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1 Algorithms and Complexity 
This part of the lecture is not yet concerned with quantum physics or quantum computation. Instead, 

it shall serve as an introduction to some of the minimum parts information science, which we shall 

require in order to help understand, why and in what areas quantum computers are actually useful.  

These aspects shall also serve as a reminder that there is  an intrinsic connection of the physical world 

and the computer world, which is all too easily forgotten with contemporary computer systems. After 

all, computer and thus algorithms must use physical effects to work their magic and as such they must 

represent information in physical entities. So let’s get started. 

At the centre of information science is the concept of an algorithm. Consider an algorithm to be the 

equivalent of a cooking recipe: 

Definition 1: An algorithm contains specific set of procedures to carry out with a set of 

specific resources to solve a specific problem / to COMPUTE the solution to a specific 

problem. 

In the case of a cooking recipe this would be to turn shoppable ingredients into a tasty meal or to 

impress your guests. Ideally both. Algorithms are ubiquitous in our civilization (with the aforemen-

tioned cooking being a – we believe – very down to earth example) and it is no wonder that there is a 

fair amount of them floating around in mathematics; some of which have been invented by the old 

greeks or even further back. Probably the first one you get to learn in school is the addition of two 

large numbers, which you learn to break down into digit-wise addition of number smaller than ten. 

Just in case you like to be reminded of the good of time in elementary school, when life was simple, as 

long as you could avoid the ubiquitous school yard bully, I have sketched the algorithm carried out for 

you. The result is, of course, 4242, because….can there be any other meaningful result? 

 
Figure 1: Addition of two large numbers. This is probably the first mathematical algorithm you learn in school, 

that deserves a closer look at. 

It is no wonder then, that algorithms in by itself became the subject of scientific research, which lead 

to a series of discoveries, which date back to the invention of the first computers. The reason is quite 

straightforward: with the invention of electronic computers the computation capabilities of mankind 

skyrocketed (and it still is), which immediately led to a very simple question: given a computation ma-

chine of sufficient size and speed, can we compute everything? More specifically: 

1. Is there a (class of) computational machine, which can run any kind of conceivable algorithm? 

2. And if so, can we do so in any kind of limited time, or is this hopeless to begin with? 

Spoiler alert: the answer to the first question is a resounding: yes, whereas the answer to the second 

question is a mildly disappointing: very frequently no. 
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1.1 Turing Machines and Universal Algorithmic Devices 
Let’s at first turn our attention to the first question. It certainly is helpful to formalize the description 

of an algorithm to, to help give the kind of clarity, which we need to analyse its features. Let’s go back 

to the summation example of above and try to formalize the produce of the addition of large numbers 

into a kind of pseudo-code: 

Algorithm to calculate A+B 

 

1. Write numbers A and B beneath each other onto a sheet of paper, with 

the digits aligned (e.g. the 100 under each other and the 101 under each 

other and so forth) 

2. Investigate the least significant digits and introduce an auxiliary 
variable C, which is set to zero. 

3. Add the two digits under investigation from numbers A and B and the 
auxiliary variable C. 

4. Write down the least significant digit of the sum under the digit under 

investigation. 

5. If the sum was ten or larger set the auxiliary variable C to value 1, 
else to zero. 

6. Move to the next most significant digit and repeat, starting from point 

3. 

7. If you have run out of digits, check your auxiliary. If it is zero, 
then terminate. If it is one, then write a 1 in front of the result 

and terminate. 

This is already quite formal but we aim to take this one step further and design a hypothetical machine 

out of this pseudo-code, because this lends itself much better for analysis than the pseud-code repre-

sentation, which is still too close to natural language, to fit into a convenient mathematical apparatus.  

The most well-known and well-investiagted of this type of machines is the so-called Turing Machine. 

Definition 2: A Turing-Machine is a set of four elements, namely: 

(1) A finite state control 𝑄 = {𝑞1,… , 𝑞𝑆}, defining all possible states 𝑞𝑠 of the TM 

and a current state 𝑞 ∈ 𝑄. 

The set of states 𝑄 has a minimum number of two members, namely  𝑞𝑠0
, the 

starting state and 𝑞ℎ, the halting state. The machine is initially in 𝑞𝑠0. If it 

reaches state 𝑞ℎ is has finished its calculation. 

(2) A semi-infinite tape 𝑆 = {𝑠1 ,… , 𝑠𝑃} , which consists of a numbered sequence 

of elements 𝑠𝑝 called tape squares, where the individual elements belong to a 

set of symbols of an alphabet 𝑠𝑝 ∈ 𝛤. 

The alphabet 𝛤 usually has a minimum number of four symbols, namely  0,1,𝑏, 

𝑠𝑡𝑎𝑟𝑡. The symbol 𝑠𝑡𝑎𝑟𝑡 is reserved to indicate the beginning of the tape, 𝑏 is 

for blank elements of the tape. 

(3) A read/write head, which is pointing at a specific position 𝑝 ′ of the tape. The 

write head can be used to read the symbol 𝑠𝑝′ off the tape and to overwrite its 

content with any one of the symbols in 𝛤. 

(4) A program table, consisting of a sequence of program lines of the form 

⟨𝑞, 𝑠, 𝑞 ′,𝑠′ ,𝑚⟩𝑙, where l is the number of the program line, with  𝑙 ∈ {1,… , 𝐿}. 

Here 𝑞, 𝑞 ′ ∈ 𝑄, 𝑠, 𝑠′ ∈ 𝛤, and 𝑚 ∈ ℤ The lines are unique in the sense that the 

exists no more than one line for each combination of ⟨𝑞, 𝑠, . , . , . ⟩ 
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The TM is initialized to be in the starting state 𝑞𝑠0
 and at tape position 𝑝 = 0. At every 

iteration the state 𝑞 and tape value 𝑠 is checked. If there exists no element within the 

program table with this specific combination ⟨𝑞, 𝑠, . , . , . ⟩ then the TM is set onto state 𝑞ℎ 

and the program is finished. If there exists a line then the state is change according to 

𝑞 → 𝑞′, the value of the tape is changed according to 𝑠 → 𝑠′ and the read/write head po-

sition 𝑝 is changes according to 𝑝 → 𝑝 + 𝑚. The process is repeated until the machine is 

halted. 

Of course, this is very abstract so let’s try and turn our addition algorithm into a TM. For the sake of 

simplicity, we shall, however, change the notation of number into binary and we shall fix the number 

of digits for both 𝐴 and 𝐵 to be eight. We shall also adopt only eight bits for the result and thus we will 

in reality calculate 𝐶 = (𝐴+ 𝐵) mod 256. Thus we have: 

• For the state control we have 𝑄 = {𝑞𝑠0
,𝑞ℎ,𝑅𝐴0 ,𝑅𝐴1 ,𝑅𝐵0 ,𝑅𝐵1, 𝑅𝐵2,𝑊0 ,𝑊1 ,𝑊2 ,𝑊3} 

• For the alphabet of the tape Γ = {0,1,𝑏, 𝑠𝑡𝑎𝑟𝑡} 

• The tape is initialized as follows:  ⟨𝑠, 𝐴0 ,…𝐴7 , 𝑏,𝐵0 , … 𝐵7 , 𝑏,…. ⟩, where 𝐴𝑖 and 𝐵𝑖  are the bi-

nary digits of 𝐴 and 𝐵 in big endian notation, respectively. 

• The program table is as follows: 

𝒒 𝒔 𝒒′ 𝒔′ 𝒎 
𝒒𝒔𝟎

 𝑠𝑡𝑎𝑟𝑡 𝑅𝐴0 𝑠𝑡𝑎𝑟𝑡 +1 

𝑹𝑨𝟎 0 𝑅𝐵0 0 +9 
𝑹𝑨𝟎 1 𝑅𝐵1 1 +9 
𝑹𝑨𝟎 𝑏 𝑞ℎ 𝑏 0 
𝑹𝑨𝟏 0 𝑅𝐵1 0 +9 
𝑹𝑨𝟏 1 𝑅𝐵2 1 +9 
𝑹𝑨𝟏 𝑏 𝑞ℎ 𝑏 0 
𝑹𝑩𝟎 0 𝑅𝑊0 0 +9 
𝑹𝑩𝟎 1 𝑅𝑊1 1 +9 
𝑹𝑩𝟏 0 𝑅𝑊1 0 +9 
𝑹𝑩𝟏 1 𝑅𝑊2 1 +9 
𝑹𝑩𝟐 0 𝑅𝑊2 0 +9 
𝑹𝑩𝟐 1 𝑅𝑊3 1 +9 
𝑹𝑾𝟎 𝑏 𝑅𝐴0 0 −17 
𝑹𝑾𝟏 𝑏 𝑅𝐴0 1 −17 
𝑹𝑾𝟐 𝑏 𝑅𝐴1 0 −17 
𝑹𝑾𝟑 𝑏 𝑅𝐴1 1 −17 

A typical layout of the band after the machine has run may look like this: 

start 0 1 0 1 0 1 0 1 b 1 1 1 1 0 0 0 0 b 1 0 0 1 1 1 0 1 b 

Please feel free to do the back conversion into decimal numbers yourself or believe me, that the algo-

rithm has just calculated 170+ 15 = 185 for you. Also note that we have just marked the blanks 𝑏 in 

boldface to make the result a bit easier to read. The first two part of the band still contain the numbers 

𝐴 and 𝐵 in their initial form and the result is in the third block of the band.  

A few things to note here are : 

• we are using the state of the TM 𝑞 to store intermediate results; this is quite cumbersome but 

does the job 

• an alternative approach is to use the tape itself to store intermediate results 

• the TM notation is quite cumbersome and it was never intended as a programming language 
but as a tool to ponder on algorithms and programming schemes 
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Now that we have understood how TMs work, we shall discuss their impact onto science in general. 

Cumbersome as they are, TMs are surprisingly versatile. You can compute literally anything with them. 

This is not just true for any mathematical operation, this is also true for text-based operations, data-

base searches, and so on. 

 
Figure 2: Sketch of a Turing Machine 

This is not just true for the type of problems to be solved but also in regards to possible generalizations: 

for example: for the sake of simplicity, we had allowed the read/write head to propagate many steps 

to the left and right simultaneously. In fact, this is not required, and you can make the TM work with 

just ±1 steps allowed, again using states of the machine to keep track of the number of movements 

to the left and right. In fact, you can think of a whole lot of generalizations of TMs (two-ended bands, 

multiple bands, multiple writing heads, and so on), which all can be simulated on a plain-vanilla TM. 

This already hints at the generality of the TM-concept. We shall elaborate on this by inventing a special 

type of Turning Machine with a fixed program and a fixed state control 𝑄. The machine is set up in 

such a way as to retrieve all the required information to construct an arbitrary Turning machine from 

the band it is supplied with. Such a machine is called a Universal Turing Machine (UTM), and it can 

therefore be used to simulate any conceivable TM. 

TMs are thus incredibly general in their ability to compute algorithmic problems, so general in fact, 

that there is not a single known algorithm, which cannot be implemented on a TM. This was inde-

pendently suggested by Turing and Church and leads to the axiomatic Church-Turing thesis: 

Theorem 1 (Church-Turing-Hypothesis): The class of functions computable by Turing Ma-

chines corresponds exactly to the class of functions, which we would naturally regard as 

being computable by an algorithm. 

This leads to three important conclusions: (1) The answer to question 1 from above is now a qualified 

yes. There is a class of machines that can calculate everything, which we can turn into an algorithm, 

namely the Turning machine. (2)  Because a TM can solve any algorithmic problem it can also simulate 

any possible algorithmic machine of any type. (3) Any type of machine that can implement a Turning 

machine can calculate the result to any possible algorithm. Such machines are called Turing-complete 
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and any modern computer that we operate nowadays is an almost (!) perfect example for such a ma-

chine. Therefore, using a computer, we can, in principle, calculate the result to any type of computa-

tion problems, whose solution can be attained algorithmically. 

“In principle” here is, however, an important caveat. Real computers have finite memory and, of 

course, there is a finite amount of time that we have to calculate any solution to a problem, or else we 

may end up like the investors of the great thinking machine in the “Hitchhiker’s Guide to the Galaxy”, 

long extinct, before the program has finished. 

This leads back to the second question from above, which we shall discuss in detail in the following 

section. To do so, we shall, however, clarify this question by breaking it up into three subquestions: 

2a. Can we solve any type of algorithmic problem in finite time? 

2b. Can we solve any type of algorithmic problems in efficiently? E.g. can we solve any algo-

rithmic problem in such a way that the resources (time, memory) do not grow faster than 

polynomial for any given increase in the problems parametric complexity? 

2c. Are TMs an efficient model for computation? I.e. can TMs simulate any conceivable algo-

rithmical machine efficiently? I.e. are TMs the per-se most efficient type of computational 

machine? 

The answer to question (2a) is a resounding NO. This was already found in the early days of information 

science, when it became clear that there are classes problems that cannot be solved in finite time by 

a TM or any other computation device. The first and most prominent example is Hilberts “Entschei-

dungsproblem”. We have added to the number of such problems in the meantime. Thus, we know that 

there are problems which are intrinsically hard to solve in and by themselves. About everything we 

know surprisingly little and what we know is surprisingly circumstantial and unsystematic. 

1.2 Computational Complexity and Scaling Behavior 
Question 2b is probably the one with the most unsatisfactory answer: we just don’t know. But before 

we go into any level of detail here, let’s just reconsider, how such a question may be answered at all, 

e.g. what does an efficient solution actually mean? Suppose for any given class of problem there is a 

order-parameter 𝑁, which describes the size of the problem. For the summation algorithm from above 

this could, e.g. be the size of the numbers to be added. The concept of computation complexity then 

describes the asymptotic scaling behaviour of the computational resources (time, memory space, en-

ergy) to be required for a solution, as the order parameter scales to large 𝑁 → ∞. 

For the summation algorithm from above it should be clear that we have the scaling behaviour 

𝒪(log(𝑁)); e.g. if the numbers to be added grow by a factor of 10 we just have to carry out one more 

addition step. This seems like a pretty efficient algorithm; particularly if you compare it  with the more 

straightforward approach of addition by counting (e.g. adding with your fingers). This approach would 

scale according to 𝒪(𝑁) and therefore much less efficiently. 𝒪(𝑁) being worse than 𝒪(log(𝑁)) is of 

course only strictly true for large numbers and this might be the reason that first graders, who only 

operate on fairly small numbers, might be tempted to hone their skills in the addition by counting 

algorithm, instead of learning digit-wise addition (you see, I have a small kid in school). 

The digit-wise addition with its 𝒪(log(𝑁)) scaling then the most efficient algorithm there is? Is not 

turns out, probably yes. But already for the textbook-style multiplication of integers the questions be-

comes much more complicated. Be 𝑛 = log (𝑁) the approximate number of digits of the two numbers 

to be multiplied. Then the textbook multiplication scales according to 𝒪(𝑛2). From a deeper analysis 

of the problem, however, we know from first principles (top-down) that the problem in and by itself 
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must be solvable in 𝒪(𝑛 log𝑛) steps. Indeed in 2019 such an algorithm was demonstrated by Harvey 

and Hoeven, but its validity proof rely on at least one unproven (but likely) conjecture, so….make of 

this what you like. At any rate for the purpose of this course we shall assume the bottom-up (algorith-

mic) scaling for integer multiplication has met with the top-down scaling, which is a nice result. 

 
Figure 3: Illustration of the scaling of different types of 𝒪. Everything above the green line is pretty bad. For every-

thing above the brown line, even Moore’s law is no consolation. Stolen from the QISKIT book. 

Integer multiplication is a seemingly simple problem and the discussion already points at a fundamen-

tal problem. For any given problem we do probably have a set of algorithms with a specific scaling  

(bottom-up). However, the cases, where we know from first principles (top down), what the best pos-

sible scaling is, are rare. So, the question for many computation problems remains: is there a much 

better algorithm out there? This question is aggravated by the fact that we in fact know many algo-

rithms with appallingly bad scaling, such as 𝒪(exp𝑛) or 𝒪(n!) = 𝒪(𝑛𝑛). Many of such problems are 

related to field of information science of high impact, such as graph problems (frequently encountered 

in database and optimization problems) or the simulation of many particle systems in quantum phys-

ics. 

Of course, the search for a best possible scaling for computational problems is a big thing, because it 

promises algorithmic speedup beyond the power of the scaling of hardware. Therefore, scientists have 

not been idle, and they have come up with a zoo of interesting results in this direction. We shall first 

discuss some results from the top-down perspective and then switch to the bottom-up perspective in 

the next section.  

The most successful approach in top-down analysis of problems is the grouping of problems into com-

plexity classes. A problem 𝑃′ is said to be in the same complexity class as another problem 𝑃, if 𝑃′can 

be reduced onto the problem 𝑃 with no more than polynomial complexity. Complexity classes accord-

ing to this definition are rather large things and a lot of conjectures about their mutual relations are 

known, which are usually formulated in the concept of mathematical languages. We are not going into 

details, but we will just discuss the two three relevant classes here: 
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- 𝑷: Is the class of problems, which can be solved deterministically in polynomial time.  

- 𝑵𝑷: is the class of problems, for which solutions can be verified deterministically in polynomial 

time but there is not necessarily a possibility to find solutions in polynomial time.  

- 𝑵𝑷-hard: is a subclass of problems in 𝑵𝑷, onto which all 𝑵𝑷-problems can be reduced 

As a remark: please ignore the word “deterministically” here. We shall get back to it at the beginning 

of the next chapter.  

 
Figure 4: A few complexity classes and what Wikipedia knows about their mutual relations. 

Of course, it is trivial to see: 𝑷 ⊆ 𝑵𝑷. The question however remains is 𝑷 = 𝑵𝑷 or 𝑷 ⊂ 𝑵𝑷? This 

question is usually approached by introducing a sub-classification into the 𝑵𝑷 class, namely the 𝑵𝑷-

hard, class. 𝑵𝑷-hard problems is a set of problems onto which every 𝑵𝑷 problem can be reduced. The 

most famous of which is the so-called “boolean satisfiability problem”. The 𝑷 = 𝑵𝑷 question can then 

be reduced to the following two problems: (bottom-up) Can we find any single 𝑵𝑷-hard problem, 

which is solvable in polynomial time? If so, then 𝑷 = 𝑵𝑷. (top-down) if we can, however, show that 

such a such an algorithm cannot exist, then 𝑷 ⊂ 𝑵𝑷. The latter problem can be considered as the holy 

grail of information science and there is – to this date – no solution. There is – however – also no 

bottom-up solution, e.g. no algorithm, which can be run on a TM-complete computer and which can 

solve 𝑵𝑷-hard problems. After 80 years, or so, of computer science with Turing-complete system since 

may serve as a strong hint, that either of the following explanations is true: 

- Explanation 1: there is no such solution and indeed 𝑷 ⊂ 𝑵𝑷, i.e. there are problems, which 

will forever remain hard to solve but easy to verify. 

- Explanation 2:  the TM-model although universal may not be universally efficient. 

We have now set the stage for the quantum computer. 
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1.3 The Strong Church-Turing Hypothesis and Path to Quantum Com-
puters 

There are two reasons to suspect that Explanation 2,might be worthwhile to investigate. The first rea-

son is related to the word “deterministically”, which we had asked you to ignore in the last chapter. In 

fact, people have discovered quite early, that many 𝑵𝑷-problems can be solved efficiently on a prob-

abilistic TM (i.e. a TM with an added random number generator), if we allow for a margin of error in 

our solution (e.g. we may get a wrong solution with an arbitrary probability 𝜀 ≪ 1). One example is 

the travelling salesman-problem: here a deterministic solution has a scaling of 𝒪(𝑛!) but we can (with 

certainty) get to within a factor of 1.5 to the best solution within 𝒪(poly(𝑛)) using e.g. the so-called 

algorithm of Christofides. 

In other words: we know that probabilistic Turning Machines are much more efficient at problem solv-

ing than ordinary TMs and thus people have come up with the Strong Church Turing Thesis as a conse-

quence: 

Theorem 2 (Strong Church-Turing-Thesis): Any model of computation can be simulated 

on a probabilistic Turing Machine with at most polynomial increase (i.e. efficiently) in the 

number of elementary operation required. 

And that’s it. At least from the point of view of the first half of the 20th century. Because, what else 

would you add to a Turing Machine?  What else is there to add? Of course, this cannot be true, because 

otherwise we would not make such a hype of Quantum Computer you would not be reading this script, 

right? 

The first serious cracks in the strong CTT are typically attributed to our most favourite Richard Feynman 

and a few of his lectures in and around 1982. There he elaborated on the notion, that: 

Can physics be simulated by a universal computer? [...] the physical world is quantum 

mechanical, and therefore the proper problem is the simulation of quantum physics [...] 

the full description of quantum mechanics for a large system with R particles [...] has too 

many variables, it cannot be simulated with a normal computer with a number of ele-

ments proportional to R [ ... but it can be simulated with ] quantum computer elements. 

[...] Can a quantum system be probabilistically simulated by a classical (probabilistic, I’d 

assume) universal computer? [...] If you take the computer to be the classical kind I’ve 

described so far [..] the answer is certainly, No! 

Richard Feynman (1980) 

What is he actually referring to? As it turns out many-particle quantum systems are intrinsically hard 

to simulate, because each particle (e.g. electron, proton, etc…) lives in it “own” version of (three-di-

mensional) space; all of which interact. If you have 𝑅 particles and discretise space into 𝑛 points it 

turns out that each simulation step will require at least 𝒪(𝑛𝑅) data points. Thus quantum many-parti-

cle systems are incredibly hard to handle in a classical computer.  

Although Feynman is certainly very famous, his ideas (worries?) had been independently formulated 

by a few others before: 

Perhaps [...] we need a mathematical theory of quantum automata. [...] the quantum 

state space has far greater capacity than the classical one: for a classical system with 𝑁 

states, its quantum version allowing superposition accommodates 𝑐𝑁 states. When we 

join two classical systems, their number of states 𝑁1 and 𝑁2 are multiplied, and in the 
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quantum case we get the exponential growth 𝑐𝑁1𝑁2 . [...] These crude estimates show 

that the quantum behavior of the system might be much more complex than its classical 

simulation. 

Yu Manin (1980) 

and even earlier: 

The quantum-mechanical computation of one molecule of methane requires 1042 grid 

points. Assuming that at each point we have to perform only 10 elementary operations, 

[…] we would still have to use all the energy produced on Earth during the last century 

[for its simulation]. 

R. P. Poplavskii (1975) 

So, what do we make of this? We could certainly just give up and say: quantum systems will forever 

remain unsimulatable but we could also choose a more pragmatic approach. We could, as we say in 

German “Den Bock zum Gärtner machen”. What I am trying to say is: if nature has bequeathed us with 

a class of physical systems, whose behaviour we understand but which we cannot predict in detail, 

because the systems complexity in intractably large, then, why should we not attempt to use these 

systems to make predictions for us? Why should we not try to build a computer, which operates on a 

quantum many particle system, to solve quantum mechanical problems, which we cannot solve on 

classical computers? If that is possible, what other algorithmic problems can such a computer solve 

efficiently, that we cannot solve on a Turing machine efficiently? Are there any such problems at all? 

And how can we find them? 

 
Figure 5: A case for Quantum Computers. Even a modest improvement from 𝒪(𝑛) to 𝒪(√𝑛), as experienced for 
quantum search algorithms will outperform a classical computer if the search space is sufficiently big, even if the 

quantum computer is much , muuuuuch slower. Stolen from the QISKIT book. 

We shall of course see in the following chapter, that all of these questions can be answered positively 

with some level of confidence. This also means, that the Strong CTT is definitely wrong. Moreover, it 

points to the fact that Theses such as the Strong CTT should not be written down in ignorance of the 

limitations of the physical systems, on which our models of computation are based. Or in other words: 

if any new physical theory, more fundamental than Quantum Physics is discovered, go looking for the 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 12 

underlying problems, which are hard to simulate and see if you can make a new and powerful class of 

computers from it. 

1.4 Definition of a Quantum Computer 
Since every computational system is ultimately described by quantum physics, we also need to define, 

what we mean, when we say a “quantum computer”. What separates a quantum computer from a 

classical computer, is defined at the operational resource level:  

Definition 3: A quantum computer is a computational device, which uses quantum infor-

mation (frequently but not necessarily in the form of a set of Qubits) to perform algorith-

mic tasks, using quantum processes which are not accessible to classical systems.  

While state-of-the-art classical computers may well leverage quantum technology at the level of hard-

ware (lasers, semiconductor technology, photodetection), they do not take advantage of quantum 

principles at the level of information or processing itself. Not yet.  

Now that we have convinced you that quantum computers are a hot topic, because they operate on 

new physical principles, let’s delve into quantum physics and see what these principles are.  

2 Fundamentals of Quantum Physics 
Before we can understand quantum computers, we must first understand (some basics) of quantum 

physics. What is quantum physics? To put it simply: quantum physics is a theoretical framework, which 

describes the behaviour of everything in the world, expect for gravity. More specifically, quantum the-

ory provides a set of tools for calculating probabilities for outcomes of measurements1 applied to a 

certain state of the quantum system to be measured. A measurement corresponds to anything we may 

observe in a laboratory using a suitable measurement apparatus. Mathematically such an apparatus is 

represented by a so-called observable. The toolset for its description comes in the form of postulates, 

which are discussed below. 

2.1 A Somewhat Physical Introduction to Quantum Physics 
This definition is a broad as it is useless, so for the sake of simplicity, we discuss some of the key ingre-

dients. A central role in quantum physics is described by the notion of modes. If you are coming from 

a classical field theory (e.g. electrodynamics), these modes carry over to the quantum world without 

any change in the way they are calculated (e.g. there is either an eigenmode equation or a Hamiltonian 

from which they are derived). The difference is that the modes do not have a scalar excitation strength 

(e.g. modal amplitude), instead they are populated by a series of discrete states, starting from the 

vacuum |vac⟩. These states are what is typically considered a quantum; they get their specific name 

from the type of field they describe, usually ending with an “-on”, such as photon for the electric field  

(also: electron, proton, phonon, etc…). 

Mathematically the population of a mode 𝑗  with quanta is done by the repeated operation of a crea-

tion operator 𝑎̂†
𝑗 on the vacuum. For example, 𝑎̂†

𝑗 |vac⟩ is a field which has one and only one quan-

tum in the 𝑗 mode. Here 𝑗 is a quantum number uniquely denoting a specific mode, e.g. a 𝒌-vector and 

a polarization such as 𝐻 or 𝑉. The depopulation is similarly done by the annihilation operator 𝑎̂𝑗, which 

is the Hermitian conjugate of the creation operator. Both operators are related to a complex superpo-

sition of the canonical fields and canonical momenta (e.g. a complex superposition of the electric and 

 
1 And nothing more. If you find that non-satisfactory, then deal with it. We shall later see that this is not a problem 
of the theory but the very essence of nature itself, as can be tested in e.g. a Bell-Test. 
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magnetic fields or the superposition of wave packet location and momentum). Depending on the kind 

of field, which is described these operators have different commutators. For boson fields we have: 

[𝑎̂𝑖 , 𝑎̂𝑗] = [𝑎̂†
𝑖 , 𝑎̂

†
𝑗]= 0[𝑎̂𝑖 , 𝑎̂

†
𝑗] = 𝑎̂𝑖 𝑎̂

†
𝑗 − 𝑎̂†

𝑗 𝑎̂𝑖 = 𝛿𝑖𝑗 (1) 

Whereas for fermion fields we have: 

{𝑎̂𝑖 , 𝑎̂𝑗} = {𝑎̂†
𝑖 , 𝑎̂

†
𝑗} = 0{𝑎̂𝑖 , 𝑎̂

†
𝑗} = 𝑎̂𝑖 𝑎̂

†
𝑗 + 𝑎̂†

𝑗 𝑎̂𝑖 = 𝛿𝑖𝑗 (2) 

For both types of fields we can construct a modal number operator 

𝑁𝑗̂ = 𝑎̂†
𝑗𝑎̂𝑗 (3) 

which corresponds to an actual observable and which tells us exactly, how many quanta there are in a 

specific mode. We shall later see, what this actually means and how such a measurement can be con-

structed. The difference in the commutation relations for the two observables has the consequence 

that for bosonic fields any mode can have excitations with any positive integer number of bosons in 

them (e.g. the creation operators define an infinite ladder), whereas a fermionic mode can only have 

zero or one fermions in them. Keep in mind this actually means: it can have superposition of such 

quantum number states. 

Each boson or fermion number state behaves very much like a classical mode, in the sense that its 

excitation is now described by a complex number, which is likewise called “amplitude”. The difference 

in classical field theories and quantum theory thus boils down to the fact that each field mode now 

consists of a series of quantum modes, which can each be excited by a complex numbered amplitude 

and superpositions thereof. 

Any quantum system is in a superposition of these fundamental modal number states. 

2.2 The Postulates of Quantum Theory 
We shall now turn to the postulates of Quantum Physics, which describe how quanta evolve and how 

they are related to measurements. Why postulates? Well, it turns out that the rules of quantum physics 

cannot be derived from a more underlying theory (this may change, if, one day, quantum gravitation 

is developed). These rules have been derived from the results of many experiments and as such are 

laws of nature. In other words: the rules have been written down in a way as to be the simplest set of 

rules, which describe experiments. If this seems a little unsatisfactory to you, the opposite is true. It 

turns out they can be and have been used to describe gazillions of experimental observations with 

mind-numbing precision.  

We will assume some level of familiarity with linear algebra and probability theory extensively through-

out. The reader is encouraged to consult the standard quantum theory textbooks for a review if 

deemed necessary. 

2.2.1 Quantum States and Superposition 

Postulate 1: Associated to any isolated physical system is a complex vector space ℋ with 
inner product  ⟨𝜙|𝜓⟩ =  ⟨𝜓|𝜙⟩∗ ∈  ℂ  (that is, a Hilbert space) known as the state space 

of the system. The system is completely described by its state vector  |𝜓⟩, which is a unit 

vector in the system’s state space, e.g.  ⟨𝜓|𝜓⟩ = |𝜓|2 = 1. 

The state vector  |𝜓⟩ represents a state of complete knowledge about the preparation of the physical 

system, i.e., everything that we need to know, and everything that is principle knowable. Implicit  in 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 14 

the structure of the linear vector space structure is the following statement: If |𝜓1  ⟩ and  |𝜓2⟩ are pos-

sible quantum states, then so is any superposition sate: 

|𝜓 ⟩ =   𝛼1|𝜓1  ⟩+ 𝛼2|𝜓2⟩ (4) 

with complex amplitudes  𝛼1 and 𝛼2 . While this may look trivial, it is arguably among the most pro-

found concept in quantum theory: the superposition principle is not only the culprit responsible for 

much quantum weirdness, such as the Heisenberg uncertainty principle, it is also the key feature in 

many quantum-enhancements such as exponential speedups in computing and secure communica-

tion. 

Experimentally accessible quantities, such as expectation values and probabilities are described by 

numbers and not the state vectors themselves. Or to put it more bluntly: you cannot measure the state 

|𝜓⟩ by any conceivable means (no matter how much money or brains you throw at the problem). To 

arrive at these, we need a mapping from vectors to numbers, i.e. an inner product. Denoting the dual 

vector to |𝜓 ⟩ by the Dirac “bra”: 

⟨𝜓| = |𝜓⟩†  = 𝛼1
∗⟨𝜓1| + 𝛼2

∗⟨𝜓2| (5) 

The inner product can be written conveniently as a „bra-ket“:  

⟨𝜙|𝜓⟩ =  ⟨𝜓|𝜙⟩∗ (6) 

In particular, the norm of any vector is a real number ⟨𝜓|𝜓⟩ > 0 that of a permissible state is 1. 

Just exactly what the state space of a quantum system is, is subject to quantum physics and must be 

treated in underlying theories. The awesome power of quantum physics is related to the fact that there 

is a huge set of physical systems, which behave this way, irrespective of their physical origin. 

