are necessarily 
the lowest for Si-based detectors.  

8.3.6 Photomultiplier Tubes (PMTs) 
In a photomultiplier tube the light is incident on a photocathode. There it will ionize an electron by 
supplying the work function to an atom (upper limit to wavelength!). The electron is then accelerated 
to a positively charged electrode (dynode). When it hits the electrode it has acquired so much kinetic 
energy, that it generates more than one secondary electron. The process is repeated with consecu-
tively higher charges electrodes (dynodes) and a near-exponential increase of the number of electrons. 
The last electrode is the anode, here the electron cloud is measured as a current spike. 

 

Fig. 69: Schematic of a PMT. Source: Wikipedia. 

8.3.7 (Silicon) Avalanche Photo Diode (SPAD) 
An avalanche Photodiode is a slightly modified photodiode, which is operated in reverse bias voltage. 
The applied voltage is very high (~ 50…100 V) and just short of the breakthrough voltage. The active 
area is composed of non-doped semiconductor; upon the absorption of a photon an electron-hole pair 
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is created. Due to the bias voltage the electron is drifting towards the p-n-junction exciting new elec-
tron-hole pairs along the way. This does particularly happen in the region of the p-n-junction due to 
the strong electric fields there. 

As a result there is an avalanche of free electrons and holes which drift through the SPAD, every in-
creasing the number of free electrons and holes. At the same time the avalanche leads to a current 
spike in the bias electronics. This current spike can be detected, counted and timed. The avalanche, 
however, needs to be actively terminated by quickly switching off the bias voltage and waiting for the 
recombination of all electron-hole pairs until it is switched back on. 

The process works on all standard semiconductor platforms, e.g. Silicon (400-1100 nm), InGaAs (900-
1700/1900 nm), or Ge (similar to InGaAs) or any other kind of exotic semiconductor. The resulting 
diodes are necessarily larger then, e.g. CCD or CMOS devices, both the control electronics (avalanche 
termination) as well as the high-voltage feed lines need quite a lot of space. 

   
Fig. 70: (left) Schematic of a Silicon-APD. Source: wikipedia. (middle) A SPAD mounted on a 
photon counting module. 

8.3.8 Superconducting nanowire detectors 
In these detectors a superconducting nanowire is patterned to fill an area on the chip almost com-
pletely. The wire is cooled below the superconducting threshold and an external circuit drives a current 
through the superconductor, that is just short of the critical current at which superconductivity breaks 
down. 

If a photon is absorbed by the superconducting wire, it creates a local hotspot with reduced critical 
current and the wire becomes ohmic. The change of voltage on the external circuit can be measured 
as a voltage spike. Due to the relative impedances of the hotspot and the amplifier the hotspot will 
typically cool by itself and the device automatically goes back into the superconducting state. Because 
the wire is very small (typically 50 nm) it cools back down into the ready-state in a matter of a few 
nanoseconds. 

These devices are intrinsically broadband, as they rely on thermal absorption. They are very fast (~50 
ps timing resolution) and have a comparatively short dead-time (cooling and inductive recycling). The 
operation is quite simple and many superconductors are suitable. They still require cryogenic opera-
tion but they work at 4 K, which is now attainable with closed-cycle cryostats, which as of 2018 have 
the size of a small refrigerator and can be run from an ordinary power plug. The QE can be tuned by 
application of a optical cavity to enhance the probability, that photons with certain wavelengths are 
indeed absorbed. 

https://de.wikipedia.org/wiki/Datei:APD3_German.png
https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiTjZCVv_TeAhVFKewKHbodAU8QjRx6BAgBEAU&url=http://www.warsash.com.au/products/optoelectronics/PHOTONIC-DETECTORS.php&psig=AOvVaw324N7zdHOCbW4vSbNvC_2p&ust=1543405347075686
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Fig. 71: (left) A superconducting nanowire from a superconducting nanowire detector (Wik-
ipedia). (right) A contemporary 4K closed-cycle cryostat for multiple Superconducting nan-
owires complete with timing and correlation electronics. Source: Quantum Design 

8.3.9 Transition edge sensors 
Transition edge sensors can be thought of as highly sensitive thermometers based on the thermoresis-
tive effect. The measure the change of conductivity of a metal as a photon is absorbed and it thus 
changes its temperature in a minuscule manner. The only way to reach enough sensitivity for a system 
which is still sufficiently small (which means you cannot make the thermal system arbitrarily small or 
arbitrarily well insulated), is to use the superconductor and stabilize it on the transition edge between 
the superconducting and conducting state. On this edge the resistivity grows by a few orders of mag-
nitude over a temperature change in the region of milli- or microkelvins. 

The system is operated with a current flowing through it and the change of resistivity is translated into 
a measurable change of voltage at the receiver. As the change of resistivity is (nearly) proportional to 
the amount of absorbed energy one can actually count photons or even (to a certain extend) measure 
their energy. The transition edge technique does, however, only work for low-temperature supercon-
ductors at roughly ~100 mK; they are thus extremely expensive and hard to maintain and operate. 
They are not very fast with dead-times in the range of tens of microseconds and very little timing res-
olution (order of a single microsecond) due to the larger size of the thermal bath. 

 
Fig. 72: (Left) Schematic of a TES. (right) Resistivity of a superconducting materials as a function 
of its temperature close to the transition edge. Horizontal bars denote changes of resistivity 
as individual photons are absorbed. (Lovett & Kok, Quantum Information Theory) 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiDxMqnxPTeAhUC3qQKHdqgCVwQjRx6BAgBEAU&url=https://www.qdusa.com/products/single-photon-detector.html&psig=AOvVaw0aF4BlwvcguNmMmwpF_1w5&ust=1543406738079881
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Fig. 73: (left) Response curves of a TES-sensor for illumination with coherent states of light 
with mean photon number N. (right) Red: Readout probability of a TES, when illuminates with 
Fock-States. Black: Readout-Statistics, when illuminated with a coherent state. (Gerrits et al., 
Opt. Express 20, 23798 (2012)) 

8.3.10 Summary 
 

  
PMT Inexpensive (k€), room temp, 

few dark counts 
low QE, large,  

SPAD inexpensive (10 k€), room 
temp, few dark counts (VIS), 
good timing 

mediocre QE, high dark counts 
(IR), long dead-time 

SND Few dark counts, broadband, 
high QE, good timing, short 
dead-time 

4K-cryo, bulk, expensive (100 
k€) 

TES Few dark counts, broadband, 
high QE, photon counting 

bad timing, long dead-time, 
mK-Cryo, super-bulky, super-
expensive (1 M€) 

A 2.1.2 Pixelated Detectors 
Pixelated detectors (i.e. camera-like detectors) have seen the most dramatic development in the last 
decade or so. Driven by the development of consumer electronics and LIDAR-applications for autono-
mous mobility, they have improved in terms of (electronic) shutter speed, quantum efficiency, noise, 
pixel size, dynamic range, etc. As a matter of necessity these development are mostly limited to Silicon-
based devices as here the small quantum-photonics market profits from the multi-billion dollar semi-
conductor industry. Consequentially this shall be discussed here. In general, there are extensions avail-
able in the NIR, based on, e.g. the InGaAs material system, and in the UV / X-ray range but they are 
typically much more expensive and much less developed. 

While pixelated detectors in general do not have the timing resolution of bucket detectors with dedi-
cated timing and counting electronics, these general make up this shortcoming by giving the ability to 
conduct measurement in many channels (up to millions) at once. 

