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1 Algorithmsand Complexity

This part of the lecture is not yet concerned with quantum physics or quantum computation. Instead,
it shall serve as an introduction to some of the minimum parts information science, which we shall
require in order to help understand, why and in what areas quantum computers are actually useful.

These aspects shallalsoserve as a reminder that there is an intrinsic connection of the physical world
and the computer world, which is all too easily forgotten with contemporary computer systems. After
all, computer and thus algorithms must use physical effects to work their magic and as such they must
represent information in physical entities. So let’s get started.

At the centre of information science is the concept of an algorithm. Consider an algorithm to be the
equivalent of a cooking recipe:

Definition 1: An algorithm contains specific set of procedures to carry out with a set of
specific resources to solve a specific problem / to COMPUTE the solution to a specific
problem.

In the case of a cooking recipe this would be to turn shoppable ingredients into a tasty meal or to
impress your guests. Ideally both. Algorithms are ubiquitous in our civilization (with the aforemen-
tioned cooking being a — we believe — very down to earthexample) and it is no wonder that there is a
fair amount of them floating around in mathematics; some of which have been invented by the old
greeks or even further back. Probably the first one you get to learn in school is the addition of two
large numbers, which you learn to break down into digit-wise addition of nhumber smaller than ten.
Justin case you like to be reminded of the good of time in elementary school, when life was simple, as
long as you could avoid the ubiquitous school yard bully, | have sketchedthe algorithm carried out for
you. The result is, of course, 4242, because....canthere be any other meaningful result?
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Figure 1: Addition oftwo large numbers. This is probably the first mathematical algorithm youlearn in school,
thatdeserves a closerlook at.

Itis no wonder then, that algorithms in by itself became the subject of scientific research, whichlead
to a series of discoveries, which date back to the invention of the first computers. The reasonis quite
straightforward: with the invention of electronic computers the computation capabilities of mankind
skyrocketed (and it stillis), which immediatelyled to a very simple question: given a computation ma-
chine of sufficient size and speed, can we compute everything? More specifically:

1. Istherea (class of) computational machine, which can run any kind of conceivable algorithm?
2. And if so, can we do soin any kind of limited time, or is this hopeless to begin with?

Spoiler alert: the answer to the first question is a resounding: yes, whereas the answer to the second
question is a mildly disappointing: very frequently no.
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Turing Machines and Universal Algorithmic Devices

Let’s at first turn our attention to the first question. It certainly is helpful to formalize the description
of an algorithm to, to help give the kind of clarity, which we need to analyse its features. Let’s go back
to the summation example of above and try toformalize the produce of the addition of large numbers
into a kind of pseudo-code:

1.

Algorithm to calculate A+B

Write numbers A and B beneath each other onto a sheet of paper, with

the digits aligned (e.g. the 10° under each other and the 10! under each
other and so forth)

. Investigate the least significant digits and introduce an auxiliary

variable C, which is set to zero.

. Add the two digits under investigation from numbers A and B and the

auxiliary variable C.

. Write down the least significant digit of the sum under the digit under

investigation.

. If the sum was ten or larger set the auxiliary variable C to wvalue 1,

else to zero.

. Move to the next most significant digit and repeat, starting from point

3.

. If you have run out of digits, check your auxiliary. If it is zero,

then terminate. If it is one, then write a 1 in front of the result
and terminate.

This is already quite formal but we aim totake this one step further and design a hypothetical machine
out of this pseudo-code, because this lends itself much better for analysis thanthe pseud-code repre-
sentation, whichis still too close to natural language, tofit into a convenient mathematical apparatus.
The most well-known and well-investiagted of this type of machines is the so-called Turing Machine.

Definition 2: A Turing-Machine is a set of four elements, namely:

(1) A finite state control Q = {q, ..., qs}, defining all possible states q of the TM
and a current state q € Q.
The set of states Q has a minimum number of two members, namely q , the
starting state and qy, the halting state. The machine is initially in q . If it
reachesstate qy, is has finished its calculation.

(2) A semi-infinite tape S = {s4, ..., Sp}, which consists of a numbered sequence
of elementss,, called tape squares, where the individual elements belong to a
set of symbols of an alphabet s, € I'.
The alphabet I' usually has a minimum number of four symbols, namely 0,1,b,
start. The symbol start is reserved toindicate the beginning of the tape, b is
for blank elements of the tape.

(3) A read/write head, which is pointing at a specific position p' of the tape. The
write head can be used to read the symbol s,,, off