Qubits 
The simplest Hilbert-Space is a two-dimensional one. From the laws of linear Algebra we know, that 

within such a Hilbert space we may chose an orthonormal basis set, which we shall simply denote as  

|0⟩, |1⟩ (7) 

Thus, any state within this 2d Hilbert-Space can be written as a superposition according to: 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (8) 

With |𝛼|2 + |𝛽2| = 1. Such a system is called a Quantum Bit or in Short a QuBit. The notion comes 

from the idea, that a QuBit, just like an ordinary bit, can take the form of two-well defined states |0⟩ 

and |1⟩ but, as opposed to an ordinary QuBit, it can also take any superposition of such as state. 

Definition 4: A system, which can be described by a two-dimensional Hilbert-space is 

called QuBit. Any possible state within that system is a valid state of the QuBit. Physical 

implementations for QuBits are manyfold but details are irrelevant for the concept. 

2.2.2 Evolution 

Postulate 2: The evolution of a closed quantum system is described by a unitary transfor-

mation 𝑈. That is, the state |𝜓⟩ of the system at time 𝑡1 is related to the state |𝜓 ′⟩ of the 

system at time 𝑡2  by a unitary operator 𝑈 (e.g.𝑈† = 𝑈−1) which depends only on the 

times 𝑡1 and 𝑡2, such that 

|𝜓 ′⟩ = 𝑈|𝜓⟩ (9) 
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While this has the status of a postulate, we may also discuss, why this is a plausible postulate. Unitary 

operators do not change the norm of a vector upon which it is applied, which can easily be seen by 

calculating the norm of 𝑈|𝜓⟩: 

⟨𝜓 ′|𝜓 ′⟩ = ⟨𝜓|𝑈†𝑈|𝜓⟩ = ⟨𝜓|𝜓⟩ (10) 

Just like the quantum states, we can’t make any statement here, as to the specifics of the unitary 

evolution operator, which define the evolution of a real-world system. This is again subject to quantum 

physics and depends on the system in question. For many systems, however, there are external fields, 

which can be used to imprint evolution operators with specific properties. Such external fields may be 

laser beams, RF-pulses, Lorenz-forces, or anything else. These operators can often be thought of as 

acting in a time-discrete manner, i.e. they are active until a certain evolution of the state if achieved 

and then they are switched off. These operators will play a crucial role in quantum computers and 

there take the notion of a quantum gate, e.g. a discrete step in a computation algorithm that is used 

to manipulate the state of a quantum system. 

A special role, however, is played by the free evolution operator, which, of course, acts in a time con-

tinuous manner: 

Postulate 2’: The time evolution of the state of a closed quantum system is described by 

the Schrödinger equation: 

𝑖ℏ
𝑑|𝜓⟩

𝑑𝑡
= 𝐻̂ |𝜓⟩ (11) 

In this equation, ℏ is a physical constant known as Planck’s constant whose value must 

be experimentally determined. The exact value is not important to us. In practice, it is 

common to absorb the factor ℏ  into 𝐻̂, effectively setting ℏ. 𝐻̂ is a fixed Hermitian oper-

ator known as the Hamiltonian of the closed system. 

The details of the Hamiltonian are again subject to quantum physics and – depending on the system in 

question – the finding of a Hamiltonian and the study of its effects on the free evolution of some sys-

tems are long-standing and ongoing research topics. However, with 𝐻̂ being Hermitian, we know that 

we can decompose it into a set of eigenfunction-eigenvalue pairs 

𝐻̂ = ∑ 𝐸𝑗|𝐸𝑗⟩⟨𝐸𝑗|

𝑗

. (12) 

With |𝐸𝑗⟩ being the systems energy eigenstates and 𝐸𝑗 its energy. The state with the lowest 𝐸𝑗 is called 

the system’s ground state and plays an important role in many physical systems.  

If the Hamiltonian acts over a certain time span, then the evolution of the quantum state, e.g. the 

solution to the Schrödinger Equation will be: 

|𝜓 ′⟩= 𝑈|𝜓⟩ = exp{−
𝑖𝐻̂(𝑡2 − 𝑡1)

ℏ
} |𝜓⟩. (13) 

You have to keep in mind that the exponential function is an operator-exponential, which in the most 

cases has to be treated in the infinite sum representation. Note that the relation between the Hermit-

ian 𝐻̂ and the evolution operator 𝑈 is generic and you can use the relation to convert any Hermitian 

operator into a unitary operator (and vice versa).  This Hermitian for any specific Unitary operator is 

then frequently called the gate’s generator and can sometimes be very helpful to gain insight into the 

physical system. 
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2.2.3 Observables  
In accordance with our every-day lab experience, we can think of the measurement of a quantity 𝐴 

(called observable) as numbers on a read-out device. Thus, we should require measurement outcomes 

to be real-valued numbers 𝑎𝑖 ∈ 𝑅  (and not, e.g., complex numbers). Moreover, we note that any 

known measurement apparatus gives a specific result, which is necessarily inconsistent with the notion 

of superposition. After a measurement, the system’s observable is of course known and therefore, 

irrespective of the prior state, the system after the measurement must be in a subspace of the Hilbert 

space, that belongs to those quantum states, which would lead to the specific measurement results. 

This also ensures that two repeated measurements of the same quantity give consistent results. More-

over, a measurement should not change the nature of the system, e.g., it must not force the system 

out of its Hilbert-space. Taking all this into account we arrive at the next postulate: 

Postulate 3 (Born’s Rule): An observable/measurable 𝐴 is physical quantity which is de-

scribed using a Hermitian operator 𝐴̂. It can be decomposed into a series of eigenvalue-

projector-pairs 𝐴̂ = ∑ 𝑎𝑖 𝑃̂𝑖𝑖 , where 𝑎𝑖 are the possible measurement results for the spe-

cific eigenstates of the observable and 𝑃̂𝑖 are the projectors onto the subspace of the Hil-

bert-Space, which belong to a measurement value 𝑎𝑖. The measurement process is prob-

abilistic process, which is conducted according to the following rules: 

1. The measurement will yield result 𝑎𝑖 with a probability 

p(A = ai) = pi = ⟨ψ|𝑃̂𝑖 | ψ⟩ (14) 

2. Given that the result 𝑎𝑖 occurred, the wavefunction of the system collapsed onto 

the subspace consistent with that result, i.e. |𝜓⟩ is replaced by: 

|𝜓⟩ →
𝑃̂𝑖 |𝜓⟩

√𝑝𝑖

(15) 

The replacement is totally random, a-priori unpredictable, instantaneous and leaves no trace of the 

original system. 

Projection operators 
If the measurement operator is composed of entirely non-degenerate eigenvalues then the projectors 

are all one-dimensional projectors onto an orthonormal basis set, e.g. P̂i = |𝑖⟩⟨𝑖|. If this is not the case 

then an arbitrary orthogonal basis can be constructed with each projector subspace and the projector 

operators may be written according to: P̂i = ∑ |𝑖𝑘⟩⟨𝑖𝑘|𝐷
𝑘=1 , where 𝐷 is the number of dimensions of 

the degenerate subspace. 

All projection operators, irrespective, if they are single-dimensional or multi-dimensional projectors 

fulfil the following relations: 

𝑃𝑖̂
2
= 𝑃𝑖 ̂

𝑃𝑖̂𝑃𝑗̂ = 𝛿𝑖𝑗𝑃𝑖̂

(16) 

We can think of a projection operator as an elementary observable that essentially “asks” the quantum 

system the question: “are you in my subspace or not''? The operators’ eigenvalues (1 and 0) can be 

interpreted as the response (yes=1/no=0) to such a query: 

𝑃𝑖̂ |𝑗⟩ = 𝛿𝑖𝑗|𝑗⟩ (17) 
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After application of the “are you in my subspace or not'' operator the systems state is either exclusively 

in the operators subspace (if the answer was “yes”) or completely out of the subspace (if the answer 

was “no”). 

For the case of non-degenerate projectors, we may use this knowledge to phrase Born’s rule slightly 

differently. The probability 𝑝𝑖 of measuring a particular value 𝑎𝑖 when we perform a projective meas-

urement on a state prepared in a state |𝜓⟩ is the expected value of the corresponding projection op-

erator or in other words its overlap with the projection subspace: 

𝑝(𝐴 = 𝑎𝑖)= 𝑝𝑖 = ⟨ψ|𝑃̂𝑖 | ψ⟩ = ⟨𝜓|𝑖⟩⟨𝑖|𝜓⟩ = |⟨𝜓|𝑖⟩|2 (18) 

Whenever a measurement is made our knowledge about the state of the system also changes accord-

ing to the outcome of the measurement. From the numerous potential outcomes, only one occurs in 

the measurement.  Correspondingly the normalized post-measurement state becomes:   

  |𝜓〉 →
𝑃𝑖̂ |𝜓⟩

√𝑝𝑖

=
|𝑖⟩⟨𝑖|𝜓⟩

√𝑝𝑖

= |𝑖⟩ (19) 

The mere process of measurement will thus project the quantum state |𝜓⟩ onto the eigenstate of the 

observable |𝑖⟩, which corresponds to the measurement result 𝑎𝑖. 

Expected Values and Variance of Measurables 
If you have multiple, identical quantum systems at hand, you may attempt to repeat the measurement 

and construct statistics from them. The two most important statistical properties of a measurement 

are its expectation value 𝐸(𝐴̂) = ⟨𝐴̂⟩ and its standard deviation Δ(𝐴̂). They are calculated according 
to: 

 𝐸(𝐴̂)
𝜓

= ⟨𝐴̂⟩
𝜓

= ∑ 𝑝𝑖𝑎𝑖

𝑖

= ∑ 𝑎𝑖⟨ψ|𝑃̂𝑖| ψ⟩

𝑖

= ⟨𝜓| ∑ 𝑎𝑖 𝑃̂𝑖𝑖 |𝜓⟩

= ⟨𝜓|𝐴̂|𝜓⟩

(Δ(𝐴̂)
𝜓
)

2

= ⟨(𝐴̂− ⟨𝐴̂⟩
𝜓
)

2

⟩
𝜓

= ⟨𝐴̂2⟩
𝜓

− 2⟨𝐴̂⟩
𝜓

2
+ ⟨𝐴̂⟩

𝜓

2

= ⟨𝐴̂2⟩
𝜓

− ⟨𝐴̂⟩
𝜓

2

(20) 

Complementarity of Observables 
The collapse of a wavefunction leaves quite a bit of room for interpretation and discussion. One of the 

most immediate consequences is, the outcome of two different measurements  𝐴̂ , 𝐵̂ may depend on 

their respective ordering. This is clear because 𝐵̂, the second measurement, may be sensitive to the 

part of the wavefunction that gets collapsed by the application of 𝐴̂. This is, however, not necessarily 

the case because it may also be, that 𝐵̂, still gives meaningful results, if it operates only within the 

degenerate subspaces that 𝐴̂ projects onto. Everything in between is possible, as well.  

If the two measurables depend on each other, they are called complementary; if they don’t depend 

on each other they are called compatible/commutating. In quantum formalism, the complementarity 

of observables is measured by the respective difference of their reverse-ordered application of the 

wavefunction, e.g. 𝐴̂ and 𝐵̂ are compatible/commutating, if 

𝐴̂𝐵̂|𝜓⟩ = 𝐵̂𝐴̂|𝜓⟩ (21) 

Since this relation must hold, irrespective of the selected wavefunction |𝜓⟩, we can write down a sim-

ple metric for the complementarity of the two operators in terms of the commutation relation: 
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[𝐴̂, 𝐵̂] = 𝐴̂𝐵̂ − 𝐵̂𝐴̂ (22) 

For any pair of non-commuting observables [𝐴̂, 𝐵̂] ≠ 0, we can define an uncertainty relation for the 

expectation values of measurements:   

Δ(Â) ⋅ Δ(𝐵̂) ≥
1

2
|⟨[𝐴̂, 𝐵̂]⟩| (23) 

This means that any consecutive measurement of the quantities 𝐴 and 𝐵 on an ensemble of identical 

wavefunctions will lead to a product uncertainty of the kind given above. In simple words, this means: 

you can get good statistics on 𝐴 and the expense of a high level of noise on 𝐵 or vice versa. 

 

Figure 6: The measurement of an observable and the effect it has on a quantum state |𝜓⟩, defined as a superpo-
sition of three modes. 

The relation however also has a meaning on the level of an identical wavefunction. It means that a 

precise measurement of quantity 𝐴 will collapse the wavefunction onto a state, where the quantity 𝐵 

is particularly ill-defined. An example: if you propagate light through a pinhole with diameter 𝑑, you 

have knowledge on the location of any photon in the plane of the pinhole with precision Δ𝑥 = 𝑑. This 

comes at the expense of having very little knowledge of the light direction of propagation after the 

pinhole. The uncertainty of its 𝑘⃗ -vector is at least (in case the pinhole is illuminated by a plane wave) 

Δ𝑘 ≥
1

2
𝑑−1. The product of the two uncertainties is a constant. 

2.2.4 Composite Quantum Systems 
Up until now we have only been concerned with individual quantum systems (whatever that may be; 

there is a more in-depth discussion of the physical background on how to count quantum systems, 

based on the state space of an electric field, below), now when shall discuss quantum systems com-

posed of multiple subsystems. 

Postulate 4: The state space 𝐻 of a composite physical system composed of subsystems 

numbered 1 through 𝑛 is the tensor product 𝐻 = 𝐻1⨂𝐻2 ⨂… ⨂𝐻𝑛 of the state spaces 

of the component physical systems. Moreover, if system number 𝑖 is prepared in the 

state |𝜓𝑖⟩, then the joint state of the total system is |𝜓1⟩⨂|𝜓2⟩⨂…⨂|𝜓𝑛⟩. 

You can accept this as a postulate but there is, of course, some physical reason, as to why this postulate 

is plausible. Assume that you have a physical system 𝐴 is state |𝐴⟩ and another physical system 𝐵 in 

state |𝐵⟩. Of course there must be a way to describe the composite system 𝐴𝐵, because it is still the 
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subject to the quantum nature of the world. This composite system must again be describable by a 

state vector (because of postulate 1) and we may call the vector |𝐴⟩|𝐵⟩. This is true for an possible 

state |𝐴⟩ and |𝐵⟩. 

Because each of the states must be describable as some kind of superpositition of basis states , e.g. 
|𝐴⟩ = ∑ 𝑎𝑖 |𝑎𝑖⟩𝑖 , |𝐵⟩ = ∑ 𝑏𝑗 |𝑏𝑗⟩𝑗   and |𝐴⟩|𝐵⟩ = ∑ 𝑎𝑏𝑘|𝑎𝑏𝑘⟩𝑘 , we quickly come to the conclusion that 

the tensor product is a plausible choice to describe the state |𝐴⟩|𝐵⟩ = ∑ 𝑎𝑖𝑏𝑗|𝑎𝑖⟩|𝑏𝑗⟩𝑖,𝑗 . 

There are two profound consequences of this postulate, which give a hint of the complexity of quan-

tum physical system. 

Exponential Scaling of Measurables 
First, we see that each individual quantum system lives in its own individual state space. If you have, 

for example two free electrons, each of the systems state space is ℝ3 , because each of the electrons 

is free to move around in 3D-space. The state space of the composite system is, however, ℝ3⨂ℝ3 =

ℝ6 . To describe two electrons, you require a six-dimensional space! 

As we certainly live in a many-particle world, why do we perceive it as three-dimensional? It turns out 

that many body interaction (particularly those with thermal baths) tend to destroy (dephase) infor-

mation from the higher dimensions, and you end up with systems that behaves very much like you 

would have 𝑛 particles that all share the same 3D-space. In fact, lots of our difficulties in quantum 

systems arise, when the interaction within many-body quantum systems is much stronger that that 

with a thermal bath, e.g. in molecule and atom physics. This is also the very resource we want to har-

ness with Quantum Computers. 

Secondly, and this is really just a quantification of the first argument, we see that composite quantum 

systems tends to explode their degrees of freedom (e.g. the number of possible commutating observ-

ables) in an exponential manner. 

Assume that system 𝑖 has an 𝑛𝑖-dimensional Hilbert-Space 𝐻𝑖 = ℂ𝑛𝑖 . Then we know that we there ex-

ists a set of basis vectors |𝑗𝑖 ⟩ with 𝑗 = 1…𝑛𝑖  within each of that Hilbert spaces. To each basis there 

exists a projection operator 𝑃̂𝑗
𝑖 = |𝑗𝑖 ⟩⟨𝑗𝑖|, that commutes with each other, e.g. [𝑃̂𝑗1

𝑖 , 𝑃̂𝑗2

𝑖 ] = 0, which is 

easy to show. As we can construct any other measurable of that subsystem from superpositions of 

these projectors, there are no more commutating observables for that system. In other words: the 

consecutive application of the projection observables will give us as much info on the system as we 

may ever hope to extract. The consecutive application of 𝑃̂𝑗
𝑖, will give a series of results with 𝑛 − 1 

zeros and a single 1, e.g. {0,0,… ,1,… ,0}, if we denote the position of the one-result with number 𝑁𝑖, 

it is clear that 𝑁𝑖 ∈ {1, …, 𝑛𝑖}, e.g. the number of possible different results is for any measurement in 

subspace 𝑖 is therefore 𝑛𝑖 . 

Within the Hilbert space 𝐻𝑖1⨂𝐻𝑖2 the projection operators of different subspaces commute with each 

other, too, e.g.: [𝑃̂
𝑗1

𝑖1 , 𝑃̂
𝑗2

𝑖2] = 0. This is obvisou because a measurement on subsystem A must not, by 

definition, affect the independent system 𝐵. Moreover, the measurement-collapse of the wavefunc-

tion does only affect the subspace within which the projector is active, because in the context of the 

joint Hilbert-Space 𝐻 = 𝐻1⨂𝐻2⨂ …⨂𝐻𝑛 the projection operator  𝑃̂𝑗
𝑖 , really has the form 

𝕀⨂𝕀⨂… ⨂𝕀⨂𝑃̂𝑗
𝑖 ⨂𝕀⨂ …⨂𝕀. This means that measurements in the individual subspaces are inde-

pendent of each other, because the subsystems are independent. 
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Therefore, from a composite quantum system with 𝑛 subsystems we may extract 𝑁 = ∏ 𝑁𝑖
𝑛
𝑖=1  differ-

ent measurement results (composed of the 𝑛 different measurements with 𝑁𝑖 different possible re-

sults). If we have 𝑛 identical systems, we can get 

Joint Number of Measurables = (Individual Number of Measureables)Number of Particles (24) 

different possible measurement results. Increasing the number of particles is therefore an immensely 

more powerful tool in increasing the numbers of degree of freedom of the quantum system as com-

pared to increasing the number of individual degrees of freedom. 

A good example here is optics. We can easily distinguish 106 degrees of freedom of a single photon by 

mapping it to a single-photon sensitive camera (sCMOS, EMCCD), measuring, which pixel clicks. This 

seems like a lot. On the other hand, if you have a composite state of 30 photons, each of which is 

measured with only a simple left/right-detector, then you already have 230 ≈ 109 degrees of freedom, 

which is of course much more. The difficulty is, however, in creating such a photon state. 

Composition versus Modes 
We like to put in a word of caution here. If you, like myself, have background in photonics, you may be 

confused as to how the discussion in this chapter goes together with the discussion of chapter 2.1. 

There we have focussed on the notion of modes, which play two distinct roles here: 

• Every quantum system is defined on modes of the underlying field; you can think of the modes 

as the natural basis choice for the basis vectors of a system |𝑗𝑖⟩. For example, a photon may be 

defined to “live” in the superposition of horizontal and vertical polarization or as a superposi-

tion of three different waveguide modes. The number of modes, which are permissible for 

superposition therefore also defines the dimensionality of the 𝐻𝑖 and thus of the different 

number of measurement results 𝑁𝑖. For the first example this would be 𝑁𝑖 = 2 and 𝑁𝑖 = 3 for 

the second. Thus, modes play the role of spanning the vector space for individual quantum 

particles. 

• In chapter 2.1, we had tried to convince you, that in quantum field theories every mode is 

excited by a succession of photons, which can be thought of a modes in their own right. The 

application of the creation operator on the quantum vacuum 𝑎̂𝑗
†|vac⟩ creates a photon, by 

populating the first number state mode of the spatial mode j. Number state modes thus play 

the role of creating individual photons. A repeated application of the creation operator will 

create a composite system of multiple modes. 

Mathematically the two types of modes are, however, not different at all. So why do they seem to play 

such a different role, as is visible in the equation from above? Why do the number of modes, that we 

excite on the one hand appear in the basis of the formula for the degrees of freedom and the other 

one in the exponent? 

We would like to give two explanations here, one more mathematically inspired, whereas the other 

one is more physically inspired. They both come down to the very same thing; the question of possible 

correlation measurements and the way that projection operators act on the quantum fields. 

From a mathematical point of view the difference lies entirely in the structure of the projection oper-

ators. A projection operator 𝑃̂𝑗
𝑖 = 𝕀⨂𝕀⨂ …⨂𝕀⨂𝑃̂𝑗

𝑖 ⨂𝕀⨂… ⨂𝕀 collapses the subspace only for the 

degrees of freedom of the 𝑖-th particle and leaves the degrees of freedom, which belong to the other 

operators entirely untouched. The structure is, of course a matter of definition (or of the specific ex-

periment) and is entirely negotiable. Superposition modes and composite particles are thus – to a cer-

tain extend – in quantum physics negotiable concepts and the currency is the type of measurement, 
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which is applied (as you will see in what follows, you are however not entire free in your choice here: 

many thinkable measurements are pointless because they ALWAYS will return the same result). This is 

a profound statement and again highlights, that in Quantum Physics the observer and his observables 

are an intrinsic and irreducible part of any experiment. 

 

Figure 7: A composite quantum systems composed of two photons, created as superpositions of two distinguisha-
ble sets of three modes, each. 

We may also answer the question from a more physical point of view. Suppose we have a system of 

two photons, which each occupy three different, and thus independent, modes. These could be, for 

example, photons which travel in a two-different three mode-waveguides or two electrons, which pop-

ulate two copies of a three-level system. We can create the state by applying the creation operator for 

the two particles onto the vacuum. For the sake of simplicity, we shall excite the particles, such that 

they have equal amplitude in each of their respective modes: 

|𝜓⟩ = 𝑎̂1†
𝑎̂2†

|vac⟩ =
1

3
(𝑎̂1

1†
+ 𝑎̂2

1†
+ 𝑎̂3

1†
) (𝑎̂1

2†
+ 𝑎̂2

2†
+ 𝑎̂3

2†
) |vac⟩ (25) 

This creates the state: 

|𝜓⟩ =
1

3
(|11⟩+ |21⟩+ |31⟩)(|12⟩+ |22⟩+ |32⟩) (26) 

Without loss of generality, we will first measure, if the first particle is in state |11⟩, by applying the 

projector 𝑃̂1
1 = |11⟩⟨11|⨂𝕀2. Let’s assume we find that the observable comes out with result 1 (which 

happens with probability 1/3 ), the resulting state of the system should then be: 

|𝜓⟩ =
1

√3
|11⟩(|12⟩+ |22⟩+ |32⟩) (27) 

This has indeed destroyed all left-over info on the first particle but perfectly retained the information 

carried by the second particles, just as expected. But how is that done on a level of the fields them-

selves? To better understand this operation, we need to look at the structure of the measurement 

operator. Keep in mind that: 

|11⟩ = 𝑎̂1
1†

|vac1⟩ → 𝑃̂1
1 = |11⟩⟨11|⨂𝕀2 = (𝑎̂1

1†
|vac1⟩⟨vac1|𝑎̂1

1)⨂𝕀2 (28) 

Where |vac1⟩ denotes the vacuum state for the first class of modes only, |vac2⟩ is the same for the 

second mode and |vac⟩ = |vac1⟩|vac2⟩.  Note that (𝑎̂1
1†

|vac1⟩⟨vac1|𝑎̂1
1)⨂𝕀2 can be thought of as a 

selective photon counting operator, which only counts, if the first mode is in a one photon state.  
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The measurement (with the result 1) is carried out by the application of 𝑃̂1
1 onto |𝜓⟩:  

𝑃̂1
1|𝜓⟩ = (𝑎̂1

1†
|vac1⟩⟨vac1|𝑎̂1

1)⨂𝕀2 (𝑎̂1
1†

+ 𝑎̂2
1†

+ 𝑎̂3
1†

) (𝑎̂1
2†

+ 𝑎̂2
2†

+ 𝑎̂3
2†

)|vac1⟩|vac2⟩

= 𝑎̂1
1†

|vac1⟩⟨vac1|𝑎̂1
1(𝑎̂1

1†
+ 𝑎̂2

1†
+ 𝑎̂3

1†
)|vac1⟩⨂(𝑎̂1

2†
+ 𝑎̂2

2†
+ 𝑎̂3

2†
) |vac2⟩

= (𝑎̂1
1†

|vac1⟩⟨vac1|(𝑎̂1
1†

+ 𝑎̂2
1†

+ 𝑎̂3
1†

) 𝑎̂1
1|vac1⟩+ 𝑎̂1

1†
|vac1⟩⟨vac1|𝕀|vac1⟩)

⨂(𝑎̂1
2†

+ 𝑎̂2
2†

+ 𝑎̂3
2†

) |vac2⟩

= 𝑎̂1
1†

|vac1⟩⨂(𝑎̂1
2†

+ 𝑎̂2
2†

+ 𝑎̂3
2†

) |vac2⟩

= 𝑎̂1
1†

(𝑎̂1
2†

+ 𝑎̂2
2†

+ 𝑎̂3
2†

) |vac⟩

= |11⟩(|12⟩+ |22⟩+ |32⟩)

(29) 

We have gotten from the first line to the second by sorting all the terms according to the photon they 

operate at. The next step is to note that 𝑎̂1
1 commutes with all creation operators, expect with 𝑎̂1

1†
, 

here we have [𝑎̂1
1 , 𝑎̂1

1†
] = 1.  The first term from the third line is dropped out, because 𝑎̂1

1|vac⟩ = 0. 
Which leads, together with ⟨vac1|𝕀|vac1⟩ = 1 to the fourth line. The fourth and fifth line are then triv-

ial. 

 
Figure 8: The action of different types of observables (Single Particle Projectors and Two Particle Correlators) on 

the above introduced system. 

Thus, the projection operation really does the following: it destroys all photons which are in superpo-

sition (e.g. which have been created at the same times as) the target mode and recreated the photon 

in the target mode exclusively. It does literally nothing to the product modes, e.g. the photon, which 

has been created in a second step. We could now take this state and apply any of the three 𝑃̂𝑗2

2  projec-

tors to measure a correlation: e.g. 𝑃̂𝑗1

1 𝑃̂𝑗2

2 measures if the first photon in mode 𝑗1  is correlated (is sim-

ultaneously measured) with the second photon in mode 𝑗2 . Results which belong to different photons 

can correlate, whereas results which belong to the same photon cannot correlate.  

This concept of correlation-based observables brings the two ideas together: the mathematical struc-

ture of the projection (measurement) operators defines the kind of correlations that we measure. All 

possible outcomes and correlation measurements span the (composite) systems Hilbert space. How-

ever, we can’t just arbitrarily define correlation operators and then go about measure them, because 
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we must make sure that the system is in a quantum state as to even have a chance of getting a result 

from that correlation measurement. This is done by constructing an appropriate quantum state, e.g. 

by creating photons in distinguishable modes.  

In our example: the photon state is constructed in such a way that either of the nine correlation meas-

urements could 𝑃̂𝑗1

1 𝑃̂𝑗2

2  return true, however, 𝑃̂𝑗1

1 𝑃̂𝑗2

1  with 𝑗1 ≠ 𝑗2  will never give a “yes” answer (photon 

1 is never measured in two different modes at the same time), because that part of the Hilbert-Space 

was never populated by the way our photons have been created. 

 

Figure 9: The number of distinguishable measurement, which can be made on the above introduced system, 
counted as two-mode correlators. The scaling is according to “number of modes per particle” to the power of the 

number of particles. 

In that sense the creation of a series of photons boils down to the preparation of your quantum system 

in such a way as to predefine the set of possible (and impossible) outcomes of modal correlation meas-

urements with photon counting detectors. From an observable point of view, a photon is thus nothing 

more, than a measurement (with non-zero information content) waiting to happen. 

2.3 Matrix representations 
If the so-far pursued bra-ket notation is a bit abstract for your taste, rest assured, all what we have 

really done is matrix operations. And if the observables are discrete the matrices in question are even 

finite-dimensional! In this chapter we shall see how this works. 

Using any set of orthonormal eigenvectors |𝑛⟩ we can write any state vector in terms of the orthonor-

mal eigenvector basis, i.e.:  

 |𝜓 ⟩ = ∑𝛼𝑛|𝑛⟩ 

⟨𝜓| = ∑𝛼𝑛
∗⟨𝑛| (30)

 

where 𝛼𝑛 are complex coefficients. If we group the ket coefficients 𝛼𝑛 into a column vector  

 |𝜓 ⟩ → 

(

  
 

𝛼1

𝛼2

𝛼3

𝛼4

.

. )

  
 

(31) 

and bra vectors into row vectors  

⟨𝜓| → (𝛼1 ,𝛼2 , 𝛼3 , 𝛼4 , . , . . )∗ (32) 

We can express the action of any operator 𝑂̂ on a state vector as a simple matrix multiplication:  
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𝑂̂|𝜓⟩ → 𝑂𝑖𝑗𝛼𝑗 (33) 

with a matrix with elements 𝑂𝑖𝑗 = ⟨𝑖|𝑂̂|𝑗⟩. 

𝑂̂ → 

[
 
 
 
 
𝑜11 ⋯ 𝑜1𝑗 … ⋮

𝑜21 … 𝑜2𝑗 … ⋮

𝑜31 … 𝑜3𝑗  … ⋮

⋮ … … ⋱ ⋮
⋮ ⋯ … … ⋱]

 
 
 
 

(34) 

The matrix elements of a Hermitian operator 𝐴̂ are then given by transposition and complex conjuga-

tion 𝑂𝑖𝑗
′ =𝑂𝑗𝑖

∗ . In the eigenvector basis of the observable 𝐴̂, the matrix representation 𝐴𝑖𝑗 is diagonal 

matrix:  

𝐴̂ → 

[
 
 
 
 
𝑎1 0 0 0 0
0 𝑎2 0 0 0
0 0 𝑎3  0 0
0 0 0 𝑎4 0
0 0 0 0 ⋱]

 
 
 
 

(35) 

which is called the spectral decomposition of the observable. 

Note that the same is true for unitary evolution (gate) operators, with the difference that the diago-

nal elements here are not real numbers 𝑎𝑖 ∈ ℝ but complex number of unit length exp (𝑖𝜙𝑖) with 

𝜙𝑖 ∈ ℝ.  

In the following we will mostly consider cases in which possible measurement outcomes are discrete 

and finite {𝑎1, 𝑎2,… 𝑎𝑛}, i.e. we will mostly deal with vectors of dimensionality 𝑁 and matrices of di-

mensionality of 𝑁 × 𝑁.  