With these system you can not only measure if and when photons have arrived but you can extract 
more information from them, by coupling them with an optical system, such as an objective or a spec-
trometer. Thus you can differentiate between multiple modes of a system (e.g. k-vectors, positions, 
wavelengths, polarizations, etc.) and can therefore carry out experiment with multimode quantum 
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systems. The modal selection can then be done in a post-selection style and does not need to be im-
plemented in the optical system (e.g. by using single mode fibres or small apertures). Moreover this 
scheme can be used to correlate photons in different modes (e.g. wavelength entangled photon pairs). 

 

Fig. 74: Modal correlation imaging with a 1D-pixellated detector for a degenerated SPDC-based 
broadband light source. Both idler (red) and signal (green) are analysed with a spectrometer 
and always appear as frequency-entangled, anticorrelated pairs (due to energy conservation).  

Moreover pixelated detectors can be used as a kind of poor-man’s photon-counter. If a particular mode 
is imaged onto a set of pixels and each pixel has a certain probability of detecting the photon, then it 
is highly unlikely that two photons will hit the same detector but it will more likely hit two different 
detectors; the same is true for three, four, etc. Note that such a scheme of pixel counting des however 
require a very high QE, which is given for some modern systems, such as EMCCD or BT-sCMOS. I.e. the 
probability that a click-detector with 𝑁𝑁 pixels will have 𝑛𝑛 pixels clicking, if the detector is illuminated 
with a Fock-State |𝑛𝑛⟩ and each pixel has the same QE 𝜂𝜂 is given by:  

𝑝𝑝(𝑛𝑛|𝑛𝑛) = �
𝑁𝑁
𝑛𝑛

�
𝜂𝜂𝑛𝑛𝑛𝑛!
𝑁𝑁𝑛𝑛  

𝑁𝑁→∞
���� 𝜂𝜂𝑛𝑛 

𝜂𝜂→1
��� 1. 

 

 

Fig. 75: Click-Detector-Multiplexing as a scheme for Photon-Counting.  

8.3.11 Derived from CCD or CMOS cameras 
This is the classic class of pixelated detectors. They have emerged from standard scientific cameras at 
the point, where their QE has started to become substantially higher than 30 %. There are various 
classis of single-pixel sensitive cameras in the market, which differ by pixel size, pixel number, QE-
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spectrum, readout noise, area fill factor, readout speed, shutter speed, etc. Of course they also differ 
heavily in terms of price. 

The most important classes are sCMOS, EMCCDs, and iCCDs. As all of these devices are improving in 
terms of their important parameters, basically every year, I shall not attempt to compare them here. 
In general, however, sCMOS tend to be the least sensitive, have the most pixel and be the cheapest 
(~20 k€), whereas EMCCDS and iCCDs tend to be more sensitive (+10% QE), have fewer pixels (~1/4) 
and be more expensive (~ 50 – 100 k€). 

       
Fig. 76: (left) Operation scheme of an image intensifier, placed before the CCD of an iCCD. 
(right) Image of a cooled laboratory grade sCMOS (Andor). 

 
Fig. 77: Operation scheme of an EMCCD-Camera. Light creates free electrons in a CCD-register. 
Before readout each cell is passed through an series of multiplication registers (the semicon-
ductor analogue of a PMT-Dynode)  with a low multiplication probability. (right) The readout 
value for zero, a single and more photons can be clearly distinguished. Source: Wikipedia. 

Each of these classes has their own approach to achieve a high QE. sCMOS systems mostly rely on the 
development of ever improved CMOS-detectors and processes derived from the consumer-driven 
semiconductor industry. iCCDs are derived from 2nd-generation night vision devices and use MCP-
based image intensifiers to enhance the number of photons before detection. EMCCDs are based on 
later-generation of night-vision devices. They enhance the electronic sensitivity of the CCD-chip by 
placing an electron multiplication register between the CCD and the readout electronics. The ap-
proaches can in principle be combined to a certain degree. 

Nevertheless each of these cameras have in common that they do not have timing resolution. I.e. they 
can be armed at an instance in time, left to their own devices for a certain exposure time and then 
read out. At which point in time of the exposure the photon was absorbed cannot be measured. Also 
the order in which multiple photons have been absorbed in one frame is not measurable. As their 
frame rate is limited (and transfer of frame to a data acquisition device is time consuming) one can 
only make a trade-off between timing accuracy (short exposure times, camera disarmed most of the 
time) and duty cycle (long exposure times, camera armed most of the time). 

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwib59zb2fTeAhUSyaQKHZEtBo0QjRx6BAgBEAU&url=https://www.researchgate.net/figure/Schematic-of-the-intensifier-in-an-ICCD-camera_fig1_256918122&psig=AOvVaw3RkbCtMWcuqnYZgCPfaGNT&ust=1543412479902095
https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwje6_332fTeAhXKy6QKHTGcA9wQjRx6BAgBEAU&url=https://www.photonicsonline.com/doc/scmos-camera-for-research-and-oem-applications-zyla-0001&psig=AOvVaw0JaGuv8OrLUjFDMfIwSadU&ust=1543412534571416
https://de.wikipedia.org/wiki/Datei:Emccd_readout_diag.png
https://de.wikipedia.org/wiki/Datei:Output_vs_input_electrons.png
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8.3.12 Derived from SPAD-devices 
Newer developments attempt to mitigate this issue by combining the timing resolution of SPAD de-
vices with the scalability of the CMOS process to create array SPAD (aSPAD) cameras. These devices 
are basically a lot of SPADs crammed on a single Si-chip, together with read-out circuitry, pixel based 
timing and photon-counting electronics. 

Compared to camera-based devices these have a greatly reduced number of pixels and reduced size 
of the active area (typically in the range of 50x50 pixels as opposed to >5 MPixels for sCMOS, < 5% 
active area), due to the large size of the high-voltage, readout, and pixel-based timing-electronics. In 
the state of the art, they are also limited in their spectral response as the application of detection and 
electronics on the same chip, imposes a certain regime of spectral response of the QE. As these devices 
are under active development, it may be expected that the number of pixel will cross the 100x100 pixel 
range soon. The application of multi-wafer bonding techniques and micro-lenses will mitigate both the 
issues with the active area and the spectral response of the QE-curve. 

   
Fig. 78: (left) Schematic cross-section of a 3D-integrated SPAD-pixel with readout and timing 
electronics based on a CMOS process. (middle) A 2x192 aSPAD-array. (right) A microlens-array, 
which is used to trade numerical aperture for QE. All images: Fraunhofer-Leitprojekt QUILT. 

aSPADs are, however, not just a new kind of camera. The availability of time-tags for each and every 
photon, which arrives at the camera opens perspectives for entirely new experiments of multimode 
correlation, high-order-correlation, and correlation based imaging (images are necessarily high-order-
modal entitites). They also, in principle, do not suffer from the timing accuracy / duty cycle trade-off 
as CCD and CMOS-based cameras do. They may thus help to establish hyper-entanglement measure-
ment schemes, high-qudit based communication and sensing schemes, and quantum multimodal im-
aging. On-Chip correlation electronic can be used for enhanced data-compression and quantum com-
pressed sensing schemes. 
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A 3 Three-Photon Processes and SPDC 
In this chapter we will go through the Basis of nonlinear optical process of second order (i.e. three 
photon-processes) at a high pace and then focus on the special case of SPDC. To keep the discussion 
brief and simple we’ll stick to classical Maxwell-Theory to end up at coupled-wave equations between 
pump, signal and idler, and then resort to the tried and tested method “just sticking a hat over all the 
development coefficients” to make the transition to the quantum realm. While this is conceptually 
total bullshit, it still gives the correct results. Alas, one former example of the fact, that you can clean 
dishes, even if you use dirty water. 