Tensor products can also be expressed in terms of their matrix representations. Suppose that we 

want to express 𝐴̂⨂𝐵̂ then we can write according to: 

𝐴̂⨂𝐵̂ → [

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑛𝐵

𝑎21𝐵 𝑎22𝐵

⋮ ⋱
𝑎𝑛1𝐵 𝑎𝑛𝑛𝐵

] (36) 

Let’s express the above-discussed 𝑃̂1
1 = |11⟩⟨11|⨂𝕀2 operator: 

𝑃̂1
1 = |11⟩⟨11|⨂𝕀2  →  [

𝕀2 0 0
0 0 0
0 0 0

] (37) 

Keep in mind this is a 9 × 9 matrix! A joint projection operator 𝑃̂𝑗1

1 𝑃̂𝑗2

2  (e.g. a correlation operator) 

therefore has the form: 

𝑃̂𝑗1

1 𝑃̂𝑗2

2 =

(

 
 

0 ⋯
1

0
⋮ ⋱ ⋮

⋯ 0 )

 
 

(38) 

Which as you can see is the “real” type of projection operator for a joint system, as you can see. We 

can carry out the same type of exercise for a state vector: 
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|𝜓⟩ =

(

 
 
 
 

𝑎1𝑏1

𝑎1𝑏2

⋮
𝑎1𝑏𝑛

𝑎2𝑏1

⋮
𝑎𝑛𝑏𝑛)

 
 
 
 

=
1

3

(

 
 
 
 

1
1
⋮
1
1
⋮
1)

 
 
 
 

 

Where the latter example is the state of the example above: |𝜓⟩ =
1

3
(|11⟩+ |21⟩+ |31⟩)(|12⟩+

|22⟩+ |32⟩). 

2.4 Mixed States and the density matrix 
So far, we have looked into the state of a particular quantum system per-se. In reality, however, we 

will typically make experiments on a series of more-or-less identical copies of a system, for example to 

generate some kind of statistical data. In practice it may well be that any quantum system is in fact far 

from reproducible and will generate a different quantum state for each repetition. In a summary, we 

will get an ensemble of quantum states, with some degree of statistical distribution between the dif-

ferent pure quantum states. 

In practice, many things can contribute to such effects: emitters may have multiple decay channels, 

dipole-vectors jitter in their orientation, various processes may lead to inhomogeneous broadening of 

spectroscopic lines, your helpful co-worker may occasionally change the temperature of some nonlin-

ear crystal, just because he can. And he will. Your hands may shake slightly upon adjustment of some 

setup, due to a lack of Thorlabs sending lab snacks or the coffee machine being broken down. May that 

never happen to you. But it will. 

Such statistical ensembles of quantum states may be described with the help of the density operator  

𝜌̂ = ∑𝑝𝑖 𝜌̂𝑖

𝑖

= ∑𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖|

𝑖

(39) 

where 𝑝𝑖 is the probability that the quantum system is in state |𝜓𝑖 ⟩ and ∑ 𝑝𝑖𝑖 = 1 and 𝜌̂𝑖 = |𝜓𝑖⟩⟨𝜓𝑖| is 

the pure state density operator.  

In reality, we are, however, more interested in measurables than in the quantum state itself (remem-

ber: only the measurement is really real). Any measurable is, of course, defined by its measurement 

operator 𝐴̂ and can be characterized by expectation value 〈𝐴̂〉, which is defined as: 

 〈𝐴̂〉 = ∑𝑝𝑗  〈𝐴̂〉𝑗
𝑗

= ∑ 𝑝𝑗  
𝑗

𝑇𝑟(𝜌̂𝑗𝐴̂) = 𝑇𝑟(∑𝑝𝑗  
𝑗

𝜌̂𝑗 𝐴̂) = 𝑇𝑟(𝜌̂𝐴̂) (40) 

Where Tr(. ) is the trace operator, i.e. the sum of the diagonal elements of the density matrix. We 

don’t show this relation here, please look it up if you are interested. 

It is noteworthy that 𝜌̂ is Hermitian (being a sum of obviously Hermitian 𝜌̂𝑖 with real factors) and thus 

can always be decomposed into eigenstates and appropriate eigenvalues, such that:  

𝜌̂ = ∑ 𝜆𝑖|𝜆𝑖⟩⟨𝜆𝑖 |

𝑖

(41) 

which is called the spectral decomposition of the density matrix. For example, a light source may emit 

50% horizontally polarized photons and 50% diagonally upwards polarized photons, thus: 
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𝜌̂ =
1

2
|ℎ⟩⟨ℎ| +

1

2
 |𝑢⟩⟨𝑢|

=
1

2
[1 0][

1
0
] +

1

4
[1 1] [

1
1
]

=
1

4
(2 + √2) [

1 + √2

√4 + 2√2 
 

1

√4 + 2√2 
]

[
 
 
 
 1 + √2

√4 + 2√2 
1

√4 + 2√2 ]
 
 
 
 

   +
1

4
(2 − √2)[

1 − √2

√4 + 2√2 

1

√4 + 2√2 
]

[
 
 
 
 1 − √2

√4+ 2√2 
1

√4+ 2√2 ]
 
 
 
 

=
1

4
(2 − √2){

1 − √2

√4+ 2√2 
[1 0] [1

0
] +

1

√4 + 2√2 
[0 1] [0

1
]}

(42) 

Which means that the spectrally decomposed version of this are again linear states of light. And this is 

surprisingly cumbersome. 

Also note that: 

𝑇𝑟(𝜌̂) = 1 (43) 

And furthermore, for any quantum state |𝜓⟩, we get: 

⟨𝜓|𝜌̂|𝜓⟩ ≥ 0 (44) 

i.e. the density operator is always positive. For pure quantum state vectors the density matrix reduces 

to a projection operator |𝜓𝑖⟩⟨𝜓𝑖|, for which the relation 𝜌̂2 = 𝜌̂ is readily shown. This relation is useful 

as it allows us to quantify the “degree of mixedness”, i.e. the state purity: 

Purity(𝜌̂)= Tr(𝜌̂2) (45) 

The reader can readily verify that Purity(|𝜓𝑖 ⟩⟨𝜓𝑖 |) = 1 for a pure state and Purity(𝜌̂𝑁) = 1̂/𝑁 for a 

completely mixed state of dimension N. 

Note that the type of uncertainty here is a different one from the uncertainty introduced by the quan-

tum measurement process. Each of these effects may in fact be fully quantified and measured, this 

may just be practically impossible or impractical to deal with. Also note that each of the effects, which 

contribute to some kind of statistical uncertainty are themselves subject to the laws of quantum phys-

ics (even your co-worker is!). They derive from a pure state and if the system is large enough, they are 

unaffected by external noise. Thus, any mixed state can be purified into a pure state of a larger system. 

We won’t show the mathematical proof here. 

2.4.1 Entropy in Quantum Physics 
In classical physics there is an intricate relation between the notion of Entropy and Information in a 

System. If you are more interested in that please consult the seminal works by Landauer. We’ll just 

summarize here: the more entropy a system has, the more information it contains. I typically think 

about the room of my kids: if there are toys lying around everywhere there is lots of information in the 
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room (e.g. to describe which toy is where takes a loooong time), whereas if the room is cleaned up you 

can describe it with a single piece of info: everything is where it belongs2. 

We would now like extend this concept to quantum physics and the idea that a pure quantum state is 

a minimum information/entropy state a little more formally. For a pure state, where we have complete 

information of the preparation procedure, we expect a measure describing disorder (if you’re from a 

physics background) or information content (if you’re a telecom engineering background) to be mini-

mized. The von Neumann entropy is the extension of the concept of entropy from classical thermody-

namics (Gibbs entropy) or information theory (Shannon entropy) to the quantum realm. It is defined 

as:  

𝑆(𝜌̂) = −Tr{𝜌̂ Log(𝜌̂)} (46) 

It is straightforward to verify that the von Neumann entropy3 of a physical system prepared in any pure 

quantum state |𝜓⟩ is zero: 

𝑆(|𝜓⟩⟨𝜓|) =  0 (47) 

With the pure quantum states thus corresponding to minimum information. The state of maximum 

confusion, i.e. the opposite of a pure state, is the maximally mixed state in which each eigenstate of 

the system |𝑖⟩ appears with equal likelihood: 

𝜌̂𝑀 =
1

𝑁
∑ |𝑖⟩⟨𝑖| 

𝑖

=
1̂

𝑁
(48) 

where 1̂ is the unit operator and N is the dimension of the state space. This is the state of maximum 

entropy in a Hilbert space of dimension 𝑁:   

𝑆(𝜌̂𝑀) ∝  log(𝑑) (49) 

Hence you can see that the concept of the impurity of the state is closely related to the entropy of a 

quantum system. When you think about this for a while you can come to a few nifty conclusions on 

the relation of entropy, information, and the nature of coincidences: 

There are two distinguishable types of randomness in a quantum measurement: If you make meas-

urements on a mixed state you have two contributions to the statistics of the measurement: the sta-

tistics of the quantum measurement process and the classical ensemble statistics that comes from the 

mixed’ness of the states. While the latter does contribute to the entropy the former does not. So, there 

is a conceptual difference between the two classes of randomness. Only classic-statistical randomness 

it attributed to entropy. The reason is: the quantum randomness can be reduced to zero by virtue of 

choosing a measurement operator, where the quantum state is an eigenstate, e.g. 𝐴̂ = |𝜓⟩⟨𝜓|. The 

selection of the (virtual) measurement operator, however, should not contribute to the systems’ en-

tropy. 

Quantum states have a fixed entropy when not measured: A pure state does not have entropy. Any 

quantum operation that does not affect the purity of a state thus does not increase entropy. We know 

from the postulates that Unitary operators/gates 𝑈 leave the purity of a quantum state unaffected. In 

 
2 My colleagues tell me this example shows more than anything else, that I am German. Alas. 
3 in the following the entropy is commonly defined in terms of the base-2 logarithm, so that a maximally mixed 
state of a two-level system corresponds to one bit of entropy. 
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other words: unless you measure a quantum system, its entropy does not increase by its intrinsic evo-

lution or by the application of gates. Quantum circuits do not produce entropy and are thus reversible. 

A measurement operation can induce entropy and is thus irreversible if the measurement outcome 

was not yet known: As an example take a |𝜓⟩ =
1

√2
(|0⟩ + |1⟩) state, which is measured with the 𝑆𝑥 =

|0⟩⟨0| − |1⟩⟨1| operator (we shall later see, that this e.g. corresponds to a diagonally polarized photon 

measured with an HV-polarization beamsplitter). The result is a |0⟩ or a |1⟩ state, each with 50% prob-

ability, thus a mixed state with 𝜌̂ = 1/2(|0⟩⟨0| + |1⟩⟨1|) and an entropy of 𝑆(𝜌̂) = 𝑇𝑟(𝜌̂ log 𝜌̂) =

log(2) = 1 (e.g. this is a maximum entropy state). As we have increased the entropy we have made 

an irreversible operation. 

A measurement operation does not need to induce entropy and may thus be reversible if the meas-

urement outcome was known to begin with: If the measurement had been in parallel with the state, 

then we would have gotten one answer with certainty and retained a pure state. This operation is thus 

NOT irreversible.  

Thus: If the measurement apparatus extracts information from the quantum system. It must thus 

increase the quantum systems entropy: If the entire system (measurement apparatus plus quantum 

system) is closed, then the overall entropy of the system cannot have been changed by the measure-

ment. Thus, the measurement must have reduced the entropy of the measurement apparatus (by in-

creasing that of the measured system). In other words: the measurement has transferred a certain 

degree of order from the quantum system to the measurement apparatus (its quantum information 

being measured leaves the measurement apparatus in a more well-defined state as before; e.g. it 

shows a specific reading and not just noise) but the apparatus must likewise transfer disorder to the 

quantum system. In this respect the measurement process in quantum physics may be a bit less mys-

terious: it’s “simply” the random dephasing of a highly ordered state, when it gets in contact with a 

thermal bath of a large apparatus. 

3 From Single Qubits to Circuits 
As we now have a fundamental understanding of how the world works on a quantum level, we shall 

dive deeper into the realm of quantum information. We do so by dumbing down all the concepts from 

the last chapter until nothing is left but the simplest quantum system, that you can still righteously call 

a quantum system. A quantum system which is composed of two modes and only two modes: the 

Qubit. 

3.1 The Qubit 
In the classical case we can encode information in any physical system that has at least two clearly 
distinguishable states – a bit. Such states may be a low or high voltage; a light being turned on or off 
or an apple having a bite taken out of it or not. In any case we can give these two specific states logical 
representations and call them:  
 

 |0⟩  ,  |1⟩ (50) 
 
Note that the formal similarity to quantum states is at this case purposefully selected but not yet ob-

vious. Let’s call these the computational basis states (CBS). We can of course also use two basis states 

of an arbitrary quantum system as the physical representation for a bit, these basis states are also 

distinguishable with an appropriate measurement. Since we are in the realm of quantum physics, we 

now have the possibility of introducing general superposition states, called qubit states 
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 |𝜓⟩ =  𝛼|0⟩+ 𝛽 |1⟩ (51) 

which is something, that one, of course, cannot do with a classical bit. Such physical system is thus 

called a QuBit. 

 
Figure 10: Some important classes of photonic Qubits. 

How can we physically realize Qubits? The first option, only available if we use Bosons, is to encode 

the qubit in the number state of a single fixed mode with index 𝑖, which we shall call  𝑎̂𝑖. This is known 

as the single-rail qubit representation and one possible implementation would be to differentiate be-

tween the excited and non-excited states of the field in this particular mode:   

 |0⟩ ≡  |𝑛𝑖 = 1⟩ = 𝑎̂𝑖
†|vac⟩

|1⟩ ≡  |𝑛𝑖 = 2⟩ = 𝑎̂𝑖
†
𝑎̂𝑖

†|vac⟩
(52)   

Note that we have changed the notation of the number-States somewhat (they are now called |𝑛𝑖 =

1⟩, to differentiate between them (and the vacuum-state) and the CBS. That is, the computational basis 

state |1⟩ corresponds to a state of the field with a two bosons in mode 𝑎̂𝑖 and the state |0⟩ correspond-

ing to a state with one boso. Keep in mind the specific numbers are chosen completely arbitrary, in 

fact we are not even fixed to the notion of Fock states, should we not feel comfortable with them. 

The problem with single-rail qubit encoding in optics is that loss will affect the qubit state in the sense 

of that it changes its value. Moreover, it requires a handle on detectors and even more so on devices 

and sources that create and/or mix different number states at will. This is indeed difficult. Moreover, 

if you want to implement operations which work differently, depending on the state of the qubit you’ll 

have to resort to highly nonlinear elements and that’s generally a bugger. They are nevertheless used 

quite frequently in quantum computation, e.g. superconducting Qubits are most frequently single-rail, 

i.e. Transmon qubits they use two different excitation states of an anharmonic electronic resonator 

circuit. 

The second way is to fix the number-state and use a pair of orthogonal field modes 𝑀𝑖 and 𝑀𝑗 to en-

code the qubit. If we use photons, we may employ orthogonal polarized photonic modes, Gauss-La-

guerre modes of different order or azimuthal phase, different modes of a single waveguide or modes 

of different waveguides, or different wavelengths or different time-bins or anything that you can im-

agine. Other systems are also frequently used: different excited states in atoms and ions. Different 
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topological states4. This is called the dual-rail qubit representation. If photons are used, the Fock state 

is then typically fixed to a single photon state – everything else is complicated enough already: 

 |0⟩ ≡  |𝑛𝑖 = 1, nj = 0⟩ = 𝑎̂𝑖
†|vac⟩

|1⟩ ≡  |𝑛𝑖 = 0, nj = 1⟩ = 𝑎̂𝑗
†|vac⟩

(53) 

To make things less abstract, let’s take these modes to be orthogonal polarization modes. Two partic-

ularly popular polarization modes are the linear horizontal |𝐻⟩ and linear vertical |𝑉⟩ polarization (typ-

ically in reference to an optical table or a polarizing beam splitter): 

 |0⟩ ≡  |𝐻⟩ = 𝑎̂𝐻
†|vac⟩

|1⟩ ≡  |V⟩ = 𝑎̂𝑉
†|vac⟩

(54) 

But again, we will only use that to exemplify the physical meaning of what we discuss here, and you 

can take any kind of qubit and apply the following discussion, because it’s nice and abstract.  

3.2 The Bloch Sphere 
The first thing we do is a bit of bookkeeping. We have introduced the expansion coefficient 𝛼 and 𝛽 

which both are, of course complex numbers. However, this in – in fact – a bit overly complex (unin-

tended pun!) and we can describe the entire state space with only two real numbers, which represent 

the latitude and longitude of an imaginary sphere, according to: 

 |𝜓 ⟩ =  𝛼|𝐻⟩ + 𝛽 |𝑉⟩ = cos2Θ |𝐻⟩ + e𝑖𝜙sin2Θ |𝑉⟩ (55) 

 
Figure 11: Representation of a qubit on the Poincarè sphere.  

 
4 In fact, we need not limit ourselves to two basis vectors but could take more. These states are then call qu-dit 
states. 
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QISKIT Code to Plot the Vector corresponding to the |𝟎⟩ state on a Poincaré 
Sphere. 

 

from qiskit_textbook.widgets import plot_bloch_vector_spherical 

coords = [0,0,1] # [Theta, Phi, Radius] 

plot_bloch_vector_spherical(coords) # Bloch Vector with spherical coordi-

nates 

Where we have used the fact that 𝛼2 + 𝛽2 = 1 as a justification to introduce the polar angle Θ (longi-

tude) and the azimuthal angle 𝜙 (latitude) and have also utilized the fact that a cumulative phase is 

irrelevant (this is true for any qubit system: the total phase is irrelevant and cannot be measured). It 

thus becomes clear that the state of any polarization qubit and therefore ANY qubit state altogether 

can be represented as a point on the surface of a sphere; the infamous Bloch sphere according to the 

equation: 

𝑥 = 𝑟 sinΘ cos𝜙
𝑦 = 𝑟 sinΘsin𝜙

𝑧 = 𝑟 cosΘ (56)
 

Where 𝑟 = 1 (we’ll se later, that 𝑟 ≠ 1) also has a physical meaning. 

3.3 Single Qubit Gates, Rotations, Universality 
On the Bloch sphere the state  |0⟩ = |𝐻⟩  is represented by the north pole and |1⟩ =  |𝑉⟩ is repre-

sented by the south pole, e.g. the CBS are exclusively along the 𝑧-axis of the Bloch sphere. The other 

axes have a profound meaning, too: The points on the x-axis, e.g. those on the equator facing the 

viewer or point straight away also belong to linear polarization, namely to the diagonal basis vectors 

 | +⟩ and  | −⟩ , which can be constructed using the Hadamard operator 𝐻̂: 

[
 | +⟩

 | −⟩
] = 𝐻̂ [

 |0⟩

 |1⟩
] =

1

√2
 [
1 1
1 −1

] [
 |0⟩

 |1⟩
] (57) 

Here the Hadamard operator is given in its matrix representation (with the CBS as an expansion basis) 

as: 

𝐻̂ =
1

√2
 [
1 1
1 −1

] (58) 

In other words: 

 |+⟩ =
1

√2
(|0⟩+ |1⟩) |−⟩ =

1

√2
(|0⟩ − |1⟩)   (59) 

In the case of photons, we will later see that find that such an action can be connected to a Half-Wave-

Plate with its fast axis rotated 22.5 degrees with respect to the horizontal.  

Another set of special points on the Bloch sphere are those, where the sphere intersects the 𝑦-axis. 

This is where the left-handed and right-handed circular basis states  |𝐿⟩  and  |𝑅⟩  (sometimes also 

called | ↺⟩ and | ↻⟩)are located. They can also be constructed from  |𝐻⟩  and  |𝑉⟩ according to: 

[
 |𝐿⟩

 |𝑅⟩
] =

1

√2
 [

1 𝑖
1 −𝑖

] [
 |𝐻⟩

 |𝑉⟩
] = 𝑆̂𝐻̂ [

 |𝐻⟩

 |𝑉⟩
] (60) 

In other words: 
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|𝐿⟩ =
1

√2
(|0⟩+ 𝑖|1⟩) |−⟩ =

1

√2
(|0⟩− 𝑖|1⟩)    (61) 

The procedure makes used of the now well-established Hadamard Gate 𝐻̂ and the phase gate 𝑆̂: 

𝑆̂ =  [
1 0
0 𝑖

] (62) 

It is obvious that 𝑆̂ is a bitwise selective phase-shifter, i.e. it shifts the phase of the |1⟩ component of 

the state by 
𝜋

2
 and does nothing to the |0⟩ component. Quite logically this gate is called the quarter-pi 

gate (no joke). 

Note that 𝐻̂ as well as 𝑆̂ are unitary operators (which can be easily seen, be multiplication of their 

matrix with the conjugated adjoint matrices). At this point it makes sense to introduce a third unitary 

gate, the 𝜋/8  or 𝑇-gate, as: 

𝑇̂ =  [
1 0

0 exp(
𝑖𝜋

4
)
] (63) 

Please not the somewhat strange notation as a 
𝜋

8
 gate, even though the phase shift is 

𝜋

4
. This was done 

because, if you come from a quantum physics background, it makes sense to introduce a symmetrized 

version of the gate with ±
𝜋

8
 phase shift. 

Each of these operators has a distinct effect on a quantum state, which can most easily be described 

in terms of how the states Bloch-Vector moves over the Bloch-Sphere. Keep in mind that any unitary 

operator must be representable by its action on the Bloch-Sphere because there is a one-to-one con-

nection between the sphere’s surface and any possible state of a Qubit. For the three introduced op-

erators 𝐻̂, 𝑆̂, 𝑇̂ we have the following situation: 

 
 

Figure 12: Actions of the 𝐻, 𝑆̂, 𝑇̂-gates on a quantum state, interpreted as rotations on the Bloch-sphere. 
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3.3.1 Universality 
Of course, there is an infinite number of unitary gates 𝑈. However, any 𝑈 (except for an unimportant 

phase 𝛼) can be described as a rotation on the Bloch-sphere around a specific unit 𝑛⃗  vector with an 

angular distance 𝜃 that tells you how far to rotate, i.e.: 

𝑈 = 𝑒 𝑖𝛼𝑅̂𝑛⃗ (𝜃) (64) 

There is another interesting feature: if 𝜃 is an irrational number, we will never get back to the same 

angle (modulus 2𝜋) if we apply the 𝑅̂𝑛⃗ (𝜃) operator repeatedly. Moreover, one can show that for any 

target angle 𝜃 ′ there is a number 𝑛 < 𝑁 which minimizes the distance between the rotation by the 

target angle 𝜃 ′ and the repeated application of a rotation by the given angle 𝑛𝜃 mod 2𝜋. The minimum 

distance roughly scales as min
𝑛<𝑁

 𝐸 (𝑅̂𝑛⃗ (𝜃)𝑛, 𝑅̂𝑛⃗ (𝜃
′)) =  𝒪(𝑁−1).5 This means, that you can approxi-

mate a rotation around a fixed axis by any (irrational angle) 𝜃′ with around the same axis but a fixed 

angle 𝜃 with a worst case error, which scales as 1/𝑁, for a maximum number of repeated rotations 𝑁. 

 
Figure 13: Approximation of a rotation of 𝜃′ = 5.0283 by the multiple application of a rotation with 𝜃 = 3.0497 
with a maximum repetition number of 𝑁 = 105. The resulting angle is plotted in blue, the precision of the best 
approximation is plotted in orange. Precision scaling is roughly  𝒪(𝑁−1)  

Two important rotation matrices with irrational rotation angled can be constructed from the Hada-

mard and the 
𝜋

8
-gate. The first is: 

𝑅̂𝑛⃗ 𝑎

(𝑏)
(𝜃0) = 𝑇̂𝐻̂𝑇̂𝐻̂ cos (

𝜃0

2
) = cos2

𝜋

8
𝑛⃗ 𝑎 = (cos

𝜋

8
, sin

𝜋

8
, cos

𝜋

8
) (65) 

The second rotates by the same angle but around a different axis: 

𝑅̂𝑛⃗ 𝑏

(𝑏)
(𝜃0) = 𝐻̂𝑅̂ 𝑛⃗ 𝑎

(𝑎)
(𝜃0)𝐻̂ 𝑛⃗ 𝑏 = (cos

𝜋

8
,− sin

𝜋

8
, cos

𝜋

8
) (66) 

 
5 The 𝐸(. , . ) < 𝜀 notation means that all measurables of the two operators will give at maximum 𝜀 different 
probabilities for any type of measurement. 
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This together with the identity from above means that from the Hadamard gate 𝐻̂ and the 
𝜋

8
-gate 𝑇̂ 

we can construct arbitrary rotations around the unit vectors 𝑛⃗ 𝑎 and 𝑛⃗ 𝑏  with high precision via a mul-

tiple application of the 𝑅̂(𝑎)
𝑛⃗ 𝑎

(𝜃0) and the 𝑅̂𝑛⃗ 𝑏

(𝑏)
(𝜃0) gate. 

This in and by itself is not more than a mathematical oddity.  It becomes interesting however, when 

we take another matrix identity, which we shall not prove here: suppose that you are not free to 

choose 𝑛⃗  but instead have two fixed, arbitrary but non-parallel unit vectors 𝑛⃗ 𝑎  and 𝑛⃗ 𝑏  given, then you 

can still construct any single qubit gate using a series of three rotations around these two axes, except 

for a trivial phase factor6: 

𝑈 = 𝑒 𝑖𝛼 𝑅̂𝑚⃗⃗⃗ 1
(𝛽)𝑅̂𝑚⃗⃗⃗ 2

(𝛾)𝑅̂𝑚⃗⃗⃗ 1
(𝛿) (67) 

If we take all of this together, we have seen that: 

Theorem 3: Universality of 𝐻̂, 𝑆̂, 𝑇̂ for single Qubit gates: 

The set of 𝐻̂, 𝑆̂, 𝑇̂ gates is an efficient universal set for single qubit operations. This 

means that we can approximate any single qubit gate 𝑈 by a series of 𝑁 of these three 

gates with an overall error that scales not worse then 
1

𝑁
. 

3.4 Observables and the Pauli-Matricies 
Now that we have investigated the evolution dynamics of single qubit states, we shall focus on their 

measurement. For the sake of simplicity we shall identify the basis vectors as the eigenstates of the 

respective projection operators and construct measurement operators from the individual projectors, 

with measurement values 1, for the first basis vector and measurement value −1 for the second basis 

vector. The construction is particularly simple for the CBS set 

𝜎̂3 = 𝜎̂𝑧   =   |0⟩⟨0|− |1⟩⟨1| = [1 0
0 −1

] (68) 

Where the matrix representation is done in the computational basis state. The operator is termed the 

Pauli-𝑧 or first Pauli operator, and the alphabetic naming takes its name from the corresponding axis 

of the Bloch sphere. 

Of course, we can construct similar measurement operators from the other two sets of basis vectors, 

namely: 

𝜎̂1   = 𝜎̂𝑥   =  | +⟩⟨+|−| −⟩⟨−|

=
1

2
[(|0⟩ + |1⟩)(⟨1|+ ⟨0|)− (|0⟩− |1⟩)(−⟨1|+ ⟨0|)]

=
1

2
[|0⟩⟨1| + |0⟩⟨0|+ |1⟩⟨1|+ |1⟩⟨0+ |0⟩⟨1|− |0⟩⟨0| − |1⟩⟨1| + |1⟩⟨0|]

= [0 1
1 0

]

𝜎̂2   =  𝜎̂𝑦   =  |𝑅⟩⟨𝑅|− |𝐿⟩⟨𝐿|

= [
0 𝑖
−𝑖 0

]

(69) 

 
6 If you want to prove these two identities, you can just go about and plug in the matrices for the operators and 

see that their products lead to a matrix of the type: 𝑈 =  [
𝑎 𝑖𝑐

−𝑖𝑐 𝑏
] With 𝑎, 𝑏,𝑐 ∈ ℝ which is the most general 

form for a unitary 2 ×2 matrix there is.  
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Frequently there is a fourth Pauli-Operator 𝜎̂0 = 1̂ introduced, which is the unit matrix. All for of these 

are obviously Hermitian, e.g.: 

𝜎̂𝑖 = 𝜎̂𝑖
† (70) 

We also note that: 

𝜎̂𝑖 𝜎̂𝑗 = 𝛿𝑖𝑗𝕀+ +𝑖𝜖𝑖𝑗𝑘𝜎̂𝑘 (71) 

where 𝜖𝑖𝑗𝑘  ist the Levi-Civita-Symbol or antisymmetric epsilon tensor. 

Any linear operator 𝑀̂ on the qubit state space (e.g. any operator that acts on a two-dimensional Hil-

bert space and whose result still is in that space) can be constructed from a superposition of the Pauli-

Operators: 

𝐴̂ = ∑ 𝑎𝑖 𝜎̂𝑖

𝑖=0…3

(72) 

If the expansion coefficients are real, then the resulting operator 𝑀̂ is Hermitian, i.e. it belongs to a 

measurement. In other words: any quantum measurement you can make on a qubit is a superposition 

of the Pauli measurement operators, or, from an optics point of view a polarization measurement. 

The three types of basis state sets are mutually unbiased. You can see this relation by looking at the 

commutation relation of their observables 𝜎̂1,2,3, for which the relation 

[𝜎̂𝑖 , 𝜎̂𝑗] = 2𝑖𝜖𝑖𝑗𝑘𝜎̂𝑘 (73) 

where 𝜖𝑖𝑗𝑘  ist the Levi-Civita-Symbol or antisymmetric epsilon tensor, holds. You can compare this with 

the uncertainty relation of chapter 2.2.3 and you will find, that the Pauli operators are mutually com-

plementary, in the sense of that complete knowledge about the result of a measurement of the first 

means that we have absolutely no knowledge of the measurement outcome of the second. 

In other words: if you decide to measure your Qubit |𝜓⟩ in the CBS (which from now on in shall mean 

that we apply the 𝜎̂𝑧 operator) then there is absolutely no information left of the qubit, which you 

could measure in any of the other bases. Or, to put it in an even more blunt language: 

Although the state of a qubit is characterized by two real numbers (e.g. , the latitude and 

longitude on the Bloch-Sphere) you can only ever hope to extract a single bit of infor-

mation from them. 

This is a profound finding, which cannot be stressed enough, because it limits the power of computa-

tional machines quite drastically. Although we have seen from above that quantum systems have this 

super high-dimensional and complex internal dynamics that we can utilize for computation, they still 

only give very simple answers. We may never even hope to extract their full internal state as an answer 

to our algorithmic problems. This is a profound difference to Turing-Machines, where you can – after 

the machine is finished – easily inspect the complete tape. Therefore, a large part of the difficulty in 

designing quantum algorithms derives from the challenge to formulate sufficiently simple “questions” 

that you can ask you quantum state or. In other words: quantum algorithms require the design of 

useful observables. 

3.5 Mixed Single-Qubit States  
In chapter 2.4 we have introduced mixed states as a representation for the statistical uncertainty of a 

quantum field. Of course, such kind of uncertainty may also be attributed to the state of a qubit. It may 
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e.g. be initialized into the |1⟩ state but might – over time – flip into the |0⟩ with probability 𝑝. The 

physical implementation of quantum computers aims to reduce this probability, but these probabilities 

are still a significant issue; they may be caused by thermal noise, vibrations, decoherence and many 

other effects. The final state, however, can be described by the mixed state: 

𝜌̂ = 𝑝|0⟩⟨0|+(1− 𝑝)|1⟩⟨1| (74) 

If the state was pure, e.g. 𝑝 = 0, then the density matrix would correspond to the pure state |1⟩ and 

its representative point on the pole of the Bloch-Sphere. The same is true for 𝑝 = 1. The mixed state 

above can thus be thought of as lying on the connection line between the |1⟩ and the |0⟩ point, with 

a fraction of 𝑝 of the way from |1⟩ to |0⟩ complete. Thus, mixed states lie inside the Bloch sphere and 

the center of the sphere at 𝜌̂Unpol =
1

2
|0⟩⟨0|+

1

2
|1⟩⟨1| is the maximally mixed state, i.e. completely 

mixed (unpolarized). 