A 3.1 Fundamentals of Three Photon Processes 
In order to make the transition from the microscopic to the macroscopic Maxwell-Theory in optics one 
introduces the Polarization field 𝑷𝑷, which summarizes the contributions from all induced dipoles of the 
matter a light field 𝑬𝑬 propagates through. In the process there is typically a position, where the as-
sumption is made, that the individual dipoles are excited proportionally to 𝑬𝑬, leading to a linear 
realtionship between 𝑷𝑷 and 𝑬𝑬. Microscopically this is connected to the fact, that the dipolar contribu-
tion of matter is mostly rooted in the motion of bound electrons, which are in state of an energetic 
minimum, forming a local harmonic oscillator with 𝐸𝐸~𝛿𝛿𝑥𝑥2 relation of potential energy 𝐸𝐸 with out-of-
equilibrium position 𝛿𝛿𝛿𝛿. If the microscopic oscillators are to be modelled quantum-mechanically, this 
means that their Hamiltonian is of the form ℋ� = 𝜔𝜔0𝑎𝑎�†𝑎𝑎�, with 𝑎𝑎� = 𝑥𝑥� + 𝑖𝑖𝑝̂𝑝. 

If the incident 𝐸𝐸-Field is strong enough, 𝛿𝛿𝛿𝛿 will grow large enough, such that the local oscillators be-
come (slightly) anharmonic. If the deviation is not too large29 we can expand the Energy-Position rela-
tion into 𝐸𝐸 = 𝑎𝑎𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏𝑥𝑥3 + 𝒪𝒪(𝛿𝛿𝑥𝑥3). If the microscopic oscillators are to be modelled quantum-me-
chanically, this means that their Hamiltonian is of the form ℋ� = 𝜔𝜔0(𝑎𝑎�†𝑎𝑎� + 𝜀𝜀𝑎𝑎�2†𝑎𝑎� + 𝜀𝜀∗𝑎𝑎�†𝑎𝑎�2). If you 
look carefully and consider an interaction Hamiltonian you find that it describes three-photon interac-
tion, of the kind required to create entanglement and two-mode squeezing. 

In classical Maxwell-Theory this changes the 𝑃𝑃(𝐸𝐸) relation to: 

𝑃𝑃𝜇𝜇 (𝑡𝑡) = 𝜀𝜀0 � 𝑑𝑑𝑑𝑑𝑅𝑅𝜇𝜇𝜇𝜇
(1)(𝑡𝑡 − 𝜏𝜏) ⋅ 𝐸𝐸𝛼𝛼 (𝜏𝜏)

∞

−∞

+ 𝜀𝜀0 � 𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2𝑅𝑅𝜇𝜇𝜇𝜇𝜇𝜇
(2) (𝑡𝑡 − 𝜏𝜏1 ,𝑡𝑡 − 𝜏𝜏2) ⋅ 𝐸𝐸𝛼𝛼 (𝜏𝜏1) ⋅ 𝐸𝐸𝛽𝛽(𝜏𝜏2)

∞

−∞

(270) 

Note that this relation is valid in time-domain and the linear and non-linear contribution of the matter 
is collected in the response-functions 𝑅𝑅(1) and 𝑅𝑅(2), which are of tensorial. In a hand waiving manner, 
the response functions tell you : 

• the time delay of the impact of the material on the 𝑃𝑃-Field after a photon has arrived 

• the strength (i.e. interaction likelihood) of such a polarization event 

• the maximum temporal separation (i.e. correlatedness), that multiple photons must arrive 
with, in order to lead to a polarization event 

• the behaviour with respect to the polarization of the respective photons 

In optics we typically operate with modes, which are defined in the frequency-domain as opposed to 
the time domain, in which the above relation is written in. Of course, we transform the equations into 

 
29 This is generally a valid assumption, because if it becomes too large, then the potential well typically merges 
with the continuum, the electrons can start to move freely, the matter ionizes and is destroyed. 
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frequency domain by expanding the electric fields 𝐸𝐸𝛼𝛼 (𝑡𝑡) into their frequency components 𝐸𝐸𝛼𝛼 (𝑡𝑡) =
∫ 𝑑𝑑𝑑𝑑 𝐸𝐸�𝛼𝛼 (𝜔𝜔)exp (−𝑖𝑖𝑖𝑖𝑖𝑖). Thus: 

𝑃𝑃𝜇𝜇(𝑡𝑡) = 𝜀𝜀0 � 𝑑𝑑𝑑𝑑𝜒𝜒𝜇𝜇𝜇𝜇
(1)(−𝜔𝜔𝜎𝜎 ;𝜔𝜔) ⋅ 𝐸𝐸�𝛼𝛼 (𝜔𝜔) exp(−𝑖𝑖𝜔𝜔𝜎𝜎𝑡𝑡)

∞

−∞

+𝜀𝜀0 � 𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇
(2) (−𝜔𝜔𝜎𝜎;𝜔𝜔1 ,𝜔𝜔2) ⋅ 𝐸𝐸�𝛼𝛼 (𝜔𝜔1) ⋅ 𝐸𝐸�𝛽𝛽(𝜔𝜔2)

∞

−∞

exp(−𝑖𝑖𝜔𝜔𝜎𝜎 𝑡𝑡)

(271) 

With the susceptibility tensors: 

𝜒𝜒𝜇𝜇𝜇𝜇
(1)(−𝜔𝜔𝜎𝜎;𝜔𝜔) = � 𝑑𝑑𝑑𝑑𝑅𝑅𝜇𝜇𝜇𝜇

(1)(𝜏𝜏) ⋅ exp(𝑖𝑖𝑖𝑖𝑖𝑖)
∞

−∞

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇
(2) (−𝜔𝜔𝜎𝜎 ;𝜔𝜔1 ,𝜔𝜔2) = � 𝑑𝑑𝜔𝜔1𝑑𝑑𝜔𝜔2𝑅𝑅𝜇𝜇𝜇𝜇𝜇𝜇

(2) (𝜏𝜏1𝜏𝜏2) ⋅ exp(𝑖𝑖𝜔𝜔1𝜏𝜏1)
∞

−∞

exp(𝑖𝑖𝜔𝜔2𝜏𝜏2)

(272) 

Obviously, there are a lot of symmetry conditions, which have to be imposed on the response functions 
𝑅𝑅(1) and 𝑅𝑅(2). This carries over to the frequency representations, i.e. 𝜒𝜒(1)and 𝜒𝜒(2). Some of these sym-
metry conditions are of fundamental nature, others can be imposed for specific wavelength combina-
tions (e.g. 𝜔𝜔1 = 𝜔𝜔2), crystal symmetry classes and spectral features, a few of which shall be discussed 
now. 

𝑅𝑅(1) and 𝑅𝑅(2) have to be both vanishing for 𝜏𝜏 < 0 for causality reasons, thus 𝜒𝜒(1) and 𝜒𝜒(2) have to be 
analytic with all poles in the upper frequency plane. This leads to a connection between the real and 
imaginary parts of 𝜒𝜒(1) and 𝜒𝜒(2), which themselves account for polarization and loss. These relations 
are called Kramers-Kronig relations and they basically mean, that loss and polarization are two side of 
the same medal. Furthermore, 𝑅𝑅(1)  and 𝑅𝑅(2)  both have to be real, thus 𝜒𝜒(1)(−𝜔𝜔𝜎𝜎;𝜔𝜔)∗ =
𝜒𝜒(1)(𝜔𝜔𝜎𝜎 ;−𝜔𝜔∗) and 𝜒𝜒(2)(−𝜔𝜔𝜎𝜎 ;𝜔𝜔1 ,𝜔𝜔2  )∗ = 𝜒𝜒(2)(𝜔𝜔𝜎𝜎 ;−𝜔𝜔1

∗ ,−𝜔𝜔2
∗). 𝑅𝑅(2) also has to be symmetric under 

the exchange of 𝛼𝛼  and 𝛽𝛽 , if the according time coordinates are also exchanged, thus 
𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇

(2) (−𝜔𝜔𝜎𝜎;𝜔𝜔1 ,𝜔𝜔2)=𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇
(2) (−𝜔𝜔𝜎𝜎 ;𝜔𝜔2 ,𝜔𝜔1). 