It is also obvious that any point inside the Bloch-Sphere may be reached with multiple mixtures. As one 

example, 𝜌̂Unpol =
1

2
|𝑅⟩⟨𝑅| +

1

2
|𝐿⟩⟨𝐿| =

1

4
|𝑅⟩⟨𝑅| +

1

4
|𝐿⟩⟨𝐿|+

1

4
|+⟩⟨+| +

1

4
|−⟩⟨−| may be decomposed 

into mixtures of left- and right handed circular states or mixtures of left- and right handed and up- and 

down-polarized states, etc… 

A density matrix decomposition of any point on inside the Bloch-sphere is therefore never unique. It 

is, however, conceptually simple to use the three orthogonal axes to define the position of any point, 

which we have seen above are defined by the Pauli-Matricies. Thus, one can define any mixed polari-

zation state (and thus any mixed Qubit state) according to: 

𝜌̂ =
1

2
(1 + 𝑠 ⋅ 𝜎̂) (75) 

where 𝑠  ist the so-called Stokes-Vector, with each entry 𝑠𝑖 ∈ (−1,1). We immediately note that 

𝑇𝑟(𝜌̂) = 1 is automatically fulfilled and the expectation value for a polarization measured along the 

axis 𝑖 is given as 

𝑇𝑟(𝜌̂𝜎̂𝑖) =
1

2
𝑇𝑟(𝜎̂𝑖 + 2𝑠𝑖)= 𝑠𝑖 (76) 

Which is just, what we expected, i.e. if we measure any type of polarized light (pure or mixed) with a 

polarization beam splitter along the axis 𝑗, then we will get the value of the appropriate stokes vector 

entry as an average measurement result. 

 
Figure 14: A mixed state is represented by a Point inside the Poincaré-sphere. (a) Representation of the state as 
𝜌𝑀 = 𝑝|0⟩⟨0|+(1− 𝑝)|1⟩⟨1| and (b) as an alternative but equally viable mixture. (stolen from Lovett/Kok) 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 37 

3.6 The Circuit Representation 
We shall pretty soon see that Quantum Algorithms may be composed of fairly complicated sequences 

of gates and measurement operations. It is therefore altogether fitting to introduce a representation, 

which is both instructive but also concise and precise. We take flow-charts in classical computers as a 

role model and note that quantum flow charts are actually even more simple, because quantum algo-

rithms must be composed of reversible quantum gates, hence the number of topologies in quantum 

flow charts is somewhat more restricted. But I digress. 

Quantum circuits are generally composed of four types elements, with the flow of time from the left 

to the right. 

1. Qubits (or sets thereof) are represented as solid lines, with a marker for the initial state 

at the left. 

2. Classical bits (or sets thereof) are represented as double lines. A marker for the initial 

state may be omitted because their values may be overwritten (Unitarity does not apply 

to them). 

3. Gates (Unitary Operations) are represented by squares with inputs at the left and out-

puts to the right. The type of gates is marked in the box. Gate parameters may be con-

trolled by a (sequence of) classical bits. This is indicated by an extra input wire. Gates 

may operate on a single qubit or multiple qubits. 

4. Measurement operators are marked similar to gates but indicated with a gauge symbol. 

They also have a classical output bit (or sequence thereof), which stores the result of 

the measurement. 

Of course, this is extremely theoretical and we shall start with the simplest example: 

 
Figure 15: Circuit Representation of a simple 1-gate circuit. The circuit starts from the left with a qubit (named 𝑞0) 
in the |0⟩ state. A Hadamard operator is then applied. The qubit is then measured (in the computation basis, hence 
the z-notation of the measurement operator!), the result is stored in the classical bit 𝑐1. 

Because people are lazy it has become somewhat customary to skip initialization step and the meas-

urement unless the measured result is explicitly needed in a downstream part of the code.  
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Figure 16: Same as Figure 15, in a simplified notation however. The initialization and measurement steps are left 
out for brevity. 

We can, of course, also compose more complicated types of circuits, even if there is only a single qubit 

floating around. Here are a few examples, taken from the chapters above. We always start with a |0⟩-

state and we end up with a few of the Pauli-Basis states discussed above: 

Circuit Result Comment 

 

 

|0⟩ → |+⟩  

 

 

|0⟩ → |𝐿⟩ 

 

 

|0⟩ → |−⟩  
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Circuit Result Comment 

 

 

𝐻̂ 2 = 𝕀 

Figure 17: A few examples for 1-bit quantum circuits. 

We shall later see, how we can use this scheme to implement and represent complex quantum circuits. 

4 Multiple Qubits, Entanglement, and Universality 
So far, we have only discussed individual Quits. Most protocols in Quantum Information Processing 

rely explicitly on composite systems of multiple Qubits. Image a physical system, which consists of 

multiple qubits, say for example multiple photons, which we shall number from 1 to 𝑁. Thus, the state 

of this qubits must be given by 

|𝜓𝑖 ⟩ = 𝛼0
(𝑖)|0𝑖⟩+ 𝛼1

(𝑖)|1𝑖⟩ (77) 

In other words: each Qubit’s Basis spans its own two-dimensional Hilbert-Space ℋ𝑖. A system of 𝑁 

Qubits is must there span a Hilbert space ℋ: 

ℋ = ℋ1⨂ℋ2⨂…⨂ℋ𝑁 (78) 

Which means that the Hilbert space is spanned by the basis vectors composed of all possible combi-

nations of individual computational basis vectors for the individual basis states |𝑏1⟩⨂|𝑏2⟩⨂… ⨂|𝑏𝑁⟩, 

where |𝑏𝑖⟩ ∈ {0,1}. Thus, any state in the complete system is given by  

|𝜓⟩ = ∑ ∑ … ∑ 𝛼𝑏1𝑏2…𝑏𝑁

1

𝑏𝑁=0

1

𝑏2=0

1

𝑏1=0

|𝑏1⟩⨂|𝑏2⟩⨂…⨂|𝑏𝑁⟩

= ∑ ∑ … ∑ 𝛼𝑏1𝑏2…𝑏𝑁

1

𝑏𝑁=0

1

𝑏2=0

1

𝑏1=0

|𝑏1𝑏2… 𝑏𝑁⟩

(79) 

Where ∑ ∑ … ∑ |𝛼𝑏1𝑏2…𝑏𝑁
1
𝑏𝑁=0

1
𝑏2=0

1
𝑏1=0 |2=1 must hold for reasons of normalization.  The second line 

differs from the first in just the fact that the tensorial product of the basis vectors has been written in 

a shorthanded notation. To make this more obvious: |𝑏1𝑏2 …𝑏𝑁⟩ is the state, where each Qubit 𝑖 is in 

the state |𝑏𝑖⟩; e.g. |000⟩ is a three Qubit system in a state where all Qubits have value zero, e.g. they 

are all horizontally polarized. These basis vectors |𝑏1𝑏2 …𝑏𝑁⟩  are called the computational basis states 

(CBS) of the composite system. If the composite system |𝜓⟩ is in a product state 

|𝜓⟩ = |𝜓1⟩⨂|𝜓2⟩⨂… ⨂|𝜓𝑁⟩ (80) 

then the relation of the quantum amplitudes is simply: 

𝛼𝑏1𝑏2…𝑏𝑁
= 𝛼

𝑏1

(1)
⋅ 𝛼

𝑏2

(2)
⋅ … ⋅ 𝛼

𝑏𝑁

(𝑁) (81) 
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However, most states in the combined system cannot be rewritten in terms of individual product 

states, as defined above, which becomes immediately clear from simple combinatorial arguments. As-

sume that you have a 𝑁-Qubit system, then you require 2𝑁 quantum amplitudes  𝛼𝑏1𝑏2…𝑏𝑁
to describe 

any possible state of that system. If you, however, have 𝑁 individual states there are just 2𝑁 individual 

quantum amplitudes 𝛼𝑖 ,𝛽𝑖 . To make that more obvious: assume you have a three-qubit system. There 

are eight possible combinations of the individual qubit states |𝑏𝑖⟩ and thus eight possible basis states 

|𝑏1𝑏2𝑏3⟩ with eight expansion coefficients 𝛼𝑏1𝑏2𝑏3
, running from 𝛼000 to 𝛼111. If the state was com-

posed of individual states there were only six 𝛼0
(1) …𝛼0

(3) and 𝛼1
(1) … 𝛼1

(3) 

From this simple argument you immediately see that multi-qubit systems have a much larger complex-

ity than all of their composite systems individually. Moreover, the difference scales exponentially and 

it is exactly that exponential scaling of the number of internal degrees of freedom, which is leveraged 

in a quantum computers to make complex calculations. We can use this revised understanding to try 

and refine Definition 3: 

Definition 5: A quantum computer is a device, which makes use of the exponential scal-

ing of the degrees of freedom of a multipartite quantum system (typically of multiple 

qubits) as a resource in solving computational tasks.  

4.1 Two-Qubit States and Entanglement 
Let’s now focus on a system composed of two Qubits, to elaborate on the nature of the internal de-

grees of freedom inherent in a multipartite quantum system and some of its consequences. 

4.1.1 Product States and Non-Correlation 
So far, we have used the computational basis states: |00⟩, |01⟩,|10⟩, |11⟩ and superpositions thereof 

to describe any state of the quantum system |𝜓⟩ = 𝛼00|00⟩+ 𝛼01|01⟩+ 𝛼10|10⟩+ 𝛼11|11⟩.  

If the quantum system in question is in any product state |𝜓⟩ = |𝜓1⟩|𝜓2⟩, then we can be certain, that 

any measurement (i.e. a polarization measurement) on the first Qubit does not affect the outcome of 

the measurement on the second Qubit, whatsoever.  Nor does it produce any information on the state 

of the second Qubit. To show this we assume an arbitrary measurement on Qubit one 𝐴̂1 , which we 

shall describe by its two orthogonal projection operators and measurement results of ±1. The basis 

states of the projection operators shall be called |𝑎1⟩ and |𝑎2⟩ without loos of generality 

𝐴̂1 = |𝑎1⟩⟨𝑎1|− |𝑎2⟩⟨𝑎2| (82) 

We can decompose the state of the first qubit into the basis states of the first measurement operator, 

according to |𝜓1⟩ = cos 𝜃 |𝑎1⟩+ sin𝜃 exp(𝑖𝜙) |𝑎2⟩: 

|𝜓1⟩|𝜓2⟩ = cos𝜃 |𝑎1𝜓2⟩+ sin 𝜃 exp(𝑖𝜙) |𝑎2𝜓2⟩ (83) 

The measurement then collapses the first Qubit onto |𝑎1⟩ with probability cos2 𝜃 resulting in a joint 

state of |𝑎1⟩|𝜓2⟩ and onto |𝑎2⟩ with probability sin2 𝜃 resulting in a joint state of |𝑎2⟩|𝜓2⟩. The result 

is classically random ensemble and must therefore be treated in the mixed state formalism with a 

density matrix: 

𝜌̂ = cos2 𝜃 |𝑎1⟩|𝜓2⟩⟨𝜓2|⟨𝑎1|+ sin2  𝜃 |𝑎2⟩|𝜓2⟩⟨𝜓2|⟨𝑎2|

= (cos2 𝜃 |𝑎1⟩⟨𝑎1|+ sin2 𝜃 |𝑎2⟩⟨𝑎2|)⨂|𝜓2⟩⟨𝜓2|

= 𝜌̂1⨂|𝜓2⟩⟨𝜓2|

(84) 
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From this result you can clearly see, that the measurement procedure has neither extracted any infor-

mation from the second qubit, nor has it affected the second qubit in any tangible way or form. The 

measurement results are thus uncorrelated. Moreover, the result has left Qubit 2 in a pure state. 

Altogether this seems like a rather classical result: a measurement on Qubit 1 does not affect Qubit 2 

and it also does not produce any prior information on Qubit 2. Or to put it in other terms: product 

states behave like classically independent systems, they are thus kind of boring. 

4.1.2 Non-Product States, Correlation, and Entanglement 
We shall now see that this classicality is not maintained for non-product states. For this we shall intro-

duce a new basis set for the two-qubit system as an alternative to the CBS |00⟩, |01⟩, |10⟩,|11⟩ . 

Among the many possible set of basis states, one, which stands out particularly, is the set of maximally 

entangled Bell-States |Ψ/Φ±⟩: 

|Ψ±⟩ =
1

√2
(|01⟩± |10⟩)

|Φ±⟩ =
1

√2
(|00⟩± |11⟩)

(85) 

Let’s repeat our measurement experiment for any of these, say |𝜓⟩ = |Φ+⟩   

|𝜓⟩ =
1

√2
(|0102⟩+ |1112⟩) (86) 

We measure the first Qubit in an arbitrary observable, which is defined by its projection-based meas-

urement operator. As a reminder this operator is 

𝐴̂(𝜃,𝜙)1 = |𝑎1⟩⟨𝑎1| − |𝑏1⟩⟨𝑏1| (87) 

The measurement corresponds to some arbitrary basis (not necessarily the CBS), which can be repre-

sented by a point on the Bloch sphere for |𝑎1⟩ and a point on the opposite side for |𝑎2⟩, which we can 

describe by the two angles 𝜃 and 𝜙 according to the equations: 

|𝑎1⟩ = cos𝜃 |01⟩+ sin 𝜃 exp𝑖𝜙 |11⟩ |𝑏1⟩ = sin 𝜃 exp(−𝑖𝜙) |01⟩− cos𝜃 |11⟩
1

(88) 

This simply means, that 𝜃 represents how far away on the Bloch-Sphere we are from the CBS. Here 

𝜃 = 0 and 𝜃 =
𝜋

2
 represent measurements in the CBS basis and 𝜃 = ±

𝜋

4
 represent measurements on 

the equator of the Bloch-Sphere, e.g. the |±⟩  or the |𝐿/𝑅⟩ bases or superpositions thereof. The specific 

choice of factors also automatically ensures that |𝑎1⟩ and |b1⟩ are orthonormal, i.e. they are a valid 

basis set. 

As we must expand the CBS in which the initial state was defined into these states anyway it makes 

sense to expand the basis states into the eigenstates of the observable: 

|01⟩ = cos𝜃 |𝑎1⟩+ sin 𝜃 exp𝑖𝜙 |𝑏1⟩ |11⟩ = sin 𝜃 exp(−𝑖𝜙) |𝑎1⟩− cos𝜃 |b1⟩ (89) 

At any rate, we can now describe the first Qubit state as a superposition of the measurement basis 

and we get: 

|𝜓⟩ =
1

√2
[(cos𝜃 |𝑎1⟩+ sin𝜃 exp(𝑖𝜙) |𝑏1⟩)|02⟩+ (sin 𝜃 exp(−𝑖𝜙) |𝑎1⟩− cos 𝜃 |𝑏1⟩)|12⟩]

=
1

√2
[(cos𝜃 |02⟩+ sin 𝜃 exp(−𝑖𝜙)|12⟩)|𝑎1⟩+ (sin 𝜃 exp(𝑖𝜙) |02⟩− cos 𝜃)|12⟩|𝑏1⟩] (90)
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The measurement then collapses the first Qubit and each of the terms has a certain probability of 

being the resulting state after collapse. The probabilities are: 

𝑝(𝐴1 = +1) = ⟨𝜓|𝑃̂𝑎|𝜓⟩

= ⟨𝜓|𝑎1⟩⟨𝑎1|𝜓⟩

=
1

2
[(cos𝜃 ⟨02| + sin 𝜃 exp(𝑖𝜙) ⟨12|)][(cos𝜃 |02⟩+ sin𝜃 exp(−𝑖𝜙)|12⟩)]

=
1

2
[cos2 𝜃 + sin2  𝜃]

=
1

2

𝑝(𝐴1 = −1) = ⟨𝜓|𝑃̂𝑏|𝜓⟩ =
1

2

(91) 

The states after the measurement are: 

|𝜓|𝐴1 = +1⟩ = (cos 𝜃 |02⟩+ sin𝜃 exp(−𝑖𝜙)|12⟩)|𝑎1⟩

|𝜓|𝐴1 = −1⟩ = (sin 𝜃 exp(𝑖𝜙) |02⟩− cos𝜃 |12⟩)|𝑏1⟩ (92) 

Here we note the first curios thing. The resulting probability distributions of Qubit 1 do not at all de-

pend on the type of measurement applied. From the single particle picture, you would expect that a 

quantum particle must have one specific observable, where the result is fixed. Or to put it more bluntly: 

by now you have accepted that it may not be clear what property a Quantum Particle may have, but 

you would surely expect that it should have some fixed property. Yet, any possible measurement, 

which you can apply on Qubit 1 gives the same result. It seems like Qubit 1 has become a particle 

without properties. This also means that there is no point on the Bloch Sphere, which describes the 

state of Qubit 1. 

In a sense Qubit 1 has ceased to exist as an independent particle. Instead, it has gone into a state, in 

which it does not make sense to think about the properties of Qubit 1 without resolving its connection 

with Qubit 2. Both Qubits have become ENTANGLED. 

That said, let’s explore the status of the joint system after the measurement on Qubit 1. As it is in a 

mixed state it must be described using the density matrix approach, where we can simply read off the 

entirety of the density operator from the table above 

𝜌̂ =
1

2
[|𝜓|𝐴1 = +1⟩⟨𝜓|𝐴1 = +1| + |𝜓|𝐴1 = −1⟩⟨𝜓|𝐴1 = −1|] (93) 

Which is clearly not factorizable in the same way, as the non-correlated state from above. Let’s elabo-

rate on this a bit more in-depth by explicitly calculating the state of the second Qubit. This is done by 

calculating the partial trace over the first Qubit (e.g. a hypothetical measurement with the identity 

operator for Qubit 1). 
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𝜌̂2 = Tr1𝜌̂ = ∑⟨𝑎𝑖 |𝜌̂|𝑎𝑖⟩

𝑖

=
1

2
 (cos 𝜃 |02⟩+ sin𝜃 exp(−𝑖𝜙)|12⟩)(cos𝜃 ⟨02|+ sin 𝜃 exp(𝑖𝜙)⟨12|)

+
1

2
(sin𝜃 exp(𝑖𝜙)|02⟩− cos 𝜃)|12⟩)(sin𝜃 exp(−𝑖𝜙) ⟨02| − cos𝜃)⟨12|)

=
1

2
(cos2 𝜃 + sin2 𝜃)|02⟩⟨02|+

1

2
(cos2 𝜃 + sin2 𝜃)|12⟩⟨12|

+
1

2
(cos𝜃 sin 𝜃 exp(𝑖𝜙)− cos 𝜃 sin 𝜃 exp(𝑖𝜙))|02⟩⟨12|

+
1

2
(cos𝜃 sin 𝜃 exp(−𝑖𝜙)− cos𝜃 sin𝜃 exp(−𝑖𝜙))|12⟩⟨02|

=
1

2
[|02⟩⟨02| + |12⟩⟨12|] (94)

 

This is not just any mixed state but a maximally mixed state according to the definition in chapter 2.4.1. 

This means that a measurement in Qubit 1 does not only increase the information content (entropy) 

of Qubit 1 it also increases the entropy of Qubit 2. Indeed, this is much weirder than you would initially 

expect. Let’s set this aside for a second and use this finding to define the entangledness of a quantum 

system: 

Definition 6: The degree of Entanglement of a two-Qubit quantum system in a joined 

state |𝜓⟩ is measured by testing the purity of the state of Qubit 2 after a measurement 

𝐴1 is applied onto Qubit 1, i.e. let 𝜌̂ be the state of the joint system after application of 

measurement 𝐴1 then the entanglement 𝐸 is calculated using 𝐸 = 2 Tr[(Tr1𝜌̂)2]. 𝐸 ∈

[0,1] with 𝐸 = 0 indicating non-entanglement and 𝐸 = 1 indicating maximum entangle-

ment. 

The specific kind of measurement of Qubit 1 does not matter. A generalization with 

larger systems is straightforward. 

Let’s return to the weirdness of entangled systems. Previously, we had seen that Quantum Systems 

are transferred from a pure into a mixed state by measurement only. But we have never even touched 

Qubit 2. We have only measured Qubit 1. Still, in the process we have transformed Qubit 2 into a mixed 

state. This means we must have made implicitly made some sort of measurement with Qubit 2. Let’s 

find this out and do so by applying the observable 𝐴̂(𝜃,−𝜙)2, onto Qubit 2 (this is the same as for 

Qubit 1, with the only exception that the phase shift between the two measurement bases is reversed, 

e.g. the sense of the chirality is flipped). 

We rewrite the state of the second Qubit system into two parts, according to the measurement out-

come of 𝐴2 (we could proceed with the complete 𝜌̂ from above but then the equations get somewhat 

lengthy): 

|𝜓2|𝐴1 = +1⟩ = cos𝜃 |02⟩+ sin 𝜃 exp(−𝑖𝜙)|12⟩

|𝜓2|𝐴1 = −1⟩ = sin𝜃 exp(𝑖𝜙) |02⟩− cos 𝜃|12⟩ (95) 

Let’s now apply the same measurement (let’s call it 𝐴2), which have applied to the first Qubit on the 

second qubit.  We now calculate the probabilities of 𝐴2  by noting that 𝑝(𝐴2 = 𝑎𝑞|𝐴1 = 𝑎𝑟) =

𝑇𝑟(𝜌̂2(𝐴1 = 𝑎𝑟)|𝑎𝑞⟩⟨𝑎𝑞|)= ∑ ⟨𝑎𝑖 𝜌̂2(𝐴1 = 𝑎𝑟)|𝑎𝑞⟩⟨𝑎𝑞|𝑎𝑖⟩𝑖 . We read them off as: 
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𝑝(𝐴2 = +1|𝐴1 = +1) = |⟨𝑎1|𝜓2|𝐴1 = +1⟩|2

= |⟨𝑎1|(cos𝜃 |02⟩+ sin 𝜃 exp(−𝑖𝜙)|12⟩)|2

= |cos2 𝜃 + sin2 𝜃⟩|2

= 1
𝑝(𝐴2 = −1|𝐴1 = +1) = |⟨𝑎2|𝜓2|𝐴2 = +1⟩|2

= |cos 𝜃 sin 𝜃 exp(−𝑖𝜙) − cos𝜃 sin𝜃 exp(−𝑖𝜙)|2

= 0
𝑝(𝐴2 = +1|𝐴1 = −1) = 0

𝑝(𝐴2 = −1|𝐴1 = −1) = 1

(96) 

Note, that we have explicitly shown, how the first solution is obtained and then just given the result 

for the second to fourth. We now group the four cases into two classes. The situation 
(𝐴2 = +1|𝐴1 = +1) and (𝐴2 = −1|𝐴1 = −1) mean that the measurements on Qubit Number 2 will 

yield the SAME result as the measurement on Qubit Number 1 (correlation). The other two situations 

correspond to measurements with different results (anticorrelation). We find that both members in 

both of the classes are equal and they are 1 and 0 exclusively.  

This result is profound: a measurement of Qubit 1 with observable 𝐴1 with any result will force Qubit 

2 to instantly collapse into the same resulting state for observable 𝐴2. The results are perfectly corre-

lated. Moreover, and this in as important point: the correlation is maintained irrespective of the meas-

urement basis! The two Qubit give the same results, irrespective of what you measure, as long as you 

make the same measurement. 

Or in other words, the observable in the 𝐴1 measurement basis is perfectly correlated to the observa-

ble in the same basis, with a flipped phase as represented by the observable 𝐴2. Here we have only 

discussed this relation for an initial two-Qubit system in the |Φ+ ⟩ state but one can show that for the 

other three Bell-States there is a correlated Basis for Qubit 2 for any possible measurement of Qubit 

1, too (there is relation is just a slight bit more complicated than just a flip of the 𝜙-phase). This leads 

us to an alternative definition of entanglement: 

Definition 7: Two Qubits are completely entangled, if for any basis set for Qubit 1 there 

exists a corresponding basis set for Qubit 2, in which a measurement is guaranteed to 

yield the identical result. The degree of entanglement can be quantified by the maximum 

degree of correlation between a measurement in a basis set in Qubit 1 and the most cor-

related basis set in Qubit 2. 

In other words: measurements in entangled systems produce correlated results, irrespective of the 

measurement!  

In fact, one can show, that such a behaviour produces a stronger correlation than could be constructed 

for any kind of classical interaction. This is done by generalizing our analysis to measurements on Qubit 

1 and Qubit 2 into combinations of three different bases and the derivation of a quantity 𝐸 (not to be 

confused with the degree of entangledness), which expresses the correlations of these different meas-

urements. It can be shown, that there is a range of values for 𝐸 which can be reached by Quantum 

Systems but not by classical systems; the resulting inequality is the so-called CHSH-Version of Bell’s 

inequalities. They can be tested for experimentally (which has been done first by a team around A. 

Aspect in 1984, see below) and it was indeed shown that two entangled Qubits exhibits correlations, 

which cannot be explained with classical particles; this is generally considered a resounding proof that 

quantum physics is required to describe nature properly. 
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Figure 18 Schematic of a two-channel Bell-test with polarization splitters using two time-like separated observer 
Alice and Bob. The test has to be re-run at least four times for all combinations of two different settings Aa, Ab of 

the left and Bc, Bd of the right polarizer. The strongest deviation for the classical prediction of 𝑆 = 2 √2  can be 
found at a=0°, b=45° and c=22.5°, d=67.5° (Tsirelson’s bound) 

 
Figure 19 Scheme of the Aspect-experiment, the first to successfully demonstrate 𝑆 > 2. PRL 49 1804 (1982). 

4.2 Controlled Operations on a single Qubit 
In one of the last chapters we discussed single Qubit gates, in depth. Although there is a surprinsing 

amount stuff to learn there, it is of course not enough o build a quantum computer, the same way, 

that single bit operation are not enough to build an ordinary.  One particular operation of a classical 

computer, that inherent requires two bit gates are controlled operations, i.e. operation in which the 

action on one bit depends on the value of another. 

4.2.1 The CNOT Operation 
The simplest (and as we shall soon see the only one which is really required) is the controlled NOT or 

CNOT operation; typically abbreviated as 𝐶𝑋̂. The CNOT operation has two inputs, dubbed the control 

Qubit |𝑐⟩ and the target Qubits |𝑐⟩. The state of the target Qubit is supposed to flip, if the control Qubit  

is in state |0⟩. You can quite easily see that the CNOT is in principle the quantum version of an EXOR 

or a half-adder, e.g. 

𝐶𝑋̂(|𝑐⟩|𝑡⟩) = |𝑐⟩|𝑐⨁𝑡⟩ (97) 

We can, of course, also write the gate as a superposition of projectors: 
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𝐶𝑋̂ = |0𝑐⟩(|0𝑡⟩⟨0𝑡| + |1𝑡⟩⟨1𝑡|)⟨0𝑐| + |1𝑐⟩(|0𝑡⟩⟨1𝑡|+ |1𝑡⟩⟨0𝑡|)⟨1𝑐|
= |0𝑐⟩𝕀𝑡⟨0𝑐| + |1𝑐⟩(1− 𝕀𝑡)⟨1𝑐|

(98) 

Or we can write it as a matrix: 

𝐶𝑋̂ = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] (99) 

And there is, as you probably expected also a specific symbol, which is used in the circuit-model nota-

tion: 

 
Figure 20: Circuit Representation of a CNOT register. 

While the CNOT-Gates seems rather trivial there are a lot of fancy things that you can do with CNOTs 

and just a few other gates. The first fancy thing to note, is that for CNOT operation the roles of the 

control and the target Qubit are largely interchangeable, indeed, we find that:  

𝐻̂𝑐𝐻̂𝑡𝐶𝑋̂(𝐻̂𝑐|𝑐⟩𝐻̂𝑡|𝑡⟩) = 𝐶𝑋̂(|𝑡⟩|𝑐⟩) = |𝑐⨁𝑡⟩|𝑡⟩ (100) 

 

= 

 
Figure 21: Two equivalent representations of the CNOT gates with the roles of the control and target Qubit inter-
changed. 

4.2.2 Bell State Creation and Measurement 
Another fancy use of the CNOT-gate is the construction and measurement of Bell states from CBS-

states. Indeed, we find the simple relation: 
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|𝒄⟩ |𝒕⟩ 𝑪𝑿̂(𝑯̂|𝒄⟩|𝒕⟩) 

|0⟩ |0⟩ |Φ+⟩ 
|0⟩ |1⟩ |Φ−⟩ 
|1⟩ |0⟩ |Ψ+⟩ 
|1⟩ |1⟩ |Ψ−⟩ 

We can exploit the invertibility of quantum circuits to also map Bell states onto CBS and thereby cre-

ating measurement systems for Bell states. 

 
Figure 22: A Bell-State creator (left of the Barrier), which creates any of the four Bell states according to the input 
bits in0 and in1 and a Bell state measurement circuit, which measures the Bell state and ouputs the result (0,1,2,3) 
into the classical two-bit register out. 

Here is an alternative circuit, which creates a random Bell-states and then measures it: 

 
Figure 23: A Bell-State creator (left of the Barrier), which first creates two QuBits with a random distribution of |0⟩ 
and |1⟩ states using a Hadamard operator and a measurement. Right of the Barries is the Bell State Measurement 
operator. Results are plotted to the right for 1000 runs. Note that only those measurements occur, in which the 
pairs of bits (in and out) are equal. This show that the algorithm does its job. 

4.2.3 Quantum Teleportation and Related Protocols 
Bell state measurements are fancier than you may think, as they allow us to implement a lot of awe-

some operations. While these are not at the core subject of this lecture, we shall here introduce an 

algorithm for quantum teleportation. The synopsis is as follows. We create two Qubits (q1 and q2) in 

a |Φ+⟩-state and a third qubit q0 in a random state |𝜓⟩. Then we apply Bell State measurement on 

Qubit q0 and q1. The resulting two classical bits will drive (or not drive) unitary operations in Qubit 1. 

After these, Qubit q2 will be in state |𝜓⟩ . Hence, we have transported the quantum state |𝜓⟩ from 

Qubit q0 to Qubit q2 (keep in mind, the state is destroyed in Qubit q0), hence the name quantum 

teleportation. 
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Figure 24: A Quantum Teleportation Circuit, which teleports an |+⟩ state from Q0 to Q2. Note the initial state is 
defined in a random state using the “init” Gate. The disentangle-Gate is simply the inverse of the init-gate. The 
application of the Disentangler-Gate always produces the |0⟩ state as shown in the result (the leading bit is always 
zero) irrespective of the equally distributed output of the BS-measurement. 

4.2.4 Controlled U-Operations 
As a next step we shall expand the scope of controlled operations. So far, we have only discussed the 

CNOT gate. We shall now expand the discussion to a controlled-𝑈 operation, that is, an operation that 

applys a single-qubit gate 𝑈 onto a target bit, if the control bit is in the |1⟩-state and does nothing 

otherwise. 

The common notation is: 

𝐶𝑈̂(|𝑐⟩|𝑡⟩) = |𝑐⟩𝑈𝑐|𝑡⟩    (101) 

Note that the controlled-𝑈 operation is not a binary do-something or do-nothing operation, unless the 

control bit in a CBS. In the more general state this will enact a superposition of application and non-

application of 𝑈 on the target qubit and thus leave the qubit pair in an entangled state. 

From a practical point of view the questions arises: how ca we implement controlled controlled-𝑈  
operations? Are they new or can be break them down into well-known gates, which we have discussed 

prior. To do so, we need a corollary, which extends the discussion in single qubit gates from chapter 

3.3. 

Assume we have an arbitrary unitary gate 𝑈  then we can find unitary operators 𝐴̂, 𝐵̂, and 𝐶̂  and 

𝐴̂𝐵̂𝐶̂ = 𝕀 and a phase factor 𝛼 such that 

𝑈 = exp(𝑖𝛼) 𝐴̂𝑋̂𝐵̂𝑋̂𝐶̂ (102) 
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Where 𝑋̂ = 𝑆̂2 is the NOT gate 𝑋̂ = |0⟩⟨0|− |1⟩⟨1|. We will not give a proof here but the simplest way 

is to find specific angles in the triple-rotation theorem from chapter 3.3 that yield this result. If you 

read this for the first time you are guaranteed to find the corollary quite mysterious , but indeed it is 

very helpful, for the construction of controlled U-gates from CNOTs. Indeed we find, that  

 
Figure 25: A controlled 𝑈-operation in circuit notation and the equivalent gate composed of single-gate operations 
and CNOTs. 