In a next step we make the experimentally relevant simplification30 that we are just concerned with 
monochromatic waves and that we only have to be concerned with the wave amplitudes 31 𝑃𝑃𝜔𝜔 and 𝐸𝐸𝜔𝜔 
of those monochromatic waves, such that 

𝐸𝐸𝛼𝛼 (𝜔𝜔) =
1
2

� 𝐸𝐸𝜔𝜔′;𝛼𝛼 𝛿𝛿(𝜔𝜔 − 𝜔𝜔′ )+ 𝐸𝐸−𝜔𝜔′;𝛼𝛼 𝛿𝛿(𝜔𝜔 + 𝜔𝜔′ )
𝜔𝜔′ ≥0

𝑃𝑃𝛼𝛼 (𝑡𝑡) =
1
2

� 𝑃𝑃𝜔𝜔;𝛼𝛼 exp (−𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑃𝑃−𝜔𝜔;𝛼𝛼 exp (𝑖𝑖𝑖𝑖𝑖𝑖)
𝜔𝜔′≥0

(273) 

We thus obtain: 

 
30 This is particularly relevant for Quantum Communications, as we often operate with cw-systems, here. 
31 A wave amplitude is related to a discrete monochromatic wave, as opposed to the Fourier coefficient, which 
is an amplitude density. They carry optical intensity according to 𝐼𝐼𝜔𝜔 = 1/2cε0𝑛𝑛(𝜔𝜔)|𝑬𝑬𝜔𝜔|2 , the unit is W/m2. 
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𝑃𝑃𝜔𝜔𝜎𝜎;𝜇𝜇 = 𝜀𝜀0 �𝐾𝐾(−𝜔𝜔𝜎𝜎 ;𝜔𝜔1)𝜒𝜒𝜇𝜇𝜇𝜇
(1)(−𝜔𝜔𝜎𝜎 ;𝜔𝜔1)𝐸𝐸𝜔𝜔;𝛼𝛼

𝜔𝜔

+𝜀𝜀0 �𝐾𝐾(−𝜔𝜔𝜎𝜎 ;𝜔𝜔1 ,𝜔𝜔2)
𝜔𝜔

𝜒𝜒𝜇𝜇𝜇𝜇𝜇𝜇
(2) (−𝜔𝜔𝜎𝜎;𝜔𝜔1 ,𝜔𝜔2)𝐸𝐸𝜔𝜔1;𝛼𝛼𝐸𝐸𝜔𝜔2;𝛽𝛽

(274) 

Where the sum over 𝜔𝜔 denotes summation over all electric field frequency modes, for which 𝜔𝜔𝜎𝜎 =
∑ 𝜔𝜔𝑙𝑙

𝑛𝑛
𝑙𝑙=1 , which is, of course the manifestation of photon energy conservation (which is kind of unex-

pected, as we are purely classical here and have never introduced the photons, as such). We have also 
introduced the numerical quantity 𝐾𝐾, which is used to keep track of the permutation density of the 
underlying process. Depending on the order of the process and the frequencies involved this takes the 
form: 

Process Order Frequencies −𝝎𝝎𝝈𝝈; 𝝎𝝎𝟏𝟏 , … , 𝝎𝝎𝒏𝒏  𝑲𝑲 
linear absorption, re-
fractive index 

1 −𝜔𝜔; 𝜔𝜔 1 

optical rectification 2 0; 𝜔𝜔, −𝜔𝜔 1
2 

Pockels effect 2 −𝜔𝜔; 𝜔𝜔, 0 2 
SHG 2 −2𝜔𝜔; 𝜔𝜔, 𝜔𝜔 1

2 

SFG, DFG, SPDC 2 −𝜔𝜔1 ∓ 𝜔𝜔2 ;𝜔𝜔1 ,±𝜔𝜔2   1 
For many processes we can make one further approximation: if all frequencies in question are far away 
from material resonances and there are no material resonances between the frequencies we can es-
sentially drop out the frequency dependence of the 𝑥𝑥(2)-tensor altogether. This is a special application 
case of the Kramers-Kronig relations and called KLeinmann-symmetry. 

There is a lot more to be said about the response-tensors, than can possibly be done here. Their cal-
culation in and by itself are again problems of Quantum Mechanics and can often be understood in 
terms of perturbation calculations. However, as we know, the derivation of the electron orbitals itself 
is a hard problem, which cannot be tackled in an ab-initio manner. Often one has to determine these 
quantities experimentally. 

The entries of the 𝜒𝜒-tensors are heavily related to the symmetry of the materials in question. More 
specifically one can show, that 

• inversion symmetric materials (and also amorphous materials) have 𝜒𝜒(2) = 0. 

• Non-inversion symmetric materials (e.g. crystals) can be grouped into several symmetry clas-
ses, which in turn determine the location and relative sign of non-zero entries of the 𝑥𝑥 (2)-
tensor. 

More on this matter can be found in textbooks on nonlinear Optics, e.g. Boyd’s “Nonlinear Optics” or 
Butcher’s and Cotter’s “The Elements of Nonlinear Optics”. 

We however include one further step, which is often done in the context of NLO and will allow you to 
access the literature in a more concise manner. We replace the 𝜒𝜒(2) –tensor with the 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖-tensor and 
then the contracted 𝑑𝑑𝑖𝑖𝑖𝑖-tensor: 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 =
1
2 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖

(2) (275) 

The 𝑑𝑑𝑖𝑖𝑖𝑖-tensor is constructed from the 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖-tensor by taking the following replacement rule: 
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𝒋𝒋𝒋𝒋 11 22 33 23,32 31,13 12,21 
𝒍𝒍 1 2 3 4 5 6 

The 𝑑𝑑𝑖𝑖𝑖𝑖-tensor is a 3x6-matrix: 

𝑑𝑑𝑖𝑖𝑖𝑖 =  �
𝑑𝑑11  𝑑𝑑12 𝑑𝑑13 𝑑𝑑14 𝑑𝑑15 𝑑𝑑16
𝑑𝑑21 𝑑𝑑22 𝑑𝑑23 𝑑𝑑24 𝑑𝑑25 𝑑𝑑26
𝑑𝑑31 𝑑𝑑32 𝑑𝑑33 𝑑𝑑34 𝑑𝑑35 𝑑𝑑36

� (276) 

The reduction of the number of elements from 3x3x3=27 to 3x6=18 is related to the intrinsic permu-
tation symmetry properties of the 𝜒𝜒-tensor. 

A 3.2 Coupled Wave Equations 
In the last chapter we have derived the relation between an electric field and the (nonlinear) polariza-
tion, which it induces. At this point this is still an entirely local description of the action of the EM-field 
and does not allow us to describe, what happens if EM-radiation propagates through a medium. To 
achieve this, we, of course, have to plug in these relations into Maxwell’s Equations.  

First, however, we rewrite the Polarization equations for three-wave-mixing (SFG) in terms, if the re-
duced 𝑑𝑑𝑖𝑖𝑖𝑖-tensor (𝒅𝒅 in matrix notation) 

�
𝑃𝑃𝜔𝜔3;𝑥𝑥
𝑃𝑃𝜔𝜔3;𝑦𝑦
𝑃𝑃𝜔𝜔3;𝑧𝑧

� = 4𝒅𝒅 ⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝐸𝐸𝜔𝜔1;𝑥𝑥𝐸𝐸𝜔𝜔2;𝑥𝑥
𝐸𝐸𝜔𝜔1;𝑦𝑦𝐸𝐸𝜔𝜔2;𝑦𝑦
𝐸𝐸𝜔𝜔1;𝑧𝑧𝐸𝐸𝜔𝜔2;𝑧𝑧

𝐸𝐸𝜔𝜔1;𝑦𝑦𝐸𝐸𝜔𝜔2;𝑧𝑧 + 𝐸𝐸𝜔𝜔1;𝑧𝑧𝐸𝐸𝜔𝜔2;𝑦𝑦
𝐸𝐸𝜔𝜔1;𝑥𝑥𝐸𝐸𝜔𝜔2;𝑧𝑧 + 𝐸𝐸𝜔𝜔1;𝑧𝑧𝐸𝐸𝜔𝜔2;𝑥𝑥
𝐸𝐸𝜔𝜔1;𝑥𝑥𝐸𝐸𝜔𝜔2;𝑦𝑦 + 𝐸𝐸𝜔𝜔1;𝑦𝑦𝐸𝐸𝜔𝜔2;𝑥𝑥⎦

⎥
⎥
⎥
⎥
⎥
⎤

(277) 

If we choose a fixed set of Polarizations for the waves with the three frequencies we can compress the 
notation to: 

𝑃𝑃𝜔𝜔3 = 4𝑑𝑑eff𝐸𝐸𝜔𝜔1 𝐸𝐸𝜔𝜔2 (278) 

Where the values of 𝑑𝑑eff is a superposition of the values of the 𝑑𝑑𝑖𝑖𝑖𝑖-tensor and depend on the selected 
polarization and symmetry conditions of the crystal. As an example, we take a negative uniaxial crystal 
of symmetry class 3𝑚𝑚 (such as BBO) we get: 

𝑑𝑑eff
(I) = 𝑑𝑑32 sin𝜃𝜃 − 𝑑𝑑22 cos 𝜃𝜃 sin 3𝜙𝜙

𝑑𝑑eff
(II) = 𝑑𝑑22 cos2 𝜃𝜃 cos 3𝜙𝜙 𝑏𝑏𝑏𝑏𝑏𝑏

(279) 

Where type-I denotes the case where the lower-frequency photons have the same polarization and 
type-II is where they are in opposite polarization. 𝜃𝜃 is the angle between the propagation vector and 
the crystalline 𝑧𝑧-axis (optical axis). 𝜙𝜙 is the angle between the propagation vector and the 𝑥𝑥𝑥𝑥-crstal 
plane. We also assume propagation in the 𝑧𝑧-direction only, to keep this discussion brief and simple 

(collinear interaction). Thus 𝒌𝒌𝑖𝑖 = [0,0, 𝑘𝑘𝑖𝑖 ], with 𝑘𝑘𝑖𝑖 = 𝑛𝑛𝑖𝑖 𝜔𝜔𝑖𝑖 /𝑐𝑐 and 𝑛𝑛𝑖𝑖 = �𝜀𝜀(1)(𝜔𝜔𝑖𝑖 )�
1/2

. 

We then plug all of these expression into Maxwell’s Equations and end up with the so-called coupled 
wave equations.  
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𝑑𝑑𝐸𝐸𝜔𝜔3

𝑑𝑑𝑑𝑑 =
8𝜋𝜋𝜋𝜋𝑑𝑑eff𝜔𝜔3

2

𝑘𝑘3𝑐𝑐2  𝐸𝐸𝜔𝜔1 𝐸𝐸𝜔𝜔2 exp(𝑖𝑖Δ𝑘𝑘𝑘𝑘)

𝑑𝑑𝐸𝐸𝜔𝜔1

𝑑𝑑𝑑𝑑 =
8𝜋𝜋𝜋𝜋𝑑𝑑eff𝜔𝜔1

2

𝑘𝑘2𝑐𝑐2  𝐸𝐸𝜔𝜔2
∗ 𝐸𝐸𝜔𝜔3 exp(−𝑖𝑖Δ𝑘𝑘𝑘𝑘)

𝑑𝑑𝐸𝐸𝜔𝜔2

𝑑𝑑𝑑𝑑 =
8𝜋𝜋𝜋𝜋𝑑𝑑eff𝜔𝜔2

2

𝑘𝑘2𝑐𝑐2  𝐸𝐸𝜔𝜔1
∗ 𝐸𝐸𝜔𝜔3 exp(−𝑖𝑖Δ𝑘𝑘𝑘𝑘)

(280) 

Here we have introduced the important quantity Δ𝑘𝑘 = 𝑘𝑘1 + 𝑘𝑘2 − 𝑘𝑘3, called the phase-mismatch. We 
will get to that in a second. For SPDC we typically have the case, that 𝐸𝐸𝜔𝜔3 , e.g. the pump-wave, is very 
strong and is itself unaffected by the weak feedback from the few photons, which we create in the 
signal field 𝜔𝜔1 or the idler 𝜔𝜔2 . We can thus assume the so-called undepleted pump approximation, 
such that this field is constant and denote it as 𝐸𝐸0: 

𝑑𝑑𝐸𝐸𝜔𝜔1

𝑑𝑑𝑑𝑑 =
8𝜋𝜋𝜋𝜋𝑑𝑑eff𝜔𝜔1

2

𝑘𝑘2𝑐𝑐2   𝐸𝐸𝜔𝜔2
∗ 𝐸𝐸0exp (−𝑖𝑖Δ𝑘𝑘𝑘𝑘)

𝑑𝑑𝐸𝐸𝜔𝜔2

𝑑𝑑𝑑𝑑 =
8𝜋𝜋𝜋𝜋𝑑𝑑eff𝜔𝜔2

2

𝑘𝑘2𝑐𝑐2   𝐸𝐸𝜔𝜔1
∗ 𝐸𝐸0exp (−𝑖𝑖Δ𝑘𝑘𝑘𝑘)

(281) 

Let’s, however, say a few more words about phase-matching: 

• The value of Δ𝑘𝑘 can be tuned by modification of the crystal orientation, propagation direc-
tions, crystal temperatures and by the introduction of a so-called quasi-phasematching. In the 
broader scheme of things, it can be tuned by the modification of the geometry and the result-
ing impact of the dispersive properties of the mode in question (which may not be plane waves 
but any kind of mode). 

• If Δ𝑘𝑘 = 0, then the intensities in the signal and idler grow exponentially with propagation 
length/crystal thickness (assume 𝐸𝐸𝜔𝜔2

(𝑧𝑧 = 0)). 

𝐸𝐸𝜔𝜔1 = 𝐸𝐸𝜔𝜔1
(𝑧𝑧 = 0) cosh

64π2𝜔𝜔1
2𝜔𝜔2

2𝑑𝑑eff
2  

𝑘𝑘1𝑘𝑘2𝑐𝑐4 |𝐸𝐸0
2| (282) 

• If Δ𝑘𝑘 ≠ 0, then the intensities in the signal and idler behave in a sin2 𝐿𝐿PM𝑧𝑧-manner with 𝐿𝐿PM =
Δ𝑘𝑘−1 . 