We verify by this in two steps. The first is phase kickback relation depicted in Figure 26: 

 
Figure 26: Phase kickback for two Qubits. 

 
You can do so by noting that both sides map the CBS-states according to the following rules 

|0𝑐0𝑡⟩ → |00⟩   |01⟩ → |01⟩   |10⟩ → exp𝑖𝛼 |10⟩   |11⟩ → exp𝑖𝛼 |11⟩ (103) 

The rest of the relation in Figure 25 can be shown by plugging in |0⟩ into the control qubit, which leaves 

𝐴̂𝐵̂𝐶̂ = 𝕀 . If you instead plug in a |1⟩ then you get  exp(𝑖𝛼) 𝐴̂𝑋̂𝐵̂𝑋̂𝐶̂, which we have constructed to be 

𝑈. 

Hence, we have seen that we can construct any single-qubit controlled U operation from CNOT and 

single qubit operations. 

4.2.5 Multiple Controls 
We might require the use of multiple (bitwise connected) control operations. E.g. , a control-bit may 

only go into the active states if multiple criteria are matched (AND) or if any of a number of criteria is 

met (OR). Moreover, we may require operations which do fire on a control bit being |0⟩ as opposed to 

being |1⟩. 

Let’s begin with the AND case.  Assume we have 𝑛 control bits and we desire to operate 𝑈 on the 𝑛 +

1𝑡ℎ qubit, if all control bits are in the |1⟩ state. This controlled gate is accordingly called the 𝐶𝑛𝑈 gate 

and its notation is: 
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𝐶𝑛𝑈̂(|𝑐1 …𝑐𝑛 ⟩|𝑡⟩) = |𝑐⟩𝑈𝑐1…𝑐𝑛 |𝑡⟩ (104) 

In case of 𝑈 being the 𝑁𝑂𝑇 operation we write 

𝐶𝑛𝑋̂(|𝑐1 … 𝑐𝑛⟩|𝑡⟩) = |𝑐⟩|𝑡⨂𝑐1𝑐2 … 𝑐𝑛⟩ (105) 

Let’s start with 𝑛 = 2 by introducing an operator 𝑉̂ with 𝑉̂2 = 𝑈. Such an operator is in principle easy 

to construct. It is the same rotation as 𝑈 with half the angle or your can decompose 𝑈 into eigenvec-

tor-eigenvalue pairs and divide the (phase only) eigenvalues by two. Then we can show the following 

relation:  

 
Figure 27: Decomposition of a double controlled U operation into CNOTs and square rrot operators. 

We can easily verify this relation by plugging in all four combinations of the CBS bases into the two 

control lines. In the |00⟩-case nothing ever happens. In the |01⟩ case we do nothing to the control bits 

and apply a 𝑉̂𝑉̂† = 𝕀. In the |10⟩ case we apply a double NOT to the second Qubit and a 𝑉̂†𝑉̂ = 𝕀 to 

the target qubit. In the |11⟩ we apply a 𝑉̂𝑉̂ = 𝑈. 

The most important double-controlled operation is the double CNOT for which we only need to find 

the proper 𝑉̂, which is the so-called root swap gate 
1

√2
( 1 −𝑖
−𝑖 1

): 

 
Figure 28: A double CNOT gate using composed of CNOT and SQRT-NOT gates only. The target bit is initially in the 
|0⟩ state and the control bit are initialized in a random manner. Note the result of target qubit q2 is always 0 unless 
𝑞0 = 𝑞1|1⟩, then it is in the one |1⟩ state just as expected. Also note that QISKIT does not support the inverse of the 
controlled SQRT-NOT so this is implemented a controlled NOT plus a controlled SQRT-NOT (three quarters clockwise 
instead of a one quarter counterclockwise). 

We can now generalize to an arbitrary number of inputs at the expense of a few ancilla quibts, and 

give a construction for an 𝑛 = 3 case, which may serve as a generic example: 
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Figure 29: A triple CNOT gate using three control qubits q0…q2 two ancilla qubits q3, q4 and a target qubit q5. The 
target bit is initially in the |0⟩ state and the control bit are initialized in a random manner. Note the result of qubit 
q5 is always 0 unless 𝑞0 = 𝑞1 = 𝑞2 = |1⟩, then it is in the one |1⟩ state just as expected. 

To construct more complex logic we introduce the inverted CNOT gate, which is defined as: 

 
Figure 30: A |0⟩ active CNOT gate using. The target bit is initially in the |0⟩ state and the control bit is initialized in 
a random manner. Note the result of the target bit is only flipped if the control bit is in the |0⟩ state. 

4.3 Classic Computation on a Quantum Computer 
Quantum Algorithms are frequently used to solve problems which are formulated in the language of 

classical algorithms and we must find a method to make these problems accessible on a quantum 

computer. This issue is much more profound as you might think, because classical computers are based 

on irreversible operations, which you cannot – by definition – implement on a Quantum Computer. 

Nevertheless classical computers are subject to the laws of quantum physics, so it would come as a 

great surprise, if we could not implement logical operations on a quantum computer and hence clas-

sical computation in a more general sense. 

We shall tackle the issue in a two-pronged approach, by first introducing quantum logic gates (i.e. the 

quantum equivalents of binary logic gates) and then have a look at the consequences of superposition 

on classical algorithms. 

4.3.1 Implementing Logical Operations on a Quantum Computer 
We start by taking the NAND-operation as an example. It has the following truth-table: 

A B A NAND B 

0 0 1 
1 0 1 
0 1 1 

1 1 0 
You can immediately see that this operation is not reversible, i.e. you cannot “uncompute” the A NAND 

B, if the result is 1 because three different inputs will produce the same result. We have previously 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 52 

discussed that irreversibility leads to an increase of entropy and indeed there is a series of ground-

breaking results by Landauer from the 1960s, which identify the deletion of information as the action, 

which increases the entropy by 𝑘𝑇. Strange enough, this puts a lower limit on the power consumption 

of classical computers, but this is still a few orders of magnitude lower than the power consumption 

that we see today (but not so many). But I am digressing. 

We chose the NAND-example for a fundamental reason, because the NAND is a universal gate for 

classical computers, i.e. you can construct a Turing-complete computer only from NAND-gates. Hence, 

in principle we only need to find a reversible implementation of the NAND gate in the quantum lan-

guage to be able to port any classical algorithm into the quantum domain. 

The trick with reversibility is easily achieved, by retaining in input qubits in their initial state and con-

structing the gate in a way that the output bit is loaded with a predefined state |0⟩. To implement the 

NAND-gate we resort to the double controlled NOT gate (the toffoli-gate) from chapter 4.2.5 and turn 

it into a NAND by application of a NOT.  

 
Figure 31: A reversible NAND-Gate. 

We can also define an OR operator by simply using the fact that 𝐴 𝑂𝑅 𝐵 =

𝑁𝑂𝑇 ((𝑁𝑂𝑇 𝐴) 𝐴𝑁𝐷 (𝑁𝑂𝑇 𝐵)), thus we find the following layout for a quantum OR-gate: 

 
Figure 32: A reversible OR-gate. The target bit is initially in the |0⟩ state and the control bits are initialized in a 
random manner. Note the result of target qubit q2 is 0 if and only 𝑖𝑓 𝑞0 = 𝑞1 = |0⟩. Otherwise it is flipped  in the 
one |1⟩ state just as expected.  

The last of the bunch, which is frequently employed is the XOR-gate, which the only one in the common 

set of logic operations that is reversible, if one input state is know, hence, we can implement it in two 

possible ways, the usage of which depends on the question if we need the second input for further 

processing: 
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Figure 33: Two possible ways of implementing a quantum XOR-gate. (left) Stores the result of the XOR directly in 
QuBit1. (right) Stores the result in Qbit2 and requires Qubit2 to be initialized in the |0⟩ state. 

4.3.2 Classical Algorithms on Quantum Computers 
Logical gates implement a complete basis set for classic computers, we therefore conclude that we can 

use to this to cast any classical algorithm in a quantum form. What does this mean? This means that 

the algorithm behaves exactly like the classical one, if we run it with CBS as an input (where the CBS 

are supposed to be read like binary numbers for the classical input). However, we can also run the 

algorithm with an entangled superposition state and retain a true quantum result. As a example we 

take an entirely fictitious algorithm that is fed with a four bit number. We run it twice, once with the 

input number “12” and once with the input “6”. Suppose the algorithm us VERY hard to compute then 

we would, after a long wait compile the following table: 

Input Ouput 

1100 (12) 1110 (14) 

0110 (6) 0011 (3) 

We can now turn the algorithm into a quantum version by replacing all its NANDs with their quantum 

equivalents and we would be guaranteed to get: 

Input Ouput 

|1100⟩ (12) |1110⟩(14) 
|0110⟩ (6) |0011⟩ (3) 

This is certainly not an improvement. However, because the quantum algorithm is necessarily linear 

(it is a unitary matrix!) this means that if we input a superposition of CBS-states we obtain a result, 

which is superimposed of both classical runs: 

Input Ouput 

𝛼|1100⟩+ 𝛽|0110⟩  𝛼|1110⟩+ 𝛽|0011⟩  
Of course, we can generalize this to all possible superpositions, if we wanted to. We are now in a 

position, where we can run a classical algorithm with all possible classical inputs at once! This is, how-

ever, not really useful, because upon a simple measurement in the CBS we would still collapse onto 

ONE particular solution of the algorithm, and we would not even know which one. So, we can only get 

a real advantage out of this, if what we are really looking for are not individual solutions but specific 

properties, which come from superpositions of solutions. Think Averaging. Think statistics. Think Fou-

rier transformations. 

4.3.3 A word on Uncomputation 
As we have discussed there is no easy way to delete data in quantum computation, because all oper-

ations must be reversible. We have also seen that many operations require the usage of ancilla qubits 
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to store intermediate states of the calculation. Some quantum algorithms, as we shall see later, how-

ever require the return of all ancillas into a clean state, e.g. the rely on you to clean up all the interme-

diate values of your calculation, except for the final result. This process is called “uncalculation”.  

For operations, which are based on the CNOT-gates, this is, in general, not more complicated than the 

original calculation, because you can uncalculated by recalculating the result, e.g assume that you have 

an intermediate QuBit, which is created by a CNOT operation. A second application will restore the 

ancilla bit into the previous state, because 𝐶𝑋̂(𝐶𝑋̂(|𝑐⟩|𝑡⟩)) = |𝑐⟩|𝑡 ⊕𝑐 ⊕ 𝑐⟩ = |𝑐⟩|𝑡⟩. Thus can be 

used as discussed in the image below: 

 
 

Figure 34: Some Quantum operation 𝑈 relies on the ancilla QuBit q1 for the input. It will create a result in q2 and/or 
q3. After the operation is carried out, we can uncalculated  q1 by recalculating it. 

We shall see in the next chapter that this approach is indeed universal because CNOTs are universal. 

4.4 Generic Operations and Universality 
So far, we have restrained ourselves to operations, which are active on a single qubit only. In general, 

this is not the case, and we can, of course, define gates which are active on any number of qubits or 

any number or combinations of parts of qubits. We shall spend this chapter to show, that even such 

complicated operations can be broken down into a series of single Qubit operations and CNOTs. This 

will then conclude the universality proof, with the result, that we can decompose any possible quan-

tum operations in a series of CNOTs, Hadamard, and Phase Shift Gates.  

We shall however see that this construction is not terribly efficient. On the other hand, it should not 

be terribly efficient, because we can efficiently simulate those three gates on a classical computer and 

if we could decompose any quantum operation efficiently into them, we could efficiently simulate a 

complete Quantum Computer and there would be not much to learn from them. 

Any arbitrary gate is characterized by its unitary operator 𝑈, which can be represented by a matrix. 

Here we shall restrain ourselves to a 3x3 matrix and introduce an algorithm, which we can use to re-



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 55 

duce the 3x3 matrix by one dimension into a series of 2x2 matrices. The algorithm can straightfor-

wardly be extended to any number of 𝑁 × 𝑁 and by consecutive application we can use it to reduce 

the 𝑁 × 𝑁  into a series of 𝑁 − 1× 𝑁 − 1 and so on, until we are again at a series of 2 × 2 matrices. 

The matrix is given as: 

𝑈 = [
𝑎 𝑑 𝑔
𝑏 𝑒 ℎ
𝑐 𝑓 𝑖

] (106) 

We next find three 2 × 2 matrices 𝑈1, 𝑈2, and 𝑈3, such that 𝑈3𝑈2𝑈1𝑈̂ = 𝕀 and hence 𝑈 = 𝑈1
†𝑈2

†𝑈3
† . 

We use the first 2 the submatrices to produce zeros in the first column below the top-left diagonal 

element and then the last one to produce zeros in the top row, again ignoring the top left. We start by 

choosing: 

𝑈1 =

[
 
 
 
 
 

𝑎∗

√|𝑎|2 + |𝑏|2  
 

𝑏∗

√|𝑎|2 + |𝑏|2  
0

𝑏

√|𝑎|2 + |𝑏|2  
−

𝑎

√|𝑎|2 + |𝑏|2  
0

0 0 1]
 
 
 
 
 

(107) 

Which produces a zero in the first row: 

𝑈1𝑈̂ = [
𝑎′ 𝑑′ 𝑔′

0 𝑒′ ℎ′

𝑐′ 𝑓′ 𝑖′
] (108) 

Then we set: 

𝑈2 =

[
 
 
 
 
 𝑎′ ∗

√|𝑎′ |2 + |𝑐′ |2 
 0

𝑐′ ∗

√|𝑎′ |2 + |𝑐′ |2  
0 1 1
𝑐′

√|𝑎′ |2 + |𝑐′ |2  
0 −

𝑎′

√|𝑎′ |2 + |𝑐′ |2  ]
 
 
 
 
 

(109) 

Which produces a second zero in the first row: 

𝑈2𝑈1𝑈 = [
1 𝑑′′ 𝑔′′

0 𝑒 ′′ ℎ′′

0 𝑓′′ 𝑖′′
] (110) 

Since 𝑈2, 𝑈1, and 𝑈 are all unitary 𝑈2𝑈1𝑈 must be unitary, too it follows that 𝑑′′ = 𝑔′′ = 0. This also 

implies that the submatrix composed of 𝑒′′, ℎ′′,𝑓′′,𝑖′′  is by itself unitary and therefore 𝑓′′ = −ℎ′′∗. 

Thus we have: 

𝑈2𝑈̂1𝑈 = [
1 0 0
0 𝑒 ′′ ℎ′′

0 −ℎ′′∗ 𝑖′′
] (111) 

We can then simply define 𝑈3 as a Hermitian conjugate of unitary submatrix, which we know is the 
inverse due to the unitarity: 

𝑈3 = [
1 0 0
0 𝑒′′∗ −ℎ′′∗

0 ℎ′′ 𝑖′′∗
] (112) 
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And we can therefore guarantee that: 

𝑈3𝑈2𝑈1𝑈 = [
1 0 0
0 1 0
0 0 1

] = 𝕀 (113) 

Thus, we have successfully reduced the 3× 3 gate into a series of three 2 ×2 gates! A word of cau-

tion: we have, so far ignored the case, when 𝑏 = 0 or 𝑐′ = 0. In such cases you can simply skip the 

step and set 𝑈1 = 𝕀 or 𝑈2 = 𝕀. 

If you have a larger 𝑁 × 𝑁 matrix you can generalize the algorithm to work on the first column, then 

the second column, until all of the subdiagonal elements (except for a 2× 2 matrix) are zero.  This 

requires 𝒪(𝑁2) operations. If the operation spans 𝑛 qubits then we have 𝑁 = 2𝑛 and thus we 𝒪(22𝑛) 

operations. Again, this is not very efficient, but as we have discussed this is necessarily the case. Nev-

ertheless, there are a few important subclasses, were a decomposition is in fact quite efficient; we 

shall discuss them in the following chapter. 

There is one piece missing in the completeness proof. Although we have decomposed an 𝑛-Qubit uni-

tary into 𝒪(22𝑛) = 𝒪(4𝑛)  2 × 2 matrices 𝑈𝑖 this does not yet mean that we have decomposed it onto 

𝒪(22𝑛) single Qubit Gates, because the matrices will in general span any possible combination of CBS 

(e.g. they may operate on the subspace spanned by the |01⟩ and the |10⟩ CBS, which belong to two 

different qubits). To map that onto single qubit operations we must implement a swapping scheme 

first, map the two states onto the states of one specific qubit, enact the single qubit operation 𝑈 on 

that specific qubit and then swap everything back into place. For swapping we use controlled NOT 

operations is a specific manner. 

Assume we have a three Qubit system and we want to implement the following operation on it: 

𝑈 =

(

 
 
 
 
 

𝑎 0 0 0 0 0 0 𝑐
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
𝑏 0 0 0 0 0 0 𝑑)

 
 
 
 
 

(114) 

Obviously, this operation is a 2 × 2 matrix 𝑈′ = (
𝑎 𝑐
𝑏 𝑑), which acts on the states |000⟩ and |111⟩. 

Let’s call the three qubits by the names 𝑞0, 𝑞1, and 𝑞2. Let’s further write down a sequence of qubit-

wise swapping operations, which transforms the |000⟩ state into the |011⟩ state, which shares the 

same qubit with |111⟩, in the sense that these are the CBS of 𝑞2. This sequence is: 

Opera-
tion 

Action Explanation where is |𝟎𝟎𝟎⟩ the 
amplitude after the 
operation  

Swap 1 Swap |000⟩ with |001⟩ Not 𝑞0  under the condition that 
𝑞2 and 𝑞1 are in the |0⟩-state 

|001⟩ 

Swap 2 swap |001⟩ with |011⟩ Not 𝑞1  under the condition that 
𝑞2 is in the |0⟩-state and 𝑞0 is in 
the |1⟩-state  

|011⟩ 

Apply 𝑈′  Apply 𝑈′  on 𝑞2  under the condi-
tion that 𝑞0 and 𝑞1 are in the |1⟩-
state 

unaffected 
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Unswap 2 swap |011⟩ with |010⟩ Not 𝑞1  under the condition that 
𝑞2 is in the |0⟩-state and 𝑞0 is in 
the |1⟩-state 

|001⟩ 

Unswap 1 swap |001⟩ with |000⟩ Not 𝑞0  under the condition that 
𝑞2 and 𝑞1 are in the |0⟩-state 

|000⟩ 

 

We can of course also write this as a quantum circuit: 

 
Figure 35: A swap-based implementation of an arbitrary rank-2 operator 𝑈′ acting on |000⟩ and |111⟩ based on 
CNOTs and single Qubit operations only. See resulting state for the illustration of the result. The barriers represent 
the different steps of the algorithm (Swap 1, Swap 2, Apply, Unswap 2, Unswap 1). 

For any possible 𝑈′ in an 𝑛-Qubit system we may require up to 2(𝑛− 1) CNOT operations, which can 

be implemented with 𝒪(𝑛) operations, using only single qubits and 2-qubit CNOTs. Thus, we require 

up to 𝒪(𝑛2) elementary operation to implement the entire swap sequence. Together with the previ-

ous result, we therefore conclude that we can implement an arbitrary unitary operation on an 𝑛-Qubit 

state with 𝒪(𝑛24𝑛) elementary operations. 

We therefore conclude: 

Summary: Any possible gate on an 𝑛-Qubit System can be implemented with a series of 

Hadamard, 
𝜋

8
, and two Qubit CNOT gates. Any universal quantum computer can be con-

structed if these three gates can be implemented. 

A word of caution, which should not go unmentioned. The conclusion is actually not completely true, 

because of quantum errors. First of all, we have discussed in section 3.3.1, we can only ever hope to 

approximate single Qubit gates, yielding an approximation error for every gate. Since the construction 

of multi-qubit gates heavily relies on replacing a few complex operations with a lot of single-qubit 

operations, this means that approximation errors will occur many, many times in a quantum circuit 

constructed from fundamental gates. Moreover, any realistic Quantum computer will add external 

noise sources, which will add an intrinsic error over time. The source for these errors are complicated 

and involved but most can be understood in the context of decoherence, which means that after a 

certain decoherence time, quantum interference is no longer observable and all entanglement is lost. 

Since any gate requires a certain process time, this means that any execution of a gate will also intro-

duce noise-based errors. 

While this seems rather bleak, there is also a beacon of hope, in the form of the error accumulation 

theorem. This means that a sequence of 𝑁 imperfect gates 𝑈𝑖, each of which produces an error 𝜖, will 

produce a total error that scales no worse than 𝒪(𝜖𝑁). We conclude that Quantum Errors are, more 

or less, additive and a reduction of the per-gate-error of 𝜖 yields a linear increase in the number of 
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possible gates 𝑁, which can be implemented, before the results of the algorithm get killed of by accu-

mulating errors. 

The way to more powerful quantum computers therefore involves: 

• the implementation of more Qubits  

• the reduction of gate errors 

• the direct implementation of more complicated gates 

• the reduction of the number of gates using more efficient algorithms 

• the reduction of statistical noise using error correction (which requires more Qubits) 

5 Quantum Algorithms 
In this chapter we shall return to the canonical circuit model and use it to introduce, discuss , and un-

derstand a few key algorithms in Quantum Computing. Up until three or four years ago this would have 

comprised an almost complete list of the algorithms which have been found and discussed on Quan-

tum Computers but, lo and behold, the number of algorithms available for Quantum Computers grows 

as quickly as does their computational power. 

We shall nevertheless stick to the traditional basics for two reasons. The first reason is that these al-

gorithms are incredibly well-understood, including their limitations but also including the impact of 

noise on such algorithms. This is very important from an application point of view and also for the 

development of Quantum Computers: these classical algorithms are near-ideal to test and characterize 

the power of real world implementations of Quantum Computers. The second reason is that these 

algorithms nicely highlight some of the specific feature, which make Quantum Computers particularly 

powerful. As such, that can serve as a goof starting point to design novel quantum algorithms. If you, 

like me, have are accustomed to writing classical computer programs you will see that quantum soft-

ware does not seem to naturally come about. A proper analysis may give us the kind of natural under-

standing of the strengths of Quantum Computers and the essential building blocks of quantum soft-

ware such that we may hope to end of with the ability to come up with novel way of applying Quantum 

Computers. 

5.1 Josza-Deutsch’s Algorithm: a Case of Useless but Powerful 
The first algorithm which we will discuss was also the first algorithm even to be developed specifically 

for Quantum Computers. To be more precise: it was custom-designed as a demonstration for Quantum 

Advantage, i.e. it gives the solution to a very artificial problem, which scales much more efficiently on 

a Quantum Computer as opposed to a classical computer. 

Assume the following problem: you play a game with a friend of yours, that is located somewhere in a 

small village in rural Thuringia. It’s one of those places, where mobile reception is nil; cable-based 

internet keeps on breaking down constantly and you can’t travel because it’s Corona -lockdown. Again. 

So, you have to resort to writing letters back and forth (you know: pieces of written paper stuck in an 

envelope, like they used to do in the 19th century), which is slow and expensive. 

The friend of yours has invented a mathematical function 𝑓, which inputs a (binary) number 𝑥 from, 

say 𝑥 ∈ {1,2𝑛} and returns a single bit, e.g. 𝑓(𝑥) ∈ {0,1}. The function is guaranteed to be either con-

stant or even. Constant means that either ∀𝑥: 𝑓(𝑥) = 0 or ∀𝑥: 𝑓(𝑥) = 1. Even means that there exist 

exactly 2𝑛−1 distinct values for 𝑥 for which 𝑓(𝑥) = 0 and equally many for which 𝑓(𝑥) = 1 but you 

don’t know in advance which ones. 



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena 

Fabian Steinlechner and Falk Eilenberger 

All notes subject to change, no guarantee to correctness, corrections welcome.  

Version of 5.07.2022, Page 59 

Your part in the games is to find out as fast as possible: is the function constant? Or is it even? There 

is a catch, however. You are only allowed to ask the result for one specific input in a single letter. E.g.  

or letter may read 𝑥 = 63 and the answer would be 𝑓(𝑥 = 63)= 0. 

As you see: we have constructed the game in such a way that the evaluation of the function is very 

expensive (in terms of time) because you have to write a sperate letter for each evaluation and wait 

for the answer to arrive. This is a bit artificial but in reality, the function may just be very hard and 

expensive to compute or 𝑛 may just be a very large number under which circumstances the number 

of letters may even be too much to handle for a very fast postal service. What matters more is: we are 

not interested in the specifics of a particular game, rather in the cost that a solution to this game would 

incur as a function of the number of bits 𝑛 in general. 

The classical solution to this problem is indeed quite simple. You start with some value of choice, say 

𝑛 = 0 and ask your friend the result 𝑓(𝑥 = 0). Then you go on and ask 𝑓(𝑥 = 1) et cetera and com-

pare the results. If 𝑓(0) ≠ 𝑓(1) then you know the function is not constant and thus even. However, 

if 𝑓(0) = 𝑓(1) you can’t make and statement because the function may be constant or it may be even 

and you have just happened to select two specific values of 𝑥 that produce the same result. You would 

then go on to 𝑥 = 2,3,4… and so on. If you keep on getting the same results you end up stuck in the 

same dilemma as you cannot guarantee that the function is constant unless you have check more than 

half of the possible inputs, e.g. until you have progressed to 𝑥 = 2𝑛−1 + 1 . Thus, we find that the so-

lution to the algorithm may require 𝒪(2𝑛) (expensive) steps for a solution and is thus very, very inef-

ficient. 

Keep in mind that the inefficiency experience above is of an extremely annoying type. We have to 

make a shitload of function evaluations and we don’t even care about and of the specific results. All 

we care about is a – to some degree – averaged result over a large subset of possible inputs. If you 

remember the last paragraphs of chapter 4.3, you may start to feel that Quantum Computers may be 

a good thing to apply here. If you don’t, than just bear with me anyway.  

First we’ll construct the quantum equivalent of the function 𝑓 to be evaluated by turning it a unitary 

operation 𝑈𝑓, which operated on the set of input Qubits |𝒙⟩ and the result Qubit |𝑦⟩. Keep in mind that 

|𝒙⟩ = |𝑥1 … 𝑥𝑛⟩ is a number of quits, equivalent to the number of bits that may be input into the func-

tion 𝑓. As we may encounter this quite frequently, we will try and use the boldface notation whenever 

we feel that it is required for notational clarity. And also keep in mind ⊕ is the XOR operation which 

is can be implemented using a simple CNOT. 

𝑈𝑓(|𝒙⟩|𝑦⟩) = |𝒙⟩|𝑦⊕ 𝑓(𝒙)⟩ (115) 

We start the algorithm with the initial CBS state: 

|𝜓0⟩ = |0⟩⨂𝑛|1⟩ (116) 

This, however, is not helpful for the computation, which we would like to carry out, as it would simply 

evaluate the function 𝑓(𝑥 = 0) at one specific value; i.e. is would do the same thing as a classical com-

puter would do. The same is true for any other CBS on the |𝒙⟩-part of the Qubit. Instead we are looking 

for a compound property; i.e. we would like to evaluate the function at as many input bits , as we 

possibly can, an this can be done by transforming |𝒙⟩ into a balanced superposition of all possible CBS. 

Luckily this is simple task, which can be achieved by applying Hadamard-Gates onto each and every 

Qubit of |𝒙⟩. For good measure we also apply the Hadamard onto the result qubit.  
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|𝜓1⟩ = (𝐻̂|0⟩)⨂𝑛𝐻̂|1⟩ = (
|0⟩+ |1⟩

√2
)

⨂𝑛

(
|0⟩ − |1⟩

√2
) = ( ∑

|𝑥⟩

√2𝑛
𝑥=1…2𝑛

) (
|0⟩ − |1⟩

√2
) (117) 

Next we evaluate the function on this register and obtain: 

𝑈𝑓|𝜓1⟩ = ( ∑ (−1)𝑓(𝑥)
|𝑥⟩

√2𝑛
𝑥=1…2𝑛

) (
|0⟩− |1⟩

√2
) (118) 

Because (|0⟩ − |1⟩) ⊕ 1 = |1⟩ − |0⟩ = −(|0⟩− |1⟩).  This is a noteworthy result in its own right be-

cause this means that the result of the evaluation of 𝑈𝑓  is not stored in the Qubit value of |𝑦⟩ but in 

the phases of the computation basis states |𝑥⟩  of the input register. This, somewhat unexpected inter-

mediary result, sheds light on a rather fundamental property of Quantum Computation: compared to 

classical computation there is no differentiation of input and output registers, whatsoever. This is due 

to the global nature of the wavefunction and the reversibility of the computational paradigm. 

Of course, we can’t measure the phases of the input registers directly. So what to do with this result? 

Think physics: the generic way of measuring phases is by measuring interference, using beam splitters. 

The Quantum Computer equivalent is the application of the Hadamard operator and this is just what 

we do: we 𝐻̂ to all of the input register QuBits again: 

|𝜓2⟩ = 𝐻̂⨂𝑛 ( ∑ (−1)𝑓(𝑥)
|𝑥⟩

√2𝑛
𝑥=1…2𝑛

) (
|0⟩ − |1⟩

√2
) (119) 

The calculation of the result is a tiny bit cumbersome and we’ll do it separately by each of the elements 

of the sum. Keep in mind that |𝑥⟩  is any possible CBS, e.g. |𝑥⟩ = |27⟩ = |0001 1011⟩ =
|0⟩|0⟩|0⟩|1⟩|1⟩|0⟩|1⟩|1⟩. From this we get: 

𝐻̂⨂𝑛|𝑥⟩ = ∑ (−1)𝑥⋅𝑥′
|𝑥′⟩

√2𝑛
𝑥′=1…2𝑛

(120) 

Where 𝑥 ⋅ 𝑧 is the bitwise inner product modulo 2 of 𝑥 and z, e.g. if 𝑥 = 27 and 𝑥′ = 15 we have 27 ⋅

16 = 0001 1011 ⋅ 0000 1111 = (0+ 0+ 0+ 0+ 1+ 0+ 1+ 1) mod 2 = 3 mod 2= 1 . We can 

now evaluate what happens to our wavefunction: 

|𝜓2⟩ = ( ∑ ∑ (−1)𝑥⋅𝑥′+𝑓(𝑥)
|𝑥′⟩

2𝑛
𝑥=1…2𝑛𝑥′=1…2𝑛

)(
|0⟩ − |1⟩

√2
) (121) 

Now we observe the query register. This will force the superposition state to collapse into any of the 

CBS-states. Let’s check for the probability of the |0⟩⨂𝑛 state first, e.g. we are looking for the amplitude 

with 𝑥′ = 0. It’s amplitude is: 

∑ (−1)𝑓(𝑥) 1

2𝑛
𝑥=1…2𝑛

= {
−1 ⇔ 𝑓(𝑥) = 0

+1 ⇔ 𝑓(𝑥) = +1
0 ⇔ 𝑓(𝑥) is even

(122) 

Thus if the function 𝑓 is constant a result of |0⟩ is observed with 𝑝 = 1. If, however, the function is 

even then one of the resulting Qubits is certain to produce a nonzero result. So we can answer the 

initial question by just checking, whether the result is zero, then we have a constant function or if it is 

nonzero, then we have an even function. 
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Keep in mind that in the procedure we have only applied the function 𝑓 once and thus we have found 

a Quantum Algorithm that solves Deutsch-Josza’s problem with 𝒪(1) evaluations of 𝑓 and 𝒪(𝑛) quan-

tum gates altogether. This is a tremendous speedup if compared to the 𝒪(2𝑛) for the classical solution 

and showcases the power of the Quantum Computer. 