• In the classic case this only happens if the process is seeded, i.e. if there is an initial intensity 
in the signal and/or idler mode. This case is called difference frequency generation and is the 
basis for OPAs and OPOs. 

• In the quantum case the initial state is not zero but |vac⟩ and thus there is always a seed. This 
case is then called SPDC. 

Analytic solutions can also be found quite simply for Δ𝑘𝑘 ≠ 0 and also for non-collinear interaction. 
There is no new physics here, but it’s quite an index-battle. So, let’s skip that. The bottom line message 
is that: 

• the entire SPDC-process can be described locally (coupled mode equations) but also globally 
(as the action of a device of finite thickness) 

• the process is symmetric in signal and idler 
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• in both cases its action is to mix the modal excitations (i.e. photons) in the three modes, in-
volved, we can thus derive a local and a global interaction Hamiltonian for the process, which 
describes the tree-mode-mixing process 

• the interaction Hamiltonian acting on the quantum-vacuum in the signal- and idler-mode will 
create symmetric excitations (e.g. photons-pairs or pairs of pairs) in these modes. 

A word on caution for those of you familiar with classical nonlinear processes, for which at least one 
𝜔𝜔1 is fixed and 𝜔𝜔2 is then determined by this and the pump 𝜔𝜔𝑝𝑝. This is not the case for SPDC, where 
only 𝜔𝜔𝑝𝑝 is fixed (or in case of a pulsed pump: an a certain range is possible). Here any combination of 
𝜔𝜔1 + 𝜔𝜔2 = 𝜔𝜔𝑝𝑝 must be considered, each of which have individual phase mismatch conditions. In gen-
eral phase matching will occur for a specific 𝜔𝜔�1 and a certain range around that will still be phase 
matched enough (this range depends on the crystal, phase-matching-type and crystal length), such 
that a broadband signal will be generated. 

A 3.3 Two-photon state produced in SPDC 
The previous section discussed how nonlinear polarization response in a second-order nonlinear crys-
tal couples the pump, signal, and idler fields. In principle, we can use the coupled mode relations to 
calculate the modal distribution and photon number characteristics of PDC states to arbitrary order – 
from quantum all the way to classical nonlinear optics. In practice, the nonlinear interaction is weak 
and the PDC emission is dominated by the spontaneous emission of photon pairs. In order to derive 
an expression for the two-photon SPDC state, let us consider the following experimental situation, 
which accurately describes the majority of quantum optics experimentation: A strong pump laser 
which propagates along a principal axis of a nonlinear crystal of length L, which we choose as the z-
axis of our coordinate system (Fig. 79). 

 
Fig. 79 Coordinate system used for calculation of SPDC state. 

Assuming that the wave-vector distribution of the pump, signal, and idler fields are peaked around this 
preferential direction of propagation, it is prudent to separate the respective wave vectors into a lon-
gitudinal component 𝑘𝑘𝑧𝑧 and a transverse component 𝒒𝒒 = (kx, ky) 

𝒌𝒌 = 𝑘𝑘𝑧𝑧(𝜔𝜔,𝒒𝒒)𝒆𝒆𝑧𝑧 + 𝒒𝒒 (283) 

In this notation, the Hamilton operator for the nonlinear interaction reads:  

𝐻𝐻�𝑃𝑃𝑃𝑃𝑃𝑃 ∝ ∫ 𝑑𝑑2𝒓𝒓⊥ 𝑑𝑑𝑑𝑑  𝝌𝝌𝝀𝝀𝒑𝒑𝝀𝝀𝒔𝒔𝝀𝝀𝒊𝒊  
(𝟐𝟐) (𝒓𝒓⊥,𝒛𝒛) Ê𝒑𝒑

+(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝒔𝒔
−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝒊𝒊

−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) + 𝑐𝑐. 𝑐𝑐 (284) 

Where  Ê𝑘𝑘
+(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) =  Ê𝑘𝑘

−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡)† are the transverse electromagnetic field operators (𝑘𝑘 = 𝑝𝑝, 𝑠𝑠, 𝑖𝑖) 
with transverse momentum decomposition32:  

 
32 𝑓𝑓(𝜔𝜔) = �

ℏ𝜔𝜔
2𝜖𝜖0 𝑐𝑐 𝑛𝑛(𝜔𝜔) 

 is a normalization constant. Typically, we pull this factor out of the integral and evaluate it 

at the center frequency of the respective field 𝑓𝑓(𝜔𝜔) = 𝑓𝑓(𝜔𝜔0). 
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 Ê𝒌𝒌
−(𝒓𝒓⊥, 𝑧𝑧, 𝑡𝑡) = �

𝝐𝝐𝝀𝝀

(2𝜋𝜋)
3
2

∫ 𝑑𝑑𝑑𝑑
𝜆𝜆

 𝑑𝑑𝒒𝒒 𝑎𝑎�𝜆𝜆
†(𝜔𝜔, 𝒒𝒒) 𝑓𝑓(𝜔𝜔) exp( 𝑖𝑖𝑘𝑘𝑧𝑧(𝜔𝜔, 𝒒𝒒)𝑧𝑧 + 𝑖𝑖 𝒒𝒒 ⋅ 𝒓𝒓⊥ −  𝑖𝑖𝑖𝑖𝑖𝑖) (285) 

In this decomposition, the field creation operators 𝑎𝑎�𝜆𝜆,𝑠𝑠(𝑖𝑖)
† (𝜔𝜔, 𝒒𝒒)  create a signal (idler) photon in a 

plane-wave spatial mode with transverse wave vector  𝒒𝒒 , frequency  𝜔𝜔  and polarization vector 
𝝐𝝐𝝀𝝀,𝒔𝒔(𝒊𝒊), whereas the pump annihilation operator 𝑎𝑎�𝜆𝜆,𝑝𝑝(𝜔𝜔, 𝒒𝒒) removes a photon from the pump field. 
Let’s assume that the nonlinear material has only a single relevant non-zero nonlinear tensor coeffi-
cient 33, so that the susceptibility reduces to a scalar effective nonlinear coefficient  

𝜒𝜒  
(2) =  𝝌𝝌𝝀𝝀𝒑𝒑𝝀𝝀𝒔𝒔𝝀𝝀𝒔𝒔  

(𝟐𝟐) ⋅ 𝝐𝝐𝝀𝝀𝒑𝒑 ⋅ 𝝐𝝐𝝀𝝀𝒔𝒔 ⋅ 𝝐𝝐𝝀𝝀𝒊𝒊 (286) 

Now, we only have to consider a single scalar operator for each field, i.e.: 

 Ê𝒌𝒌
− (𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) =

𝑓𝑓(𝜔𝜔0)

(2𝜋𝜋)
3
2

∫ 𝑑𝑑𝑑𝑑 𝑑𝑑𝒒𝒒 𝑎𝑎�𝜆𝜆
†(𝜔𝜔,𝒒𝒒) exp( 𝑖𝑖𝑘𝑘𝑧𝑧(𝜔𝜔, 𝒒𝒒)𝑧𝑧 + 𝑖𝑖 𝒒𝒒 ⋅ 𝒓𝒓⊥ −  𝑖𝑖𝑖𝑖𝑖𝑖) (287) 

We leave open the possibility of a spatial modulation of the nonlinear coefficient, such as periodic 
poling. In the case of an ideal quasi-phase matching, the spatial dependence of the nonlinear coeffi-
cient is of the form: 

𝜒𝜒  
(2)(𝑧𝑧) = 𝜒𝜒  

(2) exp
𝑖𝑖2𝜋𝜋
Λ 𝑧𝑧 (288) 