Of course, we shall also give you a proper circuit diagram and have it run on a (simulated) Quantum 

Computer and we’ll start with two implementations of the constant case: 

 
 

 
Figure 36: Josa-Deutsch with a constant function f. At the top the function is 𝑓(𝑥) = 0, whereas at the bottom it is 
𝑓(𝑥) = 1. As expected the results are exclusively |0000⟩. 

Let’s now move to the even case, by flipping the resulting qubit, if the last input register is in the |1⟩ 

state, which is happens in exactly 50 of the cases. We’ll do so first for a error.free quantum simulator 

and then for a real quantum computer which has exactly 𝑁 = 5 Qubit and a fairly low error rate. 
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Figure 37: Josa-Deutsch with an even function f. Where 𝑓 = 0 if 𝑞3 = |0⟩ and 𝑓 = 1 if 𝑞3 = |1⟩. At the top is the 
plain vanilla implementation and the result on a quantum simulator. As expected, the results are never |0000⟩. At 
the bottom is the transpiled version, which was run on a proper QC (IBM Santiago) and the results which are correct 
roughly 93% of the time.  

Using 4 input register Qubits we have therefore run through 24 = 16 possibilities and of course the 

speedup is still very…minimal. Let’s take this to the next level and use publicly available QC with the 

largest number of Qubits that is available at the moment; this one has 15 Qbits but the gates are not 

of particularly high quality. At and rate we still calculate a task, which does otherwise require 214 =

16653 individual queries. 

  
Figure 38: Even Josa-Deutsch on 15 QuBIt machine (IBM_melbourne). The machine has a fairly low Quantum Vol-
ume and hence the algorithm produces wrong results most of the times. Only 9% of the runs produce correct results. 

The results are pretty disappointing; we get the proper results in only 9% of the cases and we have not 

even used a particularly complicated function 𝑓; Josza-Deutsch is of course particularly interesting if 

exactly this is case; namely if 𝑓 is difficult to compute.  

After marvelling on the tremendous speedup I’d like to add two afterthoughts. While the classical so-

lution I have presented you above is the most straightforward one, it is not the most elegant so to say. 

An arguably more elegant classical approach would be to simply calculate the average over all possible 

solutions 
1

2𝑛
∑ 𝑓(𝑥)𝑥 . If the solution is equal to 0 or 1 then we know the function is constant; if the 

solution is anything else, then the function is even. Keep in mind that we have previously discussed 

that Quantum Parallelism is very good for the calculation of momenta of functions and the average is, 
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of course, the simplest moment. Hence, what we have done is somewhat related to a quantum version 

of calculating the average. 

The second thought that comes to mind is that one way of calculating the average is the Fourier trans-

formation. The if 𝑓(𝑘) is the Fourier transform of 𝑓(𝑥) then we know, that 𝑓(𝑘 = 0) is the average. 

As the fourier transform is a tremendously powerful tool in mathematics, this begs the quest ion: is 

there an (efficient) quantum version of the Fourier transformation? And if yes, what can we use it for?  

5.2 Quantum Fourier Transformation: Divide et Conquera 
So let’s dive right in, after this flawless transition into the Quantum Fourier Transformation Algorithm. 

Because we are in the realms of QuBits we shall, of course, think strictly about the discrete fourier 

transformation of function with 𝑁 = 2𝑛 entries: 

𝑦𝑘 =
1

√𝑁
∑ 𝑒2𝜋𝑖 𝑗𝑘/𝑁𝑥𝑗

𝑁−1

𝑗=0

= 0 (123) 

The difference here being that the numbers 𝑥𝑗 and 𝑦𝑘 are supposed to be the amplitudes of the cor-

responding CBS |𝑗⟩ and |𝑘⟩ before and after the application of the Fourier transform operator, e.g. 

∑ 𝑥𝑗 |𝑗⟩

𝑁−1

𝑗=0

→ ∑ 𝑦𝑘|𝑘⟩

𝑁−1

𝑘=0

 (124) 

The operator thus must act on the CBS in the way:  

|𝑗⟩ →
1

√𝑁
∑ 𝑒2𝜋𝑖

𝑗𝑘
𝑁 |𝑘⟩

𝑁−1

𝑘=0

= 0 (125) 

While this is all nice and well it is a pretty useless formulation for a quantum computer, because it is 

written in terms of sums of phase shifts that have to be acquired for individual CBS and, as we now 

know, this is not well-implemented in a QC. If this is no obvious from the equation above, you can also 

write down the matrix 𝑈 for a, say three Qubit QFT, which is: 

𝑈 =

(

 
 
 
 
 

1 1 1 1 1 1 1 1
1 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7

1 𝜔2 𝜔4 𝜔6 1 𝜔2 𝜔4 𝜔6

1 𝜔3 𝜔6 𝜔1 𝜔4 𝜔7 𝜔2 𝜔5

1 𝜔4 1 𝜔4 1 𝜔4 1 𝜔4

1 𝜔5 𝜔2 𝜔7 𝜔4 𝜔1 𝜔6 𝜔3

1 𝜔6 𝜔4 𝜔2 1 𝜔6 𝜔4 𝜔2

1 𝜔7 𝜔6 𝜔5 𝜔4 𝜔3 𝜔2 𝜔1)

 
 
 
 
 

(126) 

Were we have introduced the abbreviation 𝜔 = exp (
2𝜋𝑖

8
). 

As from the last chapters, we know, that this may not be an operation, which can be easy or efficiently 

implemented in a Quantum Computer. So, does that mean, that Fourier transformations are per-se 

not efficiently implementable on a Quantum computer? Actually, this could not be further from the 

truth. But what we really need to do is to reformulate the above equation in a way, that we can imple-

ment into a series of controlled controlled and single QuBit operations, where each operation acts on 

the basis states |0𝑘⟩ and |1𝑘⟩, whereas the details of the operation in question may depend on the 

specific computational state, represented by the index 𝑗 (in the sense of some type of control). This 

means, we must strive to reformulate the equation into a type of equation that looks like: 
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|𝑗⟩ →
1

√𝑁
⨂𝑈𝑘(|0𝑘⟩,|1𝑘⟩,𝑗)

𝑛

𝑘=1

 (127) 

To achieve this, it is helpful to think of the CBS-indicies 𝑗 and 𝑘 as binary numbers composed of the 

binary digits 𝑗1…𝑛, e.g. 𝑗 = 𝑗12𝑛−1 + 𝑗22𝑛−2 + ⋯+ 𝑗𝑛−12
1 + 𝑗𝑛20 . We shall also introduce the binary 

fraction representation of the index 𝑗 as 0. 𝑗𝑙𝑗𝑙+1 … 𝑗𝑚 =
𝑗𝑙

2
+

𝑗𝑙+1

4
+ ⋯+

𝑗𝑚

2𝑚−𝑙+1
 . Using these notations 

we find that we can indeed rewrite the fourier transformation into a series of controlled single QuBit 

operations, using the following series of transformations: 

|𝑗⟩ →
1

2
𝑛
2

∑ ∑ … ∑ 𝑒
2𝜋𝑖𝑗

𝑘12
𝑛−1+𝑘22

𝑛−2+⋯+𝑘𝑛20

2𝑛 |𝑘1𝑘2 … 𝑘𝑛⟩

1

𝑘𝑛=0

1

𝑘2=0

1

𝑘1=0

→
1

2
𝑛
2

∑ ∑ … ∑ 𝑒2𝜋𝑖𝑗(∑ 𝑘𝑙2
−𝑙

𝑙 ) |𝑘1𝑘2 …𝑘𝑛⟩

1

𝑘𝑛=0

1

𝑘2=0

1

𝑘1=0

 

→
1

2
𝑛
2

∑ ∑ … ∑ ⨂𝑒2𝜋𝑖𝑗𝑘𝑙2
−𝑙

𝑛

𝑙=1

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘2=0

1

𝑘1=0

→ 
1

2
𝑛
2

 (∑ … ∑ |01⟩⨂𝑒2𝜋𝑖𝑗𝑘𝑙2
−𝑙

𝑛

𝑙=2

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘2=0

+ ∑ … ∑ 𝑒2𝜋𝑖𝑗2−1
|11⟩⨂𝑒2𝜋𝑖𝑗𝑘𝑙2

−𝑙

𝑛

𝑙=2

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘2=0

)

→ 
1

2
𝑛
2

 (|01⟩+ 𝑒2𝜋𝑖𝑗2−1
|11⟩) ∑ … ∑ ⨂𝑒2𝜋𝑖𝑗𝑘𝑙2

−𝑙

𝑛

𝑙=2

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘2=0

→ 
1

2
𝑛
2

 (|01⟩+ 𝑒2𝜋𝑖𝑗2−1
|11⟩)( ∑ … ∑ |02⟩⨂𝑒2𝜋𝑖𝑗𝑘𝑙2

−𝑙

𝑛

𝑙=3

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘3=0

+

∑ … ∑ 𝑒2𝜋𝑖𝑗2−2
|12⟩⨂𝑒2𝜋𝑖𝑗𝑘𝑙2

−𝑙

𝑛

𝑙=3

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘3=0

)

→ 
1

2
𝑛
2

 (|01⟩+ 𝑒2𝜋𝑖𝑗2−1
|11⟩)(|02⟩+ 𝑒2𝜋𝑖𝑗2−2

|12⟩) ∑ … ∑ ⨂𝑒2𝜋𝑖𝑗𝑘𝑙2
−𝑙

𝑛

𝑙=3

|𝑘𝑙⟩

1

𝑘𝑛=0

1

𝑘3=0

→ 
1

2
𝑛
2

 (|01⟩+ 𝑒2𝜋𝑖𝑗2−1
|11⟩)… (|0𝑛⟩+ 𝑒2𝜋𝑖𝑗2−𝑛

|1𝑛⟩)

(128) 

If we now also decompose the index 𝑗 into its bitwise representation and we note that 𝑒2𝜋𝑖𝑗 is periodic 

in the non-fractional parts of 𝑗 (e.g. 𝑒2𝜋𝑖(1.5) = 𝑒2𝜋𝑖(0.5)) we come to the following useful expression 

|𝑗1 … . 𝑗𝑛⟩ →
1

2
𝑛
2

(|0𝑛⟩ + 𝑒2𝜋𝑖0.𝑗𝑛|1𝑛⟩) … (|01⟩+ 𝑒2𝜋𝑖0.𝑗1𝑗2…𝑗𝑛 |11⟩) (129) 

Keep in mind that, just to confuse you, we have swapped the order of the factors to adhere with the 

standard notations of having the lowest index Qubits to the right of the equation. It is useful because 

the representation is in a product form that tells us exactly, what we have to do to each qubit in order 

to implement the quantum fourier transform.  The approach is quite simple; we 

1. Apply a Hamadard operator 𝐻̂ to each qubit to construct the transformation |𝑗𝑘⟩ →
1

√2
(|0𝑘⟩ ±

|1𝑘⟩) 
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2. Apply a phase shift of exp (2𝜋𝑖/2𝑙−𝑘)  to the |1⟩  state using the operator 𝑅̂ 𝑙−𝑘 =

[
1 0

0 e2𝜋𝑖/2𝑙−𝑘] if any of the of higher Qubits |𝑙 > 𝑘⟩ are in the |1⟩ state (or in other words, 

conditionally on |𝑙⟩. 

3. Repeat for all Qubits 

Here’s the circuit representation for a four qubit case:  

 

 

 
 

Figure 39: (Top) Circuit Representation of a 4 QuBit QFT. (Middle) Transpiled circuit on the 5-Qbit IBM_Athens 
machine. (bottom, left) Results on a Quantum Simulator. As expected the |0000⟩-state, which is equivalent to a 
single 𝛿-peak at 𝑥 = 0000, is transformed into a an equal superposition of all plane waves. (bottom, right) Result 
from the 5-Qbit IBM_Athens machine. Note that the circuit depth is way beyond that what the QC can do and the 
results are more or less random. 

Now let’s sit back, relax and have some fun. We’ll use a 6-bit version of the QFT to create sine waves 

on 𝑁 = 26 = 64 positions by superimposing two exp (𝑖… ) functions. We can do so in the high bits to 

create low frequency waves: 
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Figure 40: (left) Circuit Representation of a  6-QuBIt QFT used to create a low-frequency sine wave by seeding the 
input of the QFT with two delta peaks |0⟩|0⟩(|0⟩+ |1⟩)|0⟩|0⟩|0⟩. Note that the red box contains the complete QFT 
logic. (right) Probability amplitudes showing the sine behaviour as expected (note: color=phase). 

 Or in the low bits to create high frequency waves:  

 
Figure 41: (left) Circuit Representation of a  6-QuBIt QFT used to create a high-frequency sine wave by seeding the 
input of the QFT with two delta peaks |0⟩|0⟩|0⟩|0⟩|0⟩(|0⟩+ |1⟩). Note that the red box contains the complete QFT 
logic. (right) Probability amplitudes showing the sine behaviour as expected (note: color=phase). 

We can also superimpose an equal superposition of waves to retain a 𝛿(𝑥 = 0)-peak: 
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Figure 42: (left) Circuit Representation of a  6-QuBIt QFT used to create a delta-peak sine wave by seeding the input 
of the QFT with an balanced superposition of all possible waves (|0⟩ + |1⟩)(|0⟩+ |1⟩)(|0⟩+ |1⟩)(|0⟩+
|1⟩)(|0⟩ + |1⟩). Note that the red box contains the complete QFT logic. (right) Probability amplitudes showing the 
peak- behaviour as expected (note: color=phase). 

Now, let’s take a look at efficiency. Keep in mind this is important. Nobody gives a damn, if Quantum 

Computers can calculate a QFT, as a normal FFT is already very efficient, namely it requires 𝒪(𝑁log 𝑁) 

computations steps to Fourier-Transform a function with 𝑁 elements. The QFT operates on 𝑛 QuBits 

requires 𝒪(𝑛) Hadamard operations and 𝒪(𝑛2) controlled rotation operations. As per chapter 4.2.4 

each of these operations requires four single Qubit operations and three CNOTs, so the altogether 

required number of gates is 𝒪(𝑛2). Keep in mind that with 𝑛 QuBits we can describe a function which 

has 2𝑛 entries and thus 𝑛 = log𝑁 and therefore, the entire QFT scales as 𝒪(log2 𝑁). The QFT thus 

provides an exponential speedup over the FFT, which is a tremendous result.  

There is a (major) catch, however. While the FFT produces the result of the discrete Fourier transform 

as a series of numbers, we here have the result only in the quantum amplitude. A measurement would 

collapse the result onto a single CBS and the measurement of the entire Fourier transform would re-

quire many, many measurements and an equal number of computations of the QFT. We therefore 

cannot straight up use quantum parallelism to replace all FFTs with QFTs and end up with a tremen-

dous performance boost. Instead, we must use the QFT as an intermediate step, which is then mapped 

onto a specific observable, which is of interest in the context of specific algorithms. These must make 

sure to concentrate the entire amplitude of the QFT in a single (or a few) CBS and the solution to the 

algorithm must boil down to the question: “which CBS” is the entire wavefunction concentrated in. In 

physical words: we must create algorithms in such a way, that the solutions are embedded in reso-

nances of the algorithmic structure; then we can use the QFT to find locate these resonances precisely. 

5.3 Quantum Phase Estimation: Eigenvalue where Art Thou? 
Before we finally make the move towards the infamous algorithms of Shor and Grover we shall discuss 

a rather nifty mathematical problem, which has gazillions of applications, particularly in physics. The 

name of the Algorithm is quantum phase estimation, but this is really all about eigenvalue decompo-

sition. 

We’ll start with the (somewhat arbitrary and, as you shall soon see, also unnecessary) assumption that 

we know an eigenstate |𝑢⟩ to a Unitary operator 𝑈, but we don’t know the eigenvalue. Of course, with 

the 𝑈 being unitary, we can guarantee that the eigenvalue is located somewhere on the complex unit 

circle and that we can represent it with a phase 𝜑, e.g. the eigenvalue takes the form exp(2𝜋𝑖 𝜑) . 

Hence the name “phase estimation”. 
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Figure 43: Abstract circuit representation of the Quantum Phase Estimation algorithm. 

The algorithm requires two registers of Qubits. The first register of 𝑡 Qubits shall be initialized in the 

|0⟩, whereas the second register is prepared in the state |𝑢⟩ and requires as many Qubits as are needed 

to hold this eigenstate and to operate 𝑈. In a first step we apply Hadmard operators 𝐻̂ onto each of 
the 𝑡 Qubits of the first register, bringing this into the state: 

|𝜓1⟩ = (𝐻̂|0⟩)
⨂𝑡

= (
|0⟩+ |1⟩

√2
)

⨂𝑡

(130) 

We have omitted the state of the |𝑢⟩ register from this notation, as there is no appreciate impact of 

this operation on the |𝑢⟩-state. 

In the second step we apply a series of controlled 𝑈2𝑗 operations onto the |𝑢⟩ register. Here 𝑗 is run-

ning from 0 to 𝑡 − 1 and for each step the 𝑗𝑡ℎ Qubit acts as the control register. Keep in mind that |𝑢⟩  

is an eigenvalue to 𝑈 and applying 𝑈2𝑗 thus does nothing but changing the phase of |𝑢⟩, e.g. 

𝑈2𝑗|𝑢⟩ = exp(2𝜋𝑖 2𝑗 𝜑) (131) 

However, we don’t just apply 𝑈2𝑗, we use the 𝑗𝑡ℎ Qubit as the control for the application. This enacts 

the phase kickback effect discussed in chapter 4.2.4 and in Figure 26. This means that the phase ac-

quired by the |𝑢⟩-register is transferred onto the |1⟩-stateFigure 26: Phase kickback for two Qubits. of 

the control register, whereas the |𝑢⟩-Register is again unchanged. Thus, we end up with the first reg-

ister in the state: 

|𝜓2⟩ = (
|0⟩ + 𝑒2𝜋𝑖2𝑡−1 𝜑 |1⟩

√2
)⋯(

|0⟩ + 𝑒2𝜋𝑖21𝜑 |1⟩

√2
)(

|0⟩ + 𝑒2𝜋𝑖20 𝜑 |1⟩

√2
) =

1

√2𝑡
∑ 𝑒2𝜋𝑖 𝜑⋅𝑘|𝑘⟩

2𝑡−1

𝑘=0

(132) 

This is clearly a plane wave with phase gradient 𝜑 and we make use of the Quantum Fourier transfor-

mation on the first register to retain a 𝛿(𝑥 = 𝜑)-function whose location and thus phase we can meas-

ure with certainty. What does this mean in terms of Qubits-however? To understand this a bit better, 

it makes sense to decompose 𝜑 into a binary fraction, e.g. 𝜑 = 0.𝜑1𝜑2 …𝜑𝑡 .Note that we can guar-

antee that 𝜑 < 1 without loss of generality because of the 2𝜋 ambiguity of phases. Then our state is 

simply: 
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|𝜓2⟩= (
|0⟩ + 𝑒2𝜋𝑖0.𝜑𝑡 |1⟩

√2
)⋯(

|0⟩ + 𝑒2𝜋𝑖0.𝜑2…𝜑𝑡 |1⟩

√2
)(

|0⟩ + 𝑒2𝜋𝑖0.𝜑1…𝜑𝑡 |1⟩

√2
) (133) 

The inverse fourier transformation can be retained from the Fourier transformation in the last chapter, 

just with the order of the gates reversed and all the phases negated. And the resulting state after the 

Fourier transformation is: 

|𝜓3⟩ = |𝜑𝑡 … 𝜑1⟩|𝑢⟩ (134) 

When we then measure the first register we are guaranteed to find the register in the CBS, which 

corresponds to the phase 𝜑. 

There are two important generalizations, which we have to make for this algorithm to be useful. The 

first is related to precision. Obviously, the phase 𝜑 is not guaranteed to have a value that can be writ-

ten in a sufficiently short binary fraction to be completely representable with a given number of Qubits 

𝑡. Assume for example that we have 𝑡 = 3, thus a phase of 𝜑 =
1

2
 can be represented as 𝜑 = 0.100, 

whereas 𝜑 =
1

2
+

1

16
 cannot because it sits right in the middle between 𝜑 = 0.100 and 𝜑 = 0.101. In 

this case the resulting wavefunction will be in a weighed superposition of |100⟩ and |101⟩ and you will 

measure either 𝜑 = 0.100 or 𝜑 = 0.101 depending on your luck. Or more general, one can show that 

the algorithm is likely to produce a good estimate 𝜑̃ to the real solution 𝜑. The estimate is accurate to 

𝑛 bits with a success probability of at least 1 − 𝜖, if  

𝑡 = 𝑛 + log (2 +
1

2𝜖
) (135) 

Which means that for any given success probability 1 − 𝜖 an increase in 𝑡 goes one-to-one into an ex-

ponential increase in precision. 

The second generalization is related to the requirement to beforehand know |𝑢⟩, which is quite useless 

because if you need to calculate eigenstates on a classical computer you usually get the eigenvalue for 

free. Assume that we don’t know any eigenvector and just supply the QC with a random input state 
|𝜓⟩ = ∑ 𝑐𝑢|𝑢⟩𝑢 , which can be, of course, decomposed into a superposition of eigenstates. The algo-

rithm itself is linear so one can show that the resulting state is a superposition of the CBS-states, which 

belong to the eigenvector’s phases, e.g. 

|𝜓3⟩ = ∑𝑐𝑢|𝜑̃𝑢⟩|𝑢⟩

𝑢

(136) 

If we then measure the state of the first register, we will collapse onto a random |𝜑𝑢⟩|𝑢⟩ and thus 

measure this specific phase. So, even if you do not know any eigenstate, you are guaranteed to observe 

one specific eigenvalue after running the code, you just cannot predict, which value you will observe 

and you can’t (completely) measure the eigenstate either. 

Nevertheless, the algorithm is quite useful and supremely efficient. Finding an eigenvalue to an (un-

known) eigenstate requires 𝒪(22𝑛) operations on a classical computer, where 𝑛 is the number of vec-

tor dimensions. Here we require 𝒪(𝑡2) operations for the QFT and 𝒪(𝑡2) controlled 𝑈-oprations. As-

suming a more or less even distribution of eigenvalues on the unit circle we should probably aim for a 

precision of much more than 1/𝑛, e.g. we should choose 𝑡 such that 𝑡 ≫ log (𝑛), yielding a total of 

𝒪(log2𝑛) controlled 𝑈-operations. If we can implement these efficiently (and in many cases we can), 

then this is a massive speedup.  

Let’s try on a Quantum simulator and see, what the actual circuit looks like: 
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Figure 44: (left, top) Circuit representation of the Quantum Phase Estimation Algorithm for a 2 QuBit Operator 𝑈 
and a 5-Qubit eigenvalue estimator. Note that the iQFT operator is the same as the QFT but with inverted order 

and inverted phases. (right, top) The Operator 𝑈 has a four eigenvalues 
2𝜋

4
,
2𝜋

6
, 0,2𝜋(

1

4
+

1

6
). (right, bottom) The 

𝑈2 operator is composed of two repetitions of 𝑈.  

Note that for the given operator 𝑈 = [1 0
0 𝑒2𝜋/6][1 0

0 𝑒2𝜋/4] we have the following four eigenvector 

eigenvalue pairs: 

Eigenvector Eigenphase [𝟐𝝅] Eigenphase [𝟐𝝅] decimal 
|𝟎𝟎⟩  0 0 
|𝟎𝟏⟩  1

4
 

0.25 

|𝟏𝟎⟩  1

6
 

0.1666 

|𝟏𝟏⟩  1

4
+

1

6
 

0.4166 

Let’s now see, if we can find the appropriate eigenvalues if we initialize to specific eigenvectors and 

let’s also see what happens, if we initialize into a balanced superposition of all possible eigenstates:  
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|𝒖⟩ Result 

 
|01⟩ 

 
1

4
= 0.25; Correct 

 
|10⟩ 

 
1

8
+

1

32
= 0.15625; off by 0.01 (6 bit equivalent) 

 
|00⟩ + |01⟩

+ |10⟩+ |11⟩ 

 
0; Correct 
1

4
= 0.25; Correct 

1

8
+

1

32
= 0.15625; off by 0.01 (6 bit equivalent) 

1

4
+

1

8
+

1

32
= 0.40625; off by 0.01 (6 bit equivalent) 

As you can see, the algorithm does just what it is supposed to do. If the initialization is perfectly on an 

eigenvector and the eigenvalue is representable by a binary fraction we get exactly the correct value 

out. If we hit an eigenvector but the eigenstate is not representable by a binary fraction, we get within 

to the resolution of the binary fraction (in this case to within 1/32=0.03) and we get the correct answer 

most of the times. If we just guess the initial state, we still get peaks at the probability distribution at 

the values of the eigenvalues and we can, after a few runs, find all eigenvectors , no matter what. 

5.3.1 A Graphic Interpretation 
From above we have seen that the phase estimator makes use of the phase-kickback in conjunction 

with the inverse QFT algorithm. The phase-kickback acts on the initial state |ψ1⟩ of the 𝑡 -register, 

which is a balanced superposition with zero phase. Such as this one here: 
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Figure 45: Initial state |𝜓1⟩ of the 𝑡-register. 

The application of the 𝑈2𝑗
-gates never changes the amplitudes of the 𝑡-register only the phases are 

changed. It makes sense to look at the phases starting with the most significant digit. If the most sig-

nificant digit is 1 then 𝜑2𝑡−1
 is applied. In the phase graph this means that the right half is elevated by 

𝜑2𝑡−1
. In the next step half of this phase step is applied if the second-most digit is equal to one, e.g. on 

the right half of each of the half, such that the initial box is now a four-step staircase. The process goes 

on. By each step the stair is filled with twice as many smaller boxes and made smoother and smoother 

until a perfectly regular staircase with a step-size of 𝜑 is created. 

 
Figure 46: (left) Phase of the 𝑡-register after the application of the series of discrete power-controlled phase-shifts. 
Coloured boxes indicates contributions of (gray) most significant bit (4𝜑), (orange) middle bit (2𝜑), and (blue) least 
significant bit (𝜑). (right) state of 𝑡-register after application of the iQFT. The specific location of the delta-peak is 
indicative of the value of 𝜑 and can be retrieved from a single. the CBS-measurement. 

This is nothing but a plane wave with a slope of φ. Since φ itself is  the number we are actually looking 

for, we must now just measure the slope. This is were the iQFT comes on handy. We know that the 

fourier transformation of a plane wave is a delta-function located at the position of the slope, hence 

the iQFT transforms the staircase into a delta-peak (e.g. a perfect CBS!), whose value indicates its slope 

and hence φ. We must know just measure once and the resulting CBS-code is the sought-after slope. 

5.4 Shor’s Algorithm: The Internet will Hate You   
The arguably most famous algorithm for Quantum Computers is the algorithm published in 1997 by 

Peter Shor. The algorithm uses our prefound knowledge on QFTs and Quantum Phase Estimation to 

create an extremely efficient solution to the problem of number factoring. 

5.4.1 Classic Number Factoring 
Assume that we have an integer number 𝑁 and we would like to decompose this number into its prime 

factors. As an example we know that 39 = 13 ⋅ 3, which appears to be quite simple. However, this 

problem is harder than it may appear, because instead of 39 I might just give you a very large number, 

e.g. 𝑁 = 7 906 198 969. The most efficient classic solutions to this problem is to take a table of all 

known random numbers 𝑛 starting from 2 and dividing 𝑁 by all of these number until you have one 
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division, where the reminder (called the modulus) is 0, e.g. 𝑁 𝑚𝑜𝑑 𝑛 = 0. Using a Turing machine, in 

the worst case you’d have to try all prime number up to 𝒪(√𝑁). You may hope the density of prime 

numbers within the set of positive integers would eventually drop for large numbers but this in fact 

not the case, e.g. even for large integers the density of prime numbers only drops logarithmically, e.g. 

the number of prime up to √𝑁 is roughly √𝑁/ log𝑁. Assume that integer division is asymptotically as 

complex as integer multiplication (which is not proven to my understanding, but seems a reasonable 

conjecture) we know from section 1.2, that an 𝑛 digit number requires 𝒪(𝑛 log𝑛) operations to carry 

out a single division on a Turing machine. Thus, the grand total, given 𝑁 = exp(𝑛)  is 

𝒪 (n−
1

2 log𝑛exp
𝑛

2
)~𝒪 (exp

𝑛

2
). 

To cut a long story short; if I were to give you a large number, splitting it up into primes is really hard. 

To the contrary, the inverse problem is really simple. Multiplying two prime numbers to get a large 

number is an 𝒪(𝑛 log𝑛)  operation, as you can tell my proving that 7 906 198 969 = 103 643⋅

76 283. 

Note that most of the statements here have no hard mathematical proof. There may be more efficient 

approaches on a Turing machine, that would solve the prime factoring problem which we simply do 

not know. However, prime factoring is a mathematical problem dates back to the ancient Greek and 

possibly before that, and ever since the time of Euclid until the seminal paper by Shor we have not 

found a more efficient algorithm that the above-mentioned number sieve (actually the above one is 

not the number sieve but it’s sufficiently close). 

5.4.2 Connection to Cryptography 
The prime factorization problem this seems to belong to a class of problems, which are called “trap-

door” functions. E.g. there are fairly easy to compute but very hard to “uncompute”  (if you find this 

wording suggestive in the context of quantum computers, it is on purpose: Quantum Computers are 

reversible and thus we may expect that at least some trapdoors functions should be able to run more 

efficiently on Quantum Computers). Trap-door functions are not just a mere oddity, they are of para-

mount importance to our digitally connected world. You may be aware that pretty much all data-com-

munication in the internet is encrypted using some type of encryption algorithm. 

An encryption algorithm take a message and turns it into unintelligible garbage using a specific key. 

The recipient of the message can turn the garbage into the message using the same key and known 

algorithm. A particularly simple example is the letter shifting algorithm (caesarian cipher, named after 

Julius Caesar). Assume the key 𝑘 = 5, which means that we shift each letter in the message by five 

positions (modulus 26) in the alphabet. E.g. “HELLO WORLD” → “MJQQT BTWQI”. The recipient can 

undo encoding using a shift of 𝑘 = −5 and retain “HELLO WORLD”. These type if encryption algorithms 

are called “symmetric ciphers” because the secret key is required on both sides. Modern algorithms 

such as AES or RC6 are probably rather secure and are used to encrypt everything from digital money 

transfers, to WhatsApp messages, from power grid controls to interconnected sensors in hospitals, 

from warehouse databases to nuclear weapons codes. 
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Fig. 1: The Diffie-Hellman-Scheme uses asymmetric encryption to established a shared secret, i.e. it distributes keys, 
using trap-door type functions. The most comm trap-door is the discrete log 𝑙 = 𝑎𝑏𝑚𝑜𝑑 𝑐, where 𝑙 easy to calcu-
late if 𝑎, 𝑏, 𝑐 are given but 𝑏 is hard to calculate if 𝑎, 𝑐, 𝑙 are known. (red) Secret Data, (green) public data, (yellow) 
shared secret. 

The real challenge and weak point of such systems is the secret key. The symmetric cipher is useless if 

you can’t guarantee that the key is identical and secret at both sides. For some application an offline 

exchange of secret keys may be feasible (e.g. in TAN number systems for bank transfer) but this is 

generally cumbersome. You really want to be able to establish a secret between two parties over a 

public channel and indeed, using trapdoor functions, you can do just that. The must famous method 

here is the Diffie-Hellman-algorithm (Diffie-Hellman-Merkle). 