 

where Λ is the poling period. As discussed in the lecture, the poling period allows us to control the 
phase-matching condition in the crystal (but more on this later). With these definitions we’re ready to 
calculate the multi-mode SPDC state. Because we’re considering the interaction to be weak, we use 
the time-evolution operator in the interaction picture: 

| ΨSPDC⟩ = exp�−
𝑖𝑖
ℏ

�  
𝑇𝑇

𝐻𝐻�𝑃𝑃𝑃𝑃𝑃𝑃  𝑑𝑑𝑑𝑑 � |Ψinitial⟩ (289) 

Some brief notes on the initial state: Since we’re considering spontaneous parametric down-conver-
sion (as opposed to stimulated), the signal and idler fields are initially in their vacuum states. The pump 
field, on the other hand, is a strong laser, which we describe via a multi-mode coherent state with a 
distribution of transverse momenta 𝐸𝐸𝑝𝑝(𝑞𝑞) and frequency 𝑠𝑠(𝜔𝜔). In total we assume to initial state to 
be of the form:  

|Ψinitial⟩ = � 𝐸𝐸𝑝𝑝(𝑞𝑞),𝑠𝑠(𝜔𝜔)�
𝑝𝑝

| vac⟩𝑠𝑠,𝑖𝑖 (290) 

Now, remembering that coherent states are eigenstates of the photon annihilation operator, we can 
simply replace the pump mode operator with its classical field amplitudes and factor out the state of 
the pump field from the final state (| Ψ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩ = � 𝐸𝐸𝑝𝑝(𝑞𝑞),𝑠𝑠(𝜔𝜔)�

𝑝𝑝
| Ψ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩𝑠𝑠,𝑖𝑖 With all these restrictions, 

let’s recap what the Hamiltonian we’re considering now looks like:  

 
33 Depending on which nonlinear coefficient mediates the interaction, we can define three types of 
SPDC: type-0 (pump,signal, and idler co-polarized), type-I (signal and idler co-polarized, but orthogonal 
to pump), or type-II (signal and idler polarizations orthogonal).  
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𝐻𝐻�𝑃𝑃𝑃𝑃𝑃𝑃 ∝ ∫ 𝑑𝑑2𝒓𝒓⊥  𝑑𝑑𝑑𝑑  𝜒𝜒  
(2)(𝑧𝑧) 𝐸𝐸𝑝𝑝(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝒔𝒔

−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝒊𝒊
−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) + 𝑐𝑐. 𝑐𝑐 (291) 

We now approximate the time evolution to the lowest order giving us a photon pair, that is:  

| Ψ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆⟩𝑠𝑠,𝑖𝑖 = | 𝑣𝑣𝑣𝑣𝑣𝑣⟩𝑠𝑠,𝑖𝑖 −
𝑖𝑖
ℏ

�  
𝑇𝑇,𝑉𝑉

𝑑𝑑𝑑𝑑 𝑑𝑑𝒓𝒓 𝜒𝜒(𝟐𝟐)(𝒓𝒓)𝐸𝐸𝑝𝑝(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝑠𝑠
−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡) Ê𝑖𝑖

−(𝒓𝒓⊥ ,𝑧𝑧, 𝑡𝑡)| 𝑣𝑣𝑣𝑣𝑣𝑣⟩𝑠𝑠,𝑖𝑖

���������������������������������������
two-photon contribution

+ ⋯ (292)
 

Dropping the vacuum term and normalizing, we get our final result for the two-photon state: 

 

� Ψ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
(2) � = ∫ 𝑑𝑑𝜔𝜔𝑠𝑠  𝑑𝑑𝒒𝒒𝑠𝑠𝑑𝑑𝜔𝜔𝑖𝑖  𝑑𝑑𝒒𝒒𝑖𝑖 Φ(𝜔𝜔𝑠𝑠  ,  𝒒𝒒𝑠𝑠  ,  𝜔𝜔𝑖𝑖  ,  𝒒𝒒𝑖𝑖 )�������������

”bi-photon mode function”

|𝜔𝜔𝑠𝑠 ,  𝒒𝒒𝒔𝒔⟩|𝜔𝜔𝑖𝑖 ,  𝒒𝒒𝒊𝒊⟩ (293) 

This looks quite neat, but still have a rather complicated expression for the bi-photon wave function in 
transverse momentum and frequency space: 

Φ(𝜔𝜔𝑠𝑠 ,  𝒒𝒒𝑠𝑠  , 𝜔𝜔𝑖𝑖  ,  𝒒𝒒𝑖𝑖 )

= �  
𝑇𝑇,𝑉𝑉

𝑑𝑑𝑑𝑑 𝑑𝑑𝒓𝒓⊥𝑑𝑑𝑑𝑑 𝜒𝜒(𝟐𝟐)(𝒓𝒓⊥ ,𝑧𝑧)∫ 𝑑𝑑𝜔𝜔𝑝𝑝 𝑑𝑑𝒒𝒒𝑝𝑝 𝐸𝐸𝑝𝑝�𝒒𝒒𝑝𝑝�s�𝜔𝜔𝑝𝑝�e−𝑖𝑖�𝜔𝜔𝑝𝑝−𝜔𝜔𝑠𝑠−𝜔𝜔𝑖𝑖�𝑡𝑡e𝑖𝑖�𝑘𝑘𝑝𝑝
𝑧𝑧−𝑘𝑘𝑧𝑧

𝑠𝑠−𝑘𝑘𝑖𝑖
𝑧𝑧�𝑧𝑧e𝑖𝑖�𝒒𝒒𝒑𝒑−𝒒𝒒𝒔𝒔−𝒒𝒒𝒊𝒊 �⋅𝒓𝒓⊥# 

So let‘s try to simplify this using a few reasonable assumptions. First, we assume that the nonlinear 
crystal is homogeneous in the transverse plane, and that its aperture is much larger than the transverse 
extension of the fields. With this we can extend the integration limits in x,y to and get:  

�  𝑑𝑑𝒓𝒓⊥e𝑖𝑖�𝒒𝒒𝒑𝒑−𝒒𝒒𝒔𝒔−𝒒𝒒𝒊𝒊�⋅𝒓𝒓⊥ → 𝛿𝛿�𝒒𝒒𝑝𝑝 − 𝒒𝒒𝑠𝑠 − 𝒒𝒒𝑖𝑖 � (294) 

Next, we extend the time integration to infinity:  

�  𝑑𝑑𝑑𝑑 e−𝑖𝑖�𝜔𝜔𝑝𝑝−𝜔𝜔𝑠𝑠 −𝜔𝜔𝑖𝑖 �𝑡𝑡 → 𝛿𝛿�𝜔𝜔𝑝𝑝 − 𝜔𝜔𝑠𝑠 − 𝜔𝜔𝑖𝑖 � (295) 

Finally, carrying out the integration over the crystal length L:  

� 𝑑𝑑𝑑𝑑 e𝑖𝑖�𝑘𝑘𝑝𝑝
𝑧𝑧−𝑘𝑘𝑧𝑧

𝑠𝑠−𝑘𝑘𝑖𝑖
𝑧𝑧 �𝑧𝑧 →   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝐿𝐿
2 Δ𝑘𝑘𝑧𝑧�

𝐿𝐿
2

−𝐿𝐿
2

(296) 

and plugging in all this in above, we get: 

Φ(𝜔𝜔𝑠𝑠 ,  𝒒𝒒𝑠𝑠  , 𝜔𝜔𝑖𝑖  ,  𝒒𝒒𝑖𝑖 ) = 𝜎𝜎𝜎𝜎 𝐸𝐸𝑝𝑝(𝒒𝒒𝑠𝑠 + 𝒒𝒒𝑖𝑖 )𝑠𝑠(𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑖𝑖 )𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝐿𝐿
2Δ𝑘𝑘𝑧𝑧� (297) 