I will not discuss the entire algorithm here but just sketch its outline. Assume Alice and Bob want to 

generate a shared secret. They start by picking an individual secret key each (called 𝑎 and 𝑏), which 

they will never share with anyone. Moreover, they agree publicly on a shared prime number 𝑝 and a 

small publicly known integer 𝑔 . They then generate a public key 𝐴 , 𝐵 each, e.g. 𝐴 = 𝑔𝑎 𝑚𝑜𝑑 𝑝 , a 

method which is known a discrete logarithms, 

The public keys are virtually impossible to uncompute because 𝑔𝑎 𝑚𝑜𝑑 𝑝 is a trapdoor function. Its 

uncomputation does require a fast algorithm for number factoring (the connection here is not dis-

cussed). Therefore the public keys can be exchanged safely over an unsecured line. Alice then takes 

Bob’s public key 𝐵 and calculates 𝐾𝑎 = 𝐵𝑎 𝑚𝑜𝑑 𝑝. Bob takes Alice’s public key and calculates 𝐾𝑏 =

𝐴𝑏  𝑚𝑜𝑑 𝑝. One can show that 𝐾𝑎 = 𝐾𝑏 = 𝐾 and this Alice and Bob are guaranteed to have the shared 
secret 𝐾 , which is only known to them because the last step of the computation requires the 

knowledge of the individual secret keys. This key can then be used as a key for a fast symmetric cipher. 

5.4.3 An Alternative Approach to Prime Number Factoring 
Before we can harness the power of the Quantum Computers we must reformulate the number fac-

toring problem. Assume we have a number 𝑁, which we would like to decompose into prime factors. 

We then follow the following procedure: 

1. Select another positive integer 𝑥 with 1 < 𝑥 < 𝑁. 

2. Check if the greatest common devisor g𝑐𝑑(𝑥,𝑁) of 𝑛 and 𝑥 is larger than 1. You can do so 

quite efficiently e.g. with Euklid’s algorithm. If g𝑐𝑑(𝑥,𝑁) > 1 then you are one hell of a lucky 
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student, because you have found one prime factor to 𝑛 and you can terminate the algorithm 

successfully. 

3. Find the period of the function 𝑥𝑟𝑚𝑜𝑑 𝑁, e.g. the smallest number 𝑟0 for which 𝑥𝑟0 𝑚𝑜𝑑 𝑁 =

1. Note that 𝑟0 is also a positive integer. Also note that one can show that 𝑟0 ≤ 𝑁. 

4. If 𝑟0 is uneven or if 𝑥𝑟0/2𝑚𝑜𝑑 𝑁 = 𝑁 − 1 then you are really unlucky. Select a different 𝑥 and 

restart the algorithm. 

5. Calculate 𝑛1 = 𝑔𝑐𝑑 (𝑥
𝑟0
2 − 1,𝑁)  and 𝑛2 =  𝑔𝑐𝑑(𝑥

𝑟0
2 + 1,𝑁) . Both are prime factors of 𝑁. 

Note that this algorithm, if run on a classical computer, is not more efficient than,  e.g. a number sieve. 

Also note, that the difficult step is the period finding step (3). It turns out that quantum computers are 

very good at period finding. So the key of implementing this on a QC is implementing Step 3; everything 

else can be run on an ordinary computer very efficiently. Before we turn to the implementation, I want 

to prove some of the key points here. 

First let’s look at the function 𝑥𝑟𝑚𝑜𝑑 𝑁 with the example of 𝑥 = 3 and 𝑁 = 35 

 
Figure 47: 𝑥𝑟𝑚𝑜𝑑 𝑛, with 𝑥 = 3 and 𝑛 = 35. Clearly the period is 𝑟0 = 12. 

We find that every six calculations the return value is 1, therefore the period of the function is 𝑟0 =

12, e.g. we see that 𝑥12  𝑚𝑜𝑑 𝑁 = 1. We also pass the test in the fourth step of the algorithm , e.g. the 

period is even and 36  𝑚𝑜𝑑 35 = 29, which is not 35− 1. We can therefore proceed by calculating 

𝑥
𝑟0
2 − 1 = 28. In the last step we calculate gcd (28,35) and find 𝑛1 = 7, which is one prime factor of 

21. The second prime factor can be determined easily by dividing 
35

7
= 5 . We can also find 

gcd(30,35) = 5, same thing. Let me stress one more time that the gcd algorithm is efficient; you can 

for example use Euclid’s algorithm (check Wikipedia if you like). 

The magical step to understand is obviously, why 𝑔𝑐𝑑(𝑥
𝑟0
2 − 1,𝑁) and 𝑔𝑐𝑑(𝑥

𝑟0
2 + 1,𝑁) should be a 

prime factor of 𝑁. What we can do, is to simply multiply: 

(𝑥
𝑟0
2 − 1)(𝑥

𝑟0
2 + 1) = 𝑥𝑟0 − 1 

Then we take 𝑚𝑜𝑑 𝑁 on both sides: 

(𝑥
𝑟0
2 − 1)(𝑥

𝑟0
2 + 1)𝑚𝑜𝑑 𝑁 = (𝑥𝑟0 − 1) 𝑚𝑜𝑑 𝑁 

We first manipulate the right hand side, using our knowledge of 𝑥 𝑟0  𝑚𝑜𝑑 𝑁 = 1  and (𝑥𝑟0 −

1) 𝑚𝑜𝑑 𝑁 = 𝑥𝑟0  𝑚𝑜𝑑 𝑁 − 1, unless 𝑥𝑟0  𝑚𝑜𝑑 𝑁 = 𝑁 − 1, which is not the case because 𝑥𝑟0  𝑚𝑜𝑑 𝑁 =

1. 
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(𝑥
𝑟0
2 − 1)(𝑥

𝑟0
2 + 1)𝑚𝑜𝑑 𝑁 = 0 

This means, that (𝑥
𝑟0
2 − 1)(𝑥

𝑟0
2 + 1) is a multiple of 𝑁 (say 𝑚𝑁, where the specific value of 𝑚 does 

not matter) and hence: 

(𝑥
𝑟0
2 − 1)(𝑥

𝑟0
2 + 1) = 𝑚𝑁 = 𝑚1𝑚2𝑛1𝑛2 

Where 𝑚 = 𝑚1𝑚2 𝑎𝑛𝑑  𝑚1 and 𝑚2 are some unimportant integers and 𝑛1 and 𝑛2 are the unknown 

prime factors of 𝑁 = 𝑛1𝑛2. Because the factors of the left hand side are integers, too, we can guaran-

tee, that the two factors on the left hand each contain an 𝑛1 and an 𝑛2, e.g. (𝑥
𝑟0
2 − 1) = 𝑚1𝑛1 and 

(𝑥
𝑟0
2 + 1) = 𝑚2𝑛2. We can guarantee this distribution of factors because any other distribution (e.g. 

𝑛1 and 𝑛2 being a part of the same factor) would imply 𝑥𝑟0/2  𝑚𝑜𝑑 𝑁 = 𝑁 − 1, which we have tested 

for in step number 4. 

Therefore, we know, that both 𝑥
𝑟0
2 − 1 and also 𝑥

𝑟0
2 + 1 contain nontrivial factors of 𝑁, which we can 

find by simply taking 𝑛1 = gcd (𝑥
𝑟0
2 − 1,N) and 𝑛2 = gcd (𝑥

𝑟0
2 + 1,N). Note that both 𝑥

𝑟0
2 − 1 and 

𝑥
𝑟0
2 + 1 are both typically very large numbers, which may be hard to calculate but you may just use 

(𝑥
𝑟0
2 ± 1) 𝑚𝑜𝑑 𝑁 to begin with, because this is calculated in the first step of Euklid’s gcd-Algorithm 

anyway and it’s a number that you have already calculated in the period-finding part of the algorithm. 

Now that we understand the connection between period-finding and prime-number factoring, it is 

time for two remarks: 

1. The algorithm in the classical sense is very inefficient. The only thing you know a-priori is that 

𝑟0 ≤ 𝑁 and therefore the algorithm requires up to 𝒪(exp𝑛) operations to complete for an 𝑛 

digit prime number (e.g. 𝑁 = exp𝑛). 

2. If you find the algorithm weird, then keep in mind that it is nothing more than a generalization 

to the divide by 10 rule that you learn in school. (e.g. 𝑁 = 90 = 9 ⋅ 10). Obviously, this rule 

works for base 𝑥 = 10 because we write down numbers in this format and there is a certain 

compatibility with 10 and 90. 

The algorithm generalizes this rule to off-by-one-pairs: 99 = 9 ⋅ 11  and 9999= 99 ⋅ 101, 

which can be easily factored using the binomial rule. The algorithm then looks at these num-

bers 99, 9 999, 999 999, 99 999 999 and sees if they are a multiples of 𝑁, which can then be 

easily factored. It does so in a modular sense to keep the numbers small. 

5.4.4 Quantum Order Finding 
We shall now use the Quantum Phase Estimation algorithm to efficiently solve the Quantum Order 

Finding problem. The overall structure of the algorithm looks like this: 
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Figure 48: The structure of the quantum period finding algorithm. Stolen from Nielsen and Chuangs magnificent 
book. 

For this we simply need to define an appropriate operator and show what kind of eigenstates / eigen-

vectors this operators has. The operator is simply: 

𝑈|𝑦⟩ = |𝑥𝑦 𝑚𝑜𝑑 𝑁⟩ 

Where 𝑁 is of course the number we would like to factor and 𝑥 is the random base integer as intro-

duced above. Here 𝑦 ∈ {0,1}𝐿 are all the numbers CBS states of the eigenstate register. Note that 

when 𝑦 > 𝑁 we just use the convention that 𝑥𝑦 𝑚𝑜𝑑 𝑁 = 𝑦, in other words: the register only acts 

nontrivially, only up to a CBS with number 𝑁 but unless you fuck up the initialization this will never 

happen. I personally find this a bit tough to grasp so we’ll go by an example taking 𝑥 = 3 and 𝑁 = 35, 

starting with 𝑦 = 1. 

𝑈0|1⟩ = |1⟩

𝑈1|1⟩ = |3⟩

𝑈2|1⟩ = |3 ⋅ 3 𝑚𝑜𝑑 35⟩ = |9⟩

𝑈3|1⟩ = |9 ⋅ 3 𝑚𝑜𝑑 35⟩ = |27⟩

𝑈4|1⟩ = |27 ⋅ 3 𝑚𝑜𝑑 35⟩= |11⟩
…

𝑈𝑟−1|1⟩ = |12⟩

𝑈𝑟|1⟩ = |1⟩

 

It should also be clear that a balanced superposition |𝑢0⟩ of this cycle is an eigenstate of 𝑈, e.g.  

𝑈|𝑢0⟩= 𝑈
1

√𝑟0
∑ |𝑥𝑘𝑚𝑜𝑑 𝑁⟩

𝑟0−1

𝑘=0

=
1

√𝑟0
∑ |𝑥𝑘𝑚𝑜𝑑 𝑁⟩

𝑟0−1

𝑘=0

 

This can be seen in the following representation: 
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Figure 49: The representation of the |𝑢0⟩ eigenstate of the problem with 𝑥 = 3 and 𝑁 = 35. The colors are just a 
guide to the eye. The arrows indicate the succession states, if seeded with any of the CBS which are a part of this 
series (e.g. |𝑥𝑟  𝑚𝑜𝑑 𝑁⟩).  

This figure displays the quantum amplitudes of the eigenstate |u0⟩ with 𝑥 = 3 and 𝑁 = 35, with the 

colors as a guide to the eye to indicate the succession of CBS states, if the |𝑥r  𝑚𝑜𝑑 𝑁⟩ was seeded with 

|0⟩. It is obvious that the displayed state is a eigenstate of 𝑈, because it application merely shifts the 

quantum amplitude from the 𝑟 = 1 (orange) to the 𝑟 = 2 (yellow) CBS, and the amplitude from 𝑟 = 2 

(yellow) to the 𝑟 = 3 (brown) CBS and so on. The last at 𝑟 = 11 (blue) then fills the void left behind at 

𝑟 = 1 (orange). The shfting of quantum amplitudes has thus occurred in a completely circular manner 

and nothing has changed globally. 

However, |𝑢0⟩ is a pretty boring eigenstate because it is eigenphase is 𝜑0 = 0 . However, we are free 

to make the balanced superpositions with phases, where we just have to make sure to distribute the 

𝑟0 phases on the complex unit circle evenly and over exactly 𝑠 revolutions. Thus, we find that for any 

integer 0 ≤ 𝑠 ≤ 𝑟0 − 1  that the states 

|𝑢𝑠⟩ =
1

√𝑟0
∑ exp[−

2𝜋𝑖𝑠𝑘

𝑟𝑟0
] |𝑥𝑘𝑚𝑜𝑑 𝑁⟩

𝑟0−1

𝑘=0

  

are also eigenstates to the operator 𝑈 since 

𝑈|𝑢𝑠⟩=
1

√𝑟
∑ exp [−

2𝜋𝑖𝑠𝑘

𝑟0
] |𝑥𝑘+1𝑚𝑜𝑑 𝑁⟩

𝑟0−1

𝑘=0

=
1

√𝑟0
exp [

2𝜋𝑖𝑠

𝑟0
] ∑ exp[−

2𝜋𝑖𝑠𝑘 + 1

𝑟0
] |𝑥𝑘+1𝑚𝑜𝑑 𝑁⟩

𝑟0−1

𝑘=0

= exp [
2𝜋𝑖𝑠

𝑟0
] |𝑢𝑠⟩

 

with the eigenphase 𝜑𝑠 = 𝑠/𝑟0, where 𝑟0 is the sought after periodicity. This is a quite remarkable 

finding. We know that the dimensionality of the part of the operator 𝑈 that is of interest  is 𝑟0 and we 

have found 𝑟0 eigenstates. So we know, that we have now found all eigenstates. Therefore, we can 

guarantee that the phase estimation procedure will return an eigenvalue which is guaranteed to con-

tain the sought-after periodicity 𝑟0. 
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Figure 50: |𝑢1⟩ and |𝑢2⟩ eigenstates on the complex plane for 𝑁 = 35 and 𝑥 = 3. Note that the respective 
eigenphases are 𝜑1 = 2𝜋/12 and 𝜑1 = 2 ⋅ 2𝜋/12 , respectively. Coloring more or less identical to figure from 
above. Note that al eigenstates have a probability amplitude at 𝜑 = 0 (𝑟 = 0). 

This leaves us with four problems; 

1) we need to find good initial conditions 

2) we need to determine a sensible number of qubits 𝑡 in register one 

3) we need to implement the 𝑈2𝑗
 operations efficiently 

4) we need to extract 𝑟 from the eigenvalues.  

The first problem is the missing initial state of |𝑢𝑠⟩, (which is unknown because it depends on 𝑟0) can 

be solved by simply taking the initial state as |𝑦⟩ = |1⟩. This works because: 

|1⟩ =
1

√𝑟0
∑|𝑢𝑠⟩

𝑟0−1

𝑠=0

  

Which means that irrespective of the unknown𝑟0, the |1⟩ state is guaranteed to be in a superposition 

of the eigenstates of the operator 𝑈 and thus we know that the phase estimator will collapse onto one 

specific 𝜑𝑠 = 𝑠/𝑟0. 

More specifically, it follows that we have to use 𝑡 = 2𝐿 + 1 + [log(2 +
1

2𝜀
)] qubits in the first register 

to obtain, for each 𝑠 in the range of 0 to 𝑟 − 1, an estimate of the phase 𝜑 ≈ 𝑠/𝑟 accurate to 2𝐿 + 1 

bits with probability 𝑝 = (1− 𝜀)/𝑟. A quick note: we need the 2𝐿 + 1 bit precision to avoid ambigui-

ties. E.g. if your prime number 𝑁 is in the range of say 19 then 𝐿 ≈ 30 and you can accept a fail rate of 

¼ then you need roughly 𝑡 = 61+ log(2 + 2) = 63 qubits. So altogether you need a bit more then 

3𝐿 qubits for the entire circuit. 

Then we need to implement a series of 𝑈2𝑗
 gates, which do the following (keep in mind, we have again 

introduced a binary digit representation 𝑗 = 𝑗12𝑡−1 + 𝑗22
𝑡−2 + ⋯+ 𝑗𝑡−12

1 + 𝑗𝑡2
0): 

|𝑗⟩|𝑦⟩ → |𝑗⟩𝑈𝑗𝑡2
𝑡−1 …𝑈𝑗12

0 |𝑦⟩

= |𝑗⟩|𝑥 𝑗𝑡2
𝑡−1 ⋅ … ⋅ 𝑥𝑗12

0 𝑦 𝑚𝑜𝑑 𝑁⟩

= |𝑗⟩|𝑥𝑗𝑦 𝑚𝑜𝑑 𝑁⟩

 

I shall not go into the details on how to implement this operation and there are indeed quite a few 

solutions for this problem but will just sketch the outline here. We shall first calculate 𝑥𝑗  𝑚𝑜𝑑 𝑁 by 

introducing a third register. This register holds 𝑥2  𝑚𝑜𝑑 𝑁 (calculated by squaring 𝑥 𝑚𝑜𝑑 𝑁). Then we 

calculate 𝑥4  𝑚𝑜𝑑 𝑁 by squaring this and then 𝑥8  𝑚𝑜𝑑 𝑁 etc. 𝑥𝑗  𝑚𝑜𝑑 𝑁 is then calculated by using 

𝑥𝑗  𝑚𝑜𝑑 𝑁  by multiply the factors according to the bit pattern of 𝑗.  E.g. if 𝑗 = 6  we multiply 
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(𝑥4  𝑚𝑜𝑑 𝑁)(𝑥2  𝑚𝑜𝑑 𝑁). The result is then multiplied onto |𝑦⟩ (modulus N) and then uncomputed in 

the third register. All this can be done quite efficiently, albeit at the cost of a few more qubits.  

This leaves only the last problem. Can we obtain 𝑟0 from the phase 𝑠/𝑟0 without knowing 𝑠 (e.g. the 

wavefunction will collapse on one possible 𝑠/𝑟0and we don’t know a priori, which 𝑠 this belongs to)? 

Moreover, we only know 𝑠/𝑟0  with a precision of 2𝐿 + 1 bits but what we know is that both 𝑠 and𝑟0 

and integer numbers. Surprisingly, this problem can be solved uniquely and efficiently, if 𝑠 and 𝑟0 have 

no common denominator. The algorithm can be implemented on a classical computer and is called the 

continuous fraction expansion. Look it up on Wikipedia. 

If gcd(𝑠, 𝑟0) > 1 then you just had back luck and you have to try again. There is also an iterative version 

to solve this problem even more efficiently than just trying again by just running the phase estimate a 

few times and observing that with exponentially growing likelihood we can get a pair of the 𝑠1 to 𝑠𝑛 

with no common denominator. 

Now is the algorithm efficient? The inverse FT requires 𝒪(𝐿2) gates. The modal expansion requires 

𝒪(𝐿3). The continuous fraction requires 𝒪(𝐿3) (classical) operations, including the 𝑠1 to 𝑠𝑛 extension. 

The algorithm can deal with numbers up to 𝑁 ≤ 2𝐿 so the total cost is 𝒪(log3𝑁), which is an expo-

nential speedup over all classically known solutions. 

5.5 Grover’s Algorithm:  Whacking the Oracle 
In the last chapter we have discussed trapdoor function, or at least one specific type of trapdoor func-

tion in detail. There we have found that we could speed up the solution of the trapdoor function prime 

number decomposition and discrete logarithm exponentially with a quantum computer. Do Quantum 

Computers always behave that way? No, they don’t. In general, there is no known algorithm to expo-

nentially speedup trapdoor function and in detail there is no known algorithm to exponentially speed 

up any NP-complete problem, which would amount to the same thing. 

5.5.1 Overview 
In fact, for many computationally hard to solve problems, the best solution is systematically test pos-

sible solution candidates until a proper solution is found. This approach is said to use an “oracle” func-

tion: a function 𝑓(𝑥), which return 𝑓(𝑥) = 0 for all 𝑥, which are not solutions to the problem (“incor-

rect guess/solution”) and 𝑓(𝑥) = 1 for proper solutions to the problem (“correct guess/solution”). In 

general one may assume that there are only very few correct solutions (say 𝑀 of them) among a very 

large number of correct solutions (say 𝑁 of them), i.e. 𝑀 ≪ 𝑁. 

The name “oracle” is altogether fitting because it contains two central ideas to this solution approach 

1. the answer is always correct but in the most cases of very minimal use, and 

2. asking the oracle is connected to some cost (the difference of the 21st century and the 2nd 

century BC is that this cost is due in computational resources and not in sacrificial goats ) 

Using our understanding of reversible computation (i.e. the ideas discussed in chapter 4.3) we can, of 

course, create a quantum version of the oracle 𝑂̂, i.e.: 

𝑂̂|𝑥⟩|𝑞⟩ = |𝑥⟩|𝑞⨁𝑓(𝑥)⟩ 

Where |𝑥⟩ is the register of input Qubits and |𝑞⟩ is the single output qubit. It is helpful to initialize the 

output Qubit into a superposition state |𝑞⟩ =
1

√2
(|0⟩− |1⟩) because this implies that: 

𝑂̂|𝑥⟩
1

√2
(|1⟩ − |0⟩) = (−1)𝑓(𝑥)|𝑥⟩

1

√2
(|1⟩ − |0⟩) 
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Which is a rather funny result, because it tells us that the result qubit does not change its state irre-

spective of the input being a solution or not but that the quantum oracle rather marks solutions to 

search problems by shifting their phase by 𝜋. Since the oracle Qubit never changes its state, we shall 

omit it from the rest of the discussion |𝑞⟩ and only concern ourselves with the oracle qubit |𝑥⟩. 

Let’s further assume that we have 𝑁 possible input states and 𝑀 ≪ 𝑁 correct solutions to the prob-

lems, e.g. 𝑀 distinct CBS |𝑥⟩, which are correct answers to the problems. The size 𝑁 of the search state 

is, of course, connected to the number of input Qubits by 𝑁 = 2𝑛. Classically you don’t have much 

choice but to test 𝒪(𝑁/𝑀) solutions to get a “correct” answer from the oracle but it turns out that the 

quantum version of the oracle can facilitate the same with 𝒪(√𝑁/𝑀) queries to the quantum oracle. 

While this is not an exponential speedup, which would be required to be able to make the claim of 

being able to solve NP-complete problems efficiently, this is still a ridiculous speedup considering the 

generality of the oracle and the lack of prescribed internal mathematical structures thereof.  

The algorithm was first described by Lov Grover in 1996 and consists of an iterative application of the 

iteration operator 𝐺̂  onto the input register |𝑥⟩. The operator itself can be decomposed into four 

steps: 

1. Apply the oracle operator 𝑂̂  

2. Apply the Hadamard-Operator 𝐻̂⨂𝑛 onto all Qubits 

3. Perform the conditional phase shift of 𝜋, onto every computational basis state except the state 

|0⟩, i.e. |𝑥⟩ →  −(−1)𝛿0|𝑥⟩.  

4. Apply the Hadamard-Operator 𝐻̂⨂𝑛 onto all Qubits, again 

Note that steps 2 to 4 are very similar to the Josza-Deutsch algorithm and indeed it turns out that 

Josza-Deutsch can both be described as a special case of the QFT-based class of quantum algorithms, 

as well as, a special case of the quantum search based algorithms. 

5.5.2 Analysis of the Grover Iteration Step 
In a next step we rewrite step 3 into an operator form 𝑃̂ , i.e.  

𝑃̂|𝑥⟩ = 2|0⟩⟨0|− 𝐼̂ 

Where 𝐼̂ is the identify operator. With this understanding we can concatenate steps 2,3,4, into a single 

operator, the so-called inversion about the mean operator 𝑀̂: 

𝑀̂ = 𝐻̂⨂𝑛(2|0⟩⟨0|− 𝐼̂)𝐻̂⨂𝑛 = 2|𝜓⟩⟨𝜓| − 𝐼̂ 

Where |𝜓⟩ =
1

√𝑁
∑ |𝑥⟩𝑥 , is the equally weighted superposition of all CBS |𝑥⟩. The entire grover opera-

tor can then be written as: 

𝐺̂ = (2|𝜓⟩⟨𝜓| − 𝐼̂)𝑂̂ 

But what does the operator actually do? To answer that question, it is useful to imagine the entire 

search space as a high-dimensional vector space. This space is spanned by two linearily independent 

subspaces, the 𝑀-dimensional subspace of “correct” answers |𝑥′⟩ and the 𝑁 − 𝑀 dimensional sub-

space or incorrect answers |𝑥′′⟩. Within both of these subspaces we define normalized superposition 

states: 
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|𝛼⟩ =
1

√𝑁 − 𝑀
∑|𝑥′′⟩
𝑥′′

|𝛽⟩ =
1

√𝑀
∑|𝑥′⟩
𝑥′

 

The initial state of the input register |𝜓⟩, produced by an equal superposition of all CBS |𝜓⟩ = 𝐻̂⨂𝑛|0⟩ 

is then simply: 

|𝜓⟩ = √
𝑁 − 𝑀

𝑁
|𝛼⟩ + √

𝑀

𝑁
|𝛽⟩

= cos
𝜃0

2
|𝛼⟩ + sin

𝜃0

2
|𝛽⟩

 

Where we have introduced the angle 𝜃0  such that cos 𝜃0/2= √(𝑁 − 𝑀)/𝑁. For a balanced superpo-

sition of all possible states the angle is fixed but we shall see that it is exactly this angles which changes 

during the grover iteration and 

  

 
Figure 51: Geometric interpretation of the Grover iteration, as a rotation in the plane spanned by the balanced 
superposition of all correct solutions |𝛽⟩ and the balanced superpositon of all incorrect solutions |𝛼⟩. The two sub-
steps amount to a reflection at |𝛼⟩ and then refection at the balanced superposition of all possible solutions |𝜓⟩ 
yielding a counterclockwise rotation of the state by 𝜃0 (marked as 𝜃 in the sketch). Note that |𝜓⟩ is very close to 
|𝛼⟩ for the common case, when 𝑀 ≪ 𝑁. 
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To understand, what the Grover algorithm actually does, we need to understand, what the Oracle 𝑂̂ 

and the inversion about mean operator 𝑀̂ actually do to the state from above. We start with the ora-

cle: 𝑂̂ performs a reflection about the incorrect average state vector |𝛼⟩ in the plane defined by |𝛼⟩ 

and |𝛽⟩, i.e. 

𝑂̂|𝜓(𝜃)⟩ = cos
𝜃

2
|𝛼⟩ − sin

𝜃

2
|𝛽⟩ = |𝜓(−𝜃)⟩ 

Then we apply the inversion about the mean operator 𝑀̂ and notice that it, too, performs a reflection, 

also in the plane defined plane defined by |𝛼⟩ and |𝛽⟩ but this time about the average vector |𝜓⟩ 

(which is also in the |𝛼⟩-|𝛽⟩-plane). The average vector |𝜓⟩  is tilted with respect to the superposition 

of all false answers |𝛼⟩ by 𝜃0/2. 

Because both reflections operate in the same plane, we know that for all 𝑘 the state of the system will 

remain in the |𝛼⟩-|𝛽⟩-plane, so we can visualize the entire operation in this plane. Moreover, we know 

that a double reflection is a rotation and indeed we can express the action of the entire Grover oper-

ator 𝐺̂ = 𝑀̂𝑂̂ as a single angle rotation.  

𝐺̂|𝜓(𝜃)⟩= cos
2𝜃0 + 𝜃

2
|𝛼⟩ + sin

2𝜃0 + 𝜃

2
|𝛽⟩ = |𝜓(2𝜃0 + 𝜃)⟩ 

Because we start the first iteration at 𝜃0  we find the state of the system after the 𝑘𝑡ℎ application of 𝐺̂ 

in the state: 

𝐺̂𝑘|𝜓⟩ = |𝜓((2𝑘+ 1)𝜃0)⟩ 

The geometric interpretation is indeed quite simple. The application of 𝐺̂ has rotates the state |𝜓(𝜃)⟩ 

by 2θ0 counterclockwise from the |𝛼⟩ towards the |𝛽⟩ direction and has thus increased the relative 

quantum amplitude and therefore the likelihood of observing a correct answer.  

Action of the Grover Iteration Step on the Quantum Amplitudes 
Apart from the canonical interpretation as a rotation in the |𝛼⟩-|𝛽⟩ plane we can also interpret the 

action of the Grover iteration directly on the quantum amplitudes. We will do so assuming 𝑀 = 1 and 

only for the first Grover Iteration. Note that I have stolen the picture from the QISKIT book. We start 

in the balanced superposition |𝜓⟩ and we will mark the amplitudes of the CBS states as the height of 

gray boxes, like this: 

 
Figure 52: Initial distribution of the amplitudes at the beginning of the first Grover step. The correct solution is 
marked in purple. 
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We have marked the correct solution in purple as a guide to the eye. We then apply the oracle operator 

𝑂̂, which marks the correct solution by negating its phase. 

 
 

Figure 53: Distribution of the amplitudes after application of the oracle function 𝑂̂. The dashed line at the top marks 
the average of the amplitudes. 

As you can see the oracle has two effects. The first is that it flips the state of the correct solution and 

thereby it reduces the average of the amplitudes to below 1/√𝑁, which is marked by the dashed line 

in the image. The next step is the application of the inversion about the mean operator 𝑀̂ , which 

mirrors the amplitudes at the aforementioned dashed line. Thereby the gray boxes shrink, whereas 

the pruple box flips towards the positive and grows in size, yielding: 

 
Figure 54: Distribution of the amplitudes after application of the inversion about the mean operator 𝑀. The obser-
vation of the correct answer is now more likely than before. 

As is obvious, the likelihood of observing a correct answer has increased. By repeated application we 

can drop the size of the gray boxes almost to zero and concentrate all the quantum amplitude in the 

purple box. 

5.5.3 Termination Conditions and Optimality 
It is now a mere question of when to terminate, such that we do not “overrotate” and again decrease 

the likelihood of the system being in any of the CBS, which comprise |𝛽⟩. Quantitatively we must ter-

minate the algorithm, when 
2𝑘+1

2
𝜃0 =

𝜋

2
 this means that: 

𝑘 =
𝜋

2𝜃
−

1

2
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Let’s assume for simplicity that 𝑀 ≪ 𝑁, e.g. that a correct answer is a fairly rare event. Note that this 

approximation is an exclusively technical approximation. As long as 𝑀 < 𝑁 2⁄  this just impacts the ter-

mination condition and if 𝑀 > 𝑁 2⁄  then we can just add one (or more) idle input Qubit to the Oracle 

to artificially increase the 𝑁 by factors of 2 to retain a situation where 𝑀 < 𝑁 2⁄ . If 𝑀 ≪ 𝑁 then we 

can approximate 𝜃 ≈ 2√𝑀/𝑁 and thus we get: 

𝑘 =
𝜋

4
(
𝑁

𝑀
)
1/2

−
1

2
≈

𝜋

4
(
𝑁

𝑀
)

1/2

 

Here we see the algorithm terminates with 𝒪(√𝑁) operations, which is, of course the scaling behav-

iour that we desire. 

Because we can only choose an integer number of 𝑘 we however also see that, unless we get really 

lucky, we will never get |𝛽⟩ exactly and angle of 𝜃 =
𝜋

2
 will never be obtained exactly. We can, how-

ever, estimate the maximal error of failure, because the maximal angle deviation is at most Δ𝜃 ≤

2√𝑀/𝑁 giving a failure probability of not more than 𝜀 = 𝑀/𝑁 ≪ 1. In practice this is not a problem, 

because we can run the oracle once more for any attained solution and check if it really is a solution 

and run the entire algorithm again if we have failed. Since the probability of failure is low (per con-

struction it is always < 1/2) the probability of repeated failure drops exponentially. 

This still does not solve the problem that it seems like we must know 𝑀 to be able to run the algorithm. 

Without giving a proper mathematical proof I am just gonna state here, that we can just run the algo-

rithm in a series assume that 𝑀 = 1,2,4,8,16,….  e.g. we run it for 𝑘 =
𝜋

4
√𝑁 , 𝑘 =

𝜋

4
√𝑁/2 , 𝑘 =

𝜋

4
√𝑁/4,… and then we test the retained result for all iterations. Once can show that the overall failure 

probability remains at 𝜀 = 𝑀/𝑁 ≪ 1 and the overall number of Grover iterations 𝐾 is then  𝐾 =
𝜋

4
√𝑁 

which is just the same as if 𝑀 = 1. 