This looks already a lot better. We now see that the modal distribution of the SPDC photons is governed 
by two main contributions: 

1. The pump envelope 𝐸𝐸𝑝𝑝(𝒒𝒒𝑠𝑠 + 𝒒𝒒𝑖𝑖) s(𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑖𝑖) that determines the total momentum and the to-
tal energy of the photon pairs 

2. The phase-matching term: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝐿𝐿
2

Δ𝑘𝑘𝑧𝑧� that determines how energy and momentum is dis-
tributed among different modes of the signal and idler photon.   
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Playing with these two parameters, we can engineer the modal distribution of the photon pair emis-
sion to our linking. Some generic features to note: 

• Due to energy and momentum conservation, the signal and idler photons are typically entan-
gled: Φ(ωs  ,  𝐪𝐪s  , ωi ,  𝐪𝐪i) ≠ ϕs(ωs ,  𝐪𝐪s)ϕi( ωi ,  𝐪𝐪i)  

• Energy and momentum of one photon may also be correlated : Φ(ωs ,  𝐪𝐪s  , ωi ,  𝐪𝐪i ) ≠
ϕω�ωs , ωi)ϕq(𝐪𝐪s,  𝐪𝐪i�. This means that at different momenta (different emission angles) we 
may have a different spectrum (think of the famous SPDC emission cone rainbow image34 ). 
Some people call this single-photon entanglement 35. 

• Polarization-entanglement involves two mode-functions, e.g.  ΦHsVi
(ωs ,  𝐪𝐪s  , ωi ,  𝐪𝐪i) and 

ΦVsHi
(ωs ,  𝐪𝐪s  , ωi ,  𝐪𝐪i). In order to get a high degree of polariation-entanglement, the polarization 

must be de-coupled from the mode function, i.e. the two mode functions must overlap.  

Mode functions for typical experimental scenarios are presented in the lecture notes.  

A 3.4 A note on the Connection to Joint-Probability-Densities and Cor-
relation Properties of Stochastic Ensembles  

Let’s leave the realm of Qubits behind for a second and consider a systems of biphotons, which are 
entangled in a continuous variable. In this case the entries of the vector 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, 𝛿𝛿, need to be general-
ized to a complex function, which depends on two parameters, i.e. the Joint Spectral Density 
𝐽𝐽𝐽𝐽𝐽𝐽(𝜔𝜔1 ,𝜔𝜔2). 

One prominent example is the frequency for photon-pairs generated in the SPDC-process, for which 
𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑖𝑖 ≈ 𝜔𝜔𝑝𝑝, where the approximate-sign is related to the bandwidth Δ𝜔𝜔𝑝𝑝 (i.e. the spectral width) 
of the pump-pulse. The specifics of the nonlinear environment, in which the conversion takes place 
will also dictate a certain signal frequency Ω𝑠𝑠, for which the process is phase matched and conversion 
is particularly efficient.  The same parameters will also dictate a bandwidth of frequencies ΔΩ𝑠𝑠, out of 
which the conversion efficiency drops to zero. The 𝐽𝐽𝐽𝐽𝐽𝐽 thus takes roughly the form as outlined in Fig. 
80. 

 
34 https://en.wikipedia.org/wiki/Spontaneous_parametric_down-conversion 
35In this case, the entanglement is between the different degrees of freedom of one particle. We cannot separate 
the degrees of freedom of a single photon spatially and distribute one to Alice and one to Bob, so this type of 
entanglement is of limited use in applications in e.g. Quantum Teleportation. However, there may well be other 
applications where it can be useful. Needless to say, the notion of single-photon entanglement has been subject 
of many heated debates.   
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Fig. 80: Schematic JSD for an SPDC process with (left) a narrowband pump and broad phase matching and (right) 
a broadband pump with less phase matching. 

 
Fig. 81: Possible consequences of the complex-valuedness of the JSD as opposed to a JDF, which leads to subtle 
difference in (classical) correlation and (quantum) entanglement. (left) Spectral probability densities of Photons 
received by Bob after Alice has measured the wavelength of her photon in the right case of the above figure. The 
spectral probability densities are equal for both cases. However, their spectral phases may be different. (right) 
Temporal probability densities of the spectra to the left. Spectral phase difference manifest in different temporal 
structures (here, time of arrival), meaning that both photons are in fact distinguishable and thus belong to a mixed 
state.  

Keep in mind, that the JSD describes the probability of observing a photon-pair at frequencies 𝜔𝜔𝑠𝑠 and 
𝜔𝜔𝑖𝑖. So, if the signal is send to Alice and the idler to Bob and Alice measures the frequency of her photon 
(e.g. by using a spectrometer) this will automatically define the spectrum of the pulse for Bob. While 
the left case in Fig. 81 does clearly show an entangled situation, there may be non-entanglement for 
the right case, as the spectral intensity (!) of Bob’s photon will not depend on Alice’s measurement. 
There is, however, a catch that we will get into in a second. 

This is, in fact, a situation that you may know from stochastics. In stochastics you may have two random 
variables, that are distributed in a correlated manner; e.g. you may randomly pick points on a map of 
the earth and record latitude 𝑥𝑥1 and temperature 𝑥𝑥2 . These two quantities should have a joint distri-
bution function 𝐽𝐽𝐽𝐽𝐽𝐽(𝑥𝑥1,𝑥𝑥2) and they should be correlated, as temperature clearly depends on lati-
tude. 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 
Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome. 
Version of 11.03.2022, Page 143 

In stochastics you can test for correlation by checking, if the JDF can be recomposed from its marginals 
𝑀𝑀𝑥𝑥𝑖𝑖 = ∫ 𝐽𝐽𝐽𝐽𝐽𝐽(𝑥𝑥, 𝑦𝑦) 𝑑𝑑𝑥𝑥𝑖𝑖 , such that 𝐽𝐽𝐽𝐽𝐽𝐽(𝑥𝑥1,𝑥𝑥2) = 𝑀𝑀𝑥𝑥1 (𝑥𝑥2)𝑀𝑀𝑥𝑥2 (𝑥𝑥1) . In general, this is the case if 
𝐽𝐽𝐽𝐽𝐽𝐽(𝑥𝑥1 ,𝑥𝑥2) is of more or less elliptical shape with the main axes parallel to the coordinate axes. 

On the ground of the conceptual similarity of correlation and entanglement one may be tempted to 
use this argument to dismiss the right-hand case of Fig. 80 as non-entangled (the shape is a circle after 
all). However, one must not forget that the state of a quantum system is not dictated by its probability 
intensities but by its amplitudes. The JSD is a complex quantity, thus although the measurement of 
Alice’s frequency 𝜔𝜔𝑠𝑠 may result in the same probability spectrum |𝜓𝜓(𝜔𝜔𝑖𝑖 )|2 for Bob, it may have a to-
tally different spectral phase arg(𝜓𝜓(𝜔𝜔𝑖𝑖 )). While this may not show up in a spectral measurement it 
will have a profound impact on the temporal structure of Bob’s photon (e.g. different linear phases 
would lead to different mean times of arrival) and would then constitute distinguishability and thus 
break disentanglement. 

Tracking back to the previous lectures, this is part of the reasoning behind Bell’s inequalities: entan-
glement is indeed more that correlation; more complex one might be tempted to say. It is therefore 
also no miracle that entanglement can be used to construct richer and more extreme relations be-
tween systems, than correlation alone would be sufficient to explain.  
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