5.5.4 A Physical Model 
Let’s attempt to physically understand, where the √𝑁 dependence comes from. Assume we have an 

array of 𝑁 waveguides, which are all identical expect for one, which is different. You job is to find out, 

which one is different, by propagating light down the waveguide array.  However, you can only launch 

light into a single fixed waveguide. The waveguides are arranged in a line and each waveguide is cou-

pled evanescently to both neighbours; i.e. of you launch light into one waveguide it will couple to the 

neighbouring waveguides. You have a second “perfect” waveguide array, which you can use as an (in-

terferometric) source of reference. 

The classical approach is to take incoherent light (e.g. white light). Incoherent light behaves classically, 

i.e. it does not exhibit interference. Its spreading through the waveguide array follows the laws of 

classical statistics (light does a classical random walk) and after length of 𝐿 your light has spread over 

𝑁 ≈ 𝒪(√𝐿/𝐿0) individual waveguides (note: 𝐿0  is some characteristic length that corresponds to the 

interwaveguide coupling). The type of diffraction is called diffusive. 
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Figure 55: Numerical and experimental observations of (left) ballistic and (right) diffusive diffraction patterns in a 
waveguide array. Note that in this case the transition in enforced by a variation of waveguide perturbations and 
not by incoherent illumination. The effects is the same. Stolen from U. Naether et al 2013 New J. Phys. 15 013045. 

The quantum approach is to take coherent light. Coherent light exhibits interference. Its spreading 

through the waveguide array follows the laws of quantum statistics (light does a so-called quantum 

random walk) and after length 𝐿 you light has spread over 𝑁 ≈  𝒪(𝐿) individual waveguides. This type 

is spreading is called ballistic. You can therefore find the solution waveguide with a squareroot en-

hanced efficiency.  

Also note that there is quite an interesting work by Anderson from already 1958, which shows that 

even very small (random) perturbations to such a kind of array eventually stops the ballistic spreading 

of the quantum wave altogether (the effect is called Anderson Localization). This can be transferred 

one-to-one to quantum computers: noise in quantum computers limit your search space exponentially. 

5.5.5 Example: Solving a+b=17 in QISKIT 
Will be discussed in the lecture. Material is available in moodle. 

5.6 Quantum Error Correction 
 

6 Quantum Galore 
This lecture only serves to introduce the basics of quantum computers, shine some light on the imple-

mentation of physical gates, discuss a few key quantum algorithms and give some super-simple circuit 

examples. And it really is just that: an appetizer. All of the mentioned fields of science have undergone 

dramatic and self-accelerating improvements in the last years and new devices and methods are in-

vested as we speak. 

Some developers have 1000+ QuBits on single chips on their roadmaps until 2025; particularily super-

conducting QuBit system seem to lead the way in scaling of the sheer number of QuBits. Ion-Trap 

computers on the other hand are a close contender and they seem to move more towards better Gate 

qualities, complementing Quantum Computers. Photonic QCs have moved heavily towards Boson-

sampling, which is a subset of Quantum Computing, but can draw from the amazing quality with which 

we can scale photonic circuits and the precision with which we can manipulate them. 
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Figure 56: Don’t ask me about Quantum Computers. Ask the world’s most interesting man. 

The development of algorithms and their applications are also going through the roof and am not even 

trying to given an overview here. What is probably most noteworthy, is that quantum computers are 

now so easily accessible that the q-software community starts to become disconnected from the q-

hardware community. Historically this was one of the points of ignition for classical computers: the 

ability to develop software without the requirement to understand the hardware in all details. 

There are also many more and exciting algorithms, which we have not discussed here.  Some should 

find their mention here. The QFT can be extended to the HHL algorithm, with which linear systems of 

equations can be solved; the amount of applications is gargantuan. A field that we have not touched 

base on is the field of Quantum Simulation; this field is particularly interesting: the simulation of the 

structure of atoms and molecules is one where we don’t have good classical algorithms at all, were an 

approximate solution is often acceptable and were the connectivity of contemporary quantum chips 

is often compatible with the problem: both field simulation but also Variational Quantum Eigensolvers 

(VQE) are important classes of algorithms here. A related problem is the search for minima of function 

and the solution of optimization problems, which is done with Quantum Approximate Optimization 

Algorithms (QAOA). All of these above can be arbitrarily confined with hype topics: QAOA+Neural Net-

works = Quantum Machine Learning. Or how about Quantum Image processing? 

The future has just begun… 
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7    Alternative Computational Models 
7.1 Measurement-based Quantum Computing 
We have now established that a universal quantum computer can be constructed using a certain min-

imal set of single-qubit and two-qubit gates, and have seen that – depending on the choice of these 

gates - we may require a large number of quantum gates to produce a desired transformation. Not all 

of these gate operations will be equally accessible from an experimental point of view - in particular, 

as we shall see in the following, multi-qubit controlled gates are technologically challenging. The prac-

tical implementation of quantum computers thus requires careful consideration of the types of re-

sources involved in a computation, along with methods that will allow overcoming inevitable experi-

mental imperfections in physical systems. Over the years several alternatives to the quantum circuit 

model have been proposed, and in the following we shall discuss one that has gained particular trac-

tion in photonics platforms: measurement-based quantum computing and the cluster state model. 

Other approaches, such as the adiabatic model of quantum computing7 are beyond the scope of this 

lecture series.  

In their seminal 1999 paper8, Gottesmann and Chuang proposed a variant of quantum computing in 

which quantum gates are applied to quantum states via quantum teleportation.  They proved that sin-

gle-qubit unitary gates, Bell state measurements, and entangled resource states are sufficient to con-

struct a universal quantum computer.  In essence, their approach was to substitute multi-qubit control 

gates with entangled resource states and multi-qubit Bell state measurements – an ingenious feat that 

has since become known as the “teleportation trick”. The benefit that this entails might not be imme-

diately obvious - after all we have seen that a Bell state measurement and entanglement may be 

achieved using Hadamard operations and CNOT gates, the latter being exactly the type of gate we 

would hope to avoid. The key point to note is that the preparation and detection of a particular entan-

gled state can be substantially easier to realize than a multi-qubit gate that works for the most general 

multi-qubit input state. This makes it practical for implementations where gates cannot be applied 

directly, such as optical quantum computing, where single-qubit operations and Bell state measure-

ments based on quantum interference and photodetection are substantially easier to realize than gen-

eral qubit-controlled operations. The teleportation trick was a breakthrough for linear optical quantum 

computing and the starting point for the KLM approach to universal photonic quantum computing9 

and more general measurement-based approaches, such as the one-way cluster-state model.  

7.1.1 Quantum Teleportation 
To understand the Gottesmann and Chuang “teleportation trick”, let us cycle back and appreciate the 

quantum teleportation protocol in a little more detail.  The quantum teleportation protocol is typically 

discussed in the context of quantum communication where a key challenge is to get quantum infor-

mation from Alice (A) to Bob (B). Quantum Teleportation was initially conceived to facilitate the trans-

fer quantum states over a noisy quantum communication channel10. Teleportation allows Alice to send 

an unknown quantum bit (oblivious protocol) to Bob with the help of an entangled resource state and 

classical communication. In other words, Alice can transmit a quantum state to Bob without physically 

 
7 https://en.wikipedia.org/wiki/Adiabatic_quantum_computation 
8Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390±393 (1999). 

99 E. Knill, R. Laflamme, and G.J. Milburn, Nature 409, 46 (2001). 
10 Bennett, Charles H., et al. "Teleporting an unknown quantum state via dual classical and Einstein-

Podolsky-Rosen channels." Physical review letters 70.13 (1993): 1895. 
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transmitting the information carrier on which the qubit is encoded. We can express quantum tele-

portation in the following communication resource inequality: 

[𝑞𝑞]+ 2[𝑐 → 𝑐] ≥ [𝑞 → 𝑞] (137) 

where [𝑞𝑞]  is an entangled resource state shared between Alice and Bob, and [𝑐 → 𝑐] denotes a 

single use of a classical bit channel. The teleportation protocol consumes shared entanglement and 

two uses of classical bit channel to transmit a quantum state [𝑞 → 𝑞]. In quantum computing we are 

less concerned about communication resources, and usually more worried about the required number 

of gate operations and circuit depth. This is contrast to a quantum communication setting, where local 

operations, no matter how complex are usually considered “free” resources (for more on such re-

source inequalities and distributed quantum protocols, you’d best sign up for the quantum communi-

cations lecture).  

 
Figure 57: Quantum Teleportation in the circuit model. Alice and Bob are a remnant of the protocol’s origins in 
quantum communication. As we shall see in the following, the protocol is equally useful in a quantum computing 
setting. 

The sequence of gates required to implement the teleportation protocol is illustrated in the now fa-

miliar circuit gate mode in the figure above. Qubit 0 is initialized in an unknown qubit in the state 

|𝜙⟩0 = 𝛼|0⟩ + 𝛽|1⟩ (138) 

and Alice and Bob share an entangled state on qubits 1 and 2,  

|𝛷+⟩1,2 =
1

√2
(|00⟩ + |11⟩) (139) 

This state is can be obtained by applying the Hadamard and CNOT operations to qubits 1 and 2 (pink 

box). At the first barrier, the joint system of qubits 0,1,2 is thus described by the quantum state:  

|𝜙⟩0|Φ
+⟩1,2 = 𝛼|0⟩ + 𝛽|1⟩ ⊗  

1

√2
(|00⟩+ |11⟩) =

1

√2
(𝛼|000⟩+ 𝛽|100⟩+ 𝛼|011⟩ + 𝛽|111⟩)(140) 

Next, using the fact that the Bell-state basis is a complete basis, 

|00⟩ =
1

√2
(|Φ+⟩+ |Φ−⟩)|01⟩ =

1

√2
(|Ψ+⟩+ |Ψ−⟩) (141) 

 

|10⟩ =
1

√2
(|Ψ+⟩− |Ψ−⟩)|11⟩ =

1

√2
(|Φ+⟩+ |Φ−⟩) (142) 

we can rewrite this in terms of the Bell state Basis on qubits 0 and 1, as: 
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 |𝜙⟩0|Φ
+⟩1,2 = #(143) 

1

2
[𝛼(|Φ0,1

+ ⟩+ |Φ0,1
− ⟩)|0⟩2 + 𝛽(|Ψ0,1

+ ⟩− |Ψ0,1
− ⟩)|0⟩2 + 𝛼(|Ψ0,1

+ ⟩− |Ψ0,1
− ⟩)|1⟩2

+ 𝛽(|Φ0,1
+ ⟩− |Φ0,1

− ⟩)|1⟩2]#(144) 

=
1

2
[|Φ0,1

+ ⟩(𝛼|0⟩2 + 𝛽|1⟩2)+ |Φ0,1
− ⟩(𝛼|0⟩2 − 𝛽|1⟩2)+ |Ψ0,1

+ ⟩(𝛼|1⟩2 + 𝛽|0⟩2)

+ |Ψ0,1
− ⟩(𝛼|1⟩2 − 𝛽|0⟩2)] 

|𝜙⟩0|Φ+⟩1,2 =
1

2
[|𝛷0 ,1

+ ⟩|𝜙⟩2 + |𝛷0 ,1
− ⟩𝑍|𝜙⟩2 + |𝛹0,1

+ ⟩𝑋|𝜙⟩2 + |𝛹0,1
− ⟩𝑋𝑍|𝜙⟩2] 

We see that, depending on the Bell State of qubits 0 and 1 the state, which was initially on qubit 0, 

now re-appears on qubit 2, up to some corrective Z and X operations. To execute the teleportation 

protocol, Alice performs a Bell State measurement on the qubits 0,1. She then sends two classical bits 

which indicate the outcome of her Bell state measurement (00:Φ+,01:Φ−,10: ψ+,11: ψ−) to Bob. 

Bob then applies the corresponding a corrective operation to his qubit. To recover the initial state on 

qubit |𝜙⟩2  

Bob's State Bits Received Gate Applied 
(𝛼|0⟩ + 𝛽|1⟩) 00 𝐼
(𝛼|1⟩ + 𝛽|0⟩) 01 𝑋
(𝛼|0⟩ − 𝛽|1⟩) 10 𝑍
(𝛼|1⟩ − 𝛽|0⟩) 11 𝑍𝑋

 

Notice that if Bob does not apply the corrective Pauli operation to qubit 2, then the teleported state is 

identical up to the corresponding Pauli gate, i.e.  𝑋𝑖𝑍𝑗|𝜙⟩2.  The “feedforward” of the classical bits to 

apply the corrective Pauli gates is not strictly necessary - as long as the impact of the additional Pauli 

gates that are consequently incurred by the state can be tracked throughout all subsequent processing 

steps they can be undone at the end of the computation. 

 
Figure 58: Quantum Teleportation without the corrective Pauli operations results in a modified output state. 

7.1.2 The teleportation trick; or: teleporting a qubit “through a gate” 
The teleportation protocol consumes a particular entangled state and transfers the state of qubit 0 to 

qubit 2, up to a corrective Pauli Gate. But what if we are provided with a different entangled state?  In 

the above example we used |Φ+⟩, but we might equally have used a maximally entangled |Φ−⟩ state 

to run the protocol. In this case the output state would be mapped as follows:  

|𝜙⟩0|Ψ
+⟩1,2 = |𝜙⟩0𝑋|Φ+⟩1,2 =

1

2
[|𝛷0 ,1

+ ⟩𝑋|𝜙⟩2 + |𝛷0 ,1
− ⟩𝑋𝑍|𝜙⟩2 + |𝛹0 ,1

+ ⟩|𝜙⟩2 + |𝛹0,1
− ⟩𝑍|𝜙⟩2] (145) 

 In other words, if the entangled resource state is changed, then so does the mapping of Bell-state 

measurement (BSM) outcomes to gate operations. Gottesmann and Chuang key result was to notice 

that this could be used to perform targeted manipulation of the teleported state. To see how this 
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works, we check what happens to the teleported state when we manipulate𝑈 |Φ+⟩￼ - with our hope 

being that this will give us a result that 𝑈|𝜙⟩: 𝑈|𝜙⟩:as illustrated below: 

 
Figure 59: Quantum Gate Teleportation. Acting on the entangled resource state results in transformed output state. 
The unitary should act directly on the state, which can be accomplished by commuting the unitary through the Pauli 
gates. 

 Since the circuit has no gate connecting qubits 0 and 1 with qubit 2, we can simply apply the unitary 

operator to the teleported state11, i.e. 𝑈 𝑍(𝑗)𝑋(𝑖) |𝜙⟩. This looks quite good already, but we still have 

the additional Pauli gates between the unitary and the state to be acted on. Fortunately, for a large 

class of unitaries the Pauli gates can be commuted to the front without adding other gates, i.e. 

𝑈 𝑍(𝑗)𝑋(𝑖) |𝜙⟩ =   𝑍′(𝑗)𝑋′(𝑖) 𝑈 |𝜙⟩. To illustrate by means of example, consider the Hadamard opera-

tor: 𝐻 𝑍(𝑗)𝑋(𝑖) = −1𝑖+𝑗  𝑍(𝑗)𝑋(𝑖)𝐻. At this point the teleportation trick may seem no more than a con-

juring trick; in the end, what have we really gained from this –we need to act on a quantum state with 

a unitary operation in either case. This is undoubtedly true, however there is a marked practical differ-

ence between a perfect gate that acts on an unknown quantum state (that is embedded in a larger 

computational process) and applying the same operation to a known resource state. The entangled 

resource state may be prepared beforehand, and independent of any quantum data to be acted on. 

The benefit becomes even more obvious when we consider qubit-control gates, where can simply du-

plicate the teleportation trickery. In the example below we have applied the CNOT operation to the 

resource state, and again verify that the Pauli gates can be commuted to the front, leaving us with a 

CNOT acting directly on the teleported qubits.  

 
Figure 60: Quantum Gate Teleportation with a CNOT operation. The box contains the required resource state, that 
can be constructed offline.  

 
11 The fact that we can apply the unitary to the state ”after“ teleportation, even though we may have applied the 
unitary to qubit 2 well before the Bell state measurement, might seem counter-intuitive. It is a result of the 
linearity of quantum theory - since qubit 2 and qubits 1 and 2 are not connected by any multi-qubit gates the 
order in which an experimentalist applies the unitary operation and the Bell state measurement is irrelevant.  
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The required resource state can also be generated via Bell State measurements and single qubit uni-

taries acting on a larger entangled state (Figure 61). We can see this as follows: 

 

 
Figure 61: Construction of the resource state for CNOT from two 3-qubit entangled states.  

In summary, this shows by means of example that 1- and 2-qubit gates of the can be applied to un-

known input states by teleporting the state through the circuit. To achieve this, we need only single 

qubit-unitaries for correction, entangled resource states, and Bell state measurements. Strictly speak-

ing, here we have only shown it for gates that can be commuted through Pauli gates at no additional 

resource (unitaries of this type are part of the so-called Clifford Group) – the reader is referred to the 

original article by Gottesmann et al. for a proof that the scheme also works for general unitary opera-

tors.  The teleportation trick was thus the starting point for what has since become known as meas-

urement-based or one-way quantum computing. 

7.2  One-Way Quantum Computing 
 The concept of one-way quantum computing was introduced by Raussendorf and Briegel forms an 

alternative to the circuit/gate model. The central resource in   this architecture is a large, highly entan-

gled resource state, a so-called “Cluster State”.  The computation is moved along by a sequence of 

single qubit measurements on the cluster state. This is a very powerful tool in part because the cluster 

state can be prepared beforehand or grown on the fly – it lends itself to both implementations that 

have limited success rate in creating large cluster states or systems with limited coherence time (i.e. 

shallow circuit depth). Before we introduce these cluster states we shall illustrate the basics of the 

measurement based quantum computing approach by mapping some simple circuits to measurements 

on entangled resource states. 

To do so, let us first consider a simplification of the teleportation circuit (Figure 62), which is also know 

as a local teleportation circuit. Formally this local teleportation can be describe as follows:   

𝐶𝑁𝑂𝑇(𝛼|0⟩ + 𝛽|1⟩)|0⟩ = 𝛼|00⟩ + 𝛽|11⟩ = |+⟩ (𝛼|0⟩ + 𝛽|1⟩) + |−⟩ (𝛼|0⟩ − 𝛽|1⟩) 

 
Figure 62:  Simplified teleportation circuit. While very similar to “regular” teleportation, the approach is not terribly 
useful if we consider quantum communication setting, since it requires a control-gate that acts on the input and 
output qubits, i.e. they have to be at the same location. 
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While this two-qubit circuit accomplishes the same task as the regular teleportation (it transfers the 

state of qubit 1 to qubit 2 up to an extra Pauli gate), there are also key differences:  i) only one correc-

tive Pauli gate is required; ii) the Bell state measurement is replaced with a single-qubit measurement; 

iii) the approach is not applicable in a quantum communication setting since it requires a control-gate 

that acts on both teleportee and the teleporteur , which implies the in- and output qubits be at the 

same location. For reasons that will become clearer in the following, we will re-wire the circuit in Figure 

62 using some basic identities: 

 
 

In the last step we used the fact that XHX=Z, i.e. XH=HZ. Again, and following the same line of inquiry 

as in the preceding section, we now check what happens when we apply a unitary to the qubit in the 

input state. Without loss of generality, we consider the state to be of the form |𝜙⟩ = 𝑈𝑍(𝛼)|+⟩, where  

𝑈𝑍(𝛼) = exp(−
𝑖𝛼

2
𝑍)is a rotation around the z-axis of the Bloch sphere. 

 
Since the Z-rotation commutes with the Z gate, we can commute it through the control-phase gate and 

get: 

 

 We see that the desired unitary operation is transferred to the output (up to a corrective Pauli gate 

and a Hadamard) by performing a single-qubit measurement in a modified basis 𝑀(𝛼) : 
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We can interpret this circuit as a preparation of an entangled resource state 𝐶𝑍 |+,+⟩  followed by a 

measurement 𝑀(𝛼), which implements the desired transformation  𝑋(𝑖)𝐻 𝑈𝑧(𝛼)|+⟩.  

The reader can verify that the measurement 𝑀(𝛼) has the Eigenstates |±𝛼⟩ =
1

√2 
(|0⟩ ± 𝑒−𝑖𝛼 |1⟩), 

and thus corresponds to a projective measurement in the equatorial plane of the Block sphere.  This 

shows that we can implement rotations about the Z-axis of the Block sphere, but what about general 

single-qubit unitaries? As you might guess, arbitrary single qubit unitaries – i.e. general rotations on 

the sphere can be accomplished by concatenation of the above procedure.  

The state after three-fold concatenation of the teleportation procedure is given by:   

|𝑜𝑢𝑡⟩ = 𝑋(𝑚)𝐻 𝑈𝑧(𝛾) 𝑋(𝑙)𝐻 𝑈𝑧(𝛽) 𝑋(𝑘)𝐻 𝑈𝑧(𝛼)|+⟩ 

Where we notice that the corrective Pauli operations that need to be applied depend on the measure-

ment outcome of the previous measurements. In the following, we see that this will be taken into 

account by adjusting the measurements conditional on the outcome of previous measurements (so-

called feedforward).  To show that this three-fold concatenation is in fact sufficient to accomplish the 

most general rotation on the Bloch sphere, we commute the corrective Pauli gates to the front of the 

expression. After some basic algebra, and using the identities 𝑈z(𝛼) = exp (−
𝑖 𝛼 𝑍̂

2
) = cos (

𝛼

2
)1̂ −

𝑖 sin (
𝛼

2
) 𝑍̂   and 𝑈𝑧(𝛼)𝑋 = 𝑋𝑈𝑧(−𝛼), 𝑋H=HZ,  the reader can verify that 

𝑋(𝑚)𝐻 𝑈𝑧(𝛾) 𝑋(𝑙)𝐻 𝑈𝑧(𝛽) 𝑿(𝒌)𝐻 𝑈𝑧(𝛼) → 𝑋(𝑚)𝑍(𝑙)𝑋(𝑘)𝐻 𝑈𝑧((−1)𝑙𝛾) 𝐻 𝑈𝑧((−1)𝑘𝛽) 𝐻 𝑈𝑧(𝛼) 

With this we have split into an overall corrective Pauli gates, that can be applied at the end of the 

computation (those appearing at the beginning of the expression) and gate operations for which the 

time-ordering is in fact relevant. The direction of rotation induced by the second measurement 

𝑈𝑧((−1)𝑘𝛽) depends on the outcome “k” of the first. Likewise, the rotation 𝑈𝑧((−1)𝑙𝛾) depends on 

the outcome “l” of the second measurement. To show how this all plays together in implementing an 

arbitrary rotation, we re-write the term after the final corrective Pauli gates 

𝐻 𝑈𝑧((−1)𝑙𝛾) 𝐻 𝑈𝑧((−1)𝑘𝛽) 𝐻 𝑈𝑧(𝛼) 

using 
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 𝐻𝑈𝑍(𝛽)𝐻 = 𝐻[cos(
𝛽

2
) 1̂− 𝑖 sin (

𝛽

2
)𝑍̂]𝐻   = [cos(

𝛽

2
) 1̂− 𝑖 sin (

𝛽

2
)𝑋̂] =  𝑈𝑥(𝛽)  

Which we recognize (up to an additional Hadamard gate) the well-known Euler decomposition of 

general rotations: 

  𝐻    𝑈𝑧((−1)𝑙𝛾)  𝑈𝑋((−1)𝑘𝛽) 𝑈𝑍(𝛼) 

In conclusion, to achieve a desired arbitrary rotation   

   𝑈𝑧(𝛾) 𝑈𝑋(𝛽) 𝑈𝑍(𝛼) 

we must simply adjust the measurement basis of the previous measurements (k,l) to account for the 

sign changes which would otherwise be incurred. For this reason, the scheme is called “one-way” 

quantum computing. We can regard this as a sequence of measurements acting on an entangled re-

source state, a so-called cluster state or graph state. These states are conveniently represented by a 

graph where vertices denote CZ gates acting on neighboring qubits. In the 4-qubit example above, 

we have a linear cluster state:  

 

Figure 63 Graphical representation of a linear cluster state of 4-qubits: vertices denote physical qubits and edges 
denote that the qubits are connected via a CZ operation. Measurements on the linear cluster state propagate the 
unitary transformation from left to right. Linear cluster states are sufficient to perform any single-qubit unitary.   

the unitary transformation is propagated from left to right by performing measurements 𝑀(. ). The 

linear cluster state is sufficient to implement any possible single-qubit unitary.  

To show that the one-way quantum computing is indeed universal, we also need two-qubit gates, 

which can be achieved by using different resource states. For example, consider we want to imple-

ment 𝐶𝑍|𝛼⟩|𝛽⟩  on qubits |𝛼⟩  = 𝑈𝑧(𝛼)|+⟩ and |𝛽⟩  = 𝑈𝑧(𝛽)|+⟩. The corresponding circuit is depicted 

in Figure 64 can be achieved using the “Horseshoe” cluster in Figure 65. 

 

Figure 64: Mapping two-qubit operations from the circuit model to a corresponding cluster state 

 

Figure 65 Horseshoe cluster state 

In conclusion, the one-way measurement-based scheme is an alternative approach to universal 

quantum computing. To perform a particular computational task, we need a resource state resource 
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state with a similar degree of connectivity as the corresponding circuit.  The challenge of implement-

ing general multi-qubit gates in the circuit model is thus translated into the challenge of preparing 

large and potentially highly connected resource states.  

 

Figure 66: Illustration of quantum circuit and cluster state of similar connectivity. A particular computational task 
can always be mapped from the circuit model to measurements on a resource state of similar topology. The cal-
culation proceeds from left to right via a sequence of single-qubit measurements, whereby the outcome of pre-
ceding measurements have to be considered in the next measurement (feedforward).   

7.2.1 Definition of Cluster states 
We conclude this section with a brief discussion of some of the defining features of cluster states and 
their graphical representations. To understand some of their features, it is instructive to consider 
how cluster states can be constructed from unentangled qubits: A general n-qubit cluster state can 

be constructed by initializing all n qubits in the state |+⟩ and applying pairwise CZ operations to cer-

tain qubits. Formally we can write this as:  
|𝐶⟩ = Π 𝐶𝑍𝑖,𝑛(𝑖) |+⟩⊗𝑁  

 
 
Where n(i) denotes the neighborhood of qubit i, that is, all those qubits that are connected to it via 

CZ operations. Since the CZ operations commute, the order in which these are applied is irrelevant 

and we can represent the cluster by means of a graph (see preceding examples). A very compact de-

scription of cluster states is possible using the stabilizer formalism. Cluster states are positive eigen-

state of a group of operators 𝑆𝑗|𝐶⟩ = |𝐶⟩, where 𝑆𝑗 = 𝑋𝑗Π𝑛(𝑗)𝑍𝑗 denotes the stabilizer operator for 

qubit n of the cluster state. A detailed discussion can be found in e.g. Kok and Lovett (pages 54-56, 

and pages 67 ff).  
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A 1 The No-Cloning Theorem 
The commutation rules for the Pauli-operators have some serious consequences on the type of oper-

ations, which can be implemented in a two-Qubit system. 

Remember that the state of a (pure) qubit is represented by an arbitrary point on the Poincaré-sphere, 

depending on the chosen basis vectors and the coefficients 𝛼 and 𝛽 or equally by the angles Θ and 𝜙. 

If you attempt to measure its state, you must choose a certain basis in which to measure. This basis is 

represented by a specific Pauli-Operator or a superposition thereof. However, we have learned, that 

these operators are complementary, which is essence means, that you only ever get one chance of 

measuring your polarization state (with a result of ±1), without permanently and irrevocably destroy-

ing the specific state. 

If you knew the specific basis in which the qubit was operated, then you’d be quite fine (in the sense 

of, that you’d only have to determine on which side of the sphere your state is). In general, however, 

you end up in a situation, where you have absolutely no chance of measuring the complete state of 

your qubit, unless you have a lot of advance knowledge. Full stop. 

To make it simple: a qubit may be any point on the Poincaré-Sphere, i.e. it’s defined by two real num-

bers, but you only ever get to measure on which side of the globe it (most likely) was. And as you 

cannot copy, what you cannot measure, you end up in a situation that in most of the cases you cannot 

clone a qubit. 

This idea can be proven rigorously, with the two-Qubit notation, which will introduce in the next chap-

ter12. Suppose that we have a cloning operator 𝑈, which operates on two combined qubits with states 

|𝜙⟩ and |𝑘⟩, such that it copies the state of |𝜙⟩ onto |𝑘⟩, i.e.: 

𝑈( |𝜙⟩⨂|𝑘⟩) = |𝜙⟩⨂|𝜙⟩ (146) 

As a cloning-operator 𝑈 must of course work in the same way for any other state |𝜓⟩, too, i.e. 

𝑈( |𝜓⟩⨂|𝑘⟩) = |𝜓⟩⨂|𝜓⟩ (147) 

Needless to say, that 𝑈 must be connected to a physical process and thus must be unitarian. Let’s now 

compare the two results by taking their scalar product: 

⟨𝑈(|𝜙⟩⨂|𝑘⟩)|𝑈(|𝜓⟩⨂|𝑘⟩)⟩ = ⟨𝜙⨂𝜙|𝜓⨂𝜓⟩

⟨𝑈(|𝜙⟩⨂|𝑘⟩)|𝑈(|𝜓⟩⨂|𝑘⟩)⟩ = ⟨𝜙⨂𝑘|𝑈†𝑈|𝜓⨂𝑘⟩ = ⟨𝜙⨂𝑘|𝜓⨂𝑘⟩
(148) 

The first line is simply taken from the definition of the cloning operator, whereas the last line utilized 

the fact that 𝑈 is unitarian. Thus we find: 

⟨𝜙⨂𝜙|𝜓⨂𝜓⟩ = ⟨𝜙⨂𝑘|𝜓⨂𝑘⟩ (149) 

Because the tensor and the scalar product can be exchanged, we simplify both sides of the equation 

to: 

⟨𝜙|𝜓⟩⟨𝜙|𝜓⟩ = ⟨𝜙|𝜓⟩⟨𝑘|𝑘⟩ (150) 

Because ⟨𝑘|𝑘⟩ = 1 we get: 

⟨𝜙|𝜓⟩2 = ⟨𝜙|𝜓⟩ (151) 

 
12 In fact, this works for any type of quantum system; qubit or not. 
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This result is crucial. It can either be fulfilled if ⟨𝜙|𝜓⟩ = 1, which means that |𝜙⟩ = |𝜓⟩, which is trivial 

or if ⟨𝜙|𝜓⟩ = 0, which means that |𝜙⟩ is orthogonal to |𝜓⟩. In other words: if you have found a cloning 

operator that works on one specific quantum state (e.g. a Qubit), it can only work on orthogonal quan-

tum states as well but it will not work for arbitrary quantum states. Full stop. Thus, if you cannot find 

a cloning operator, i.e. any physical process, that copies quantum states, then you cannot copy a quan-

tum state. As long as you have to stick to the laws of nature, that is.  

The central argument for the derivation of the no-cloning theorem is obviously the unitarity of 𝑈. In 

terms of time evolution unitarity is equivalent to time-reversibility and thus to a constant entropy: In 

other words quantum operations must not destroy information in an irrecoverable manner. The sup-

posed cloning-operator, however, would just do that: it would destroy any information of the prior 

state |𝑘⟩ of the target system upon it being overwritten with |𝜙⟩. Thus cloning, from a thermodynamic 

point of view, is an irreversible process and quantum mechanics just does not provide any means to 

do that.13 

 

 
13 Note that if you replace |𝑘⟩ with a many-body thermal bath, then you can “hide” the reversibility in the huge 
state-space and the fact that most of these states are in reality very hard to differentiate. Reversibility this thus 
practically impossible.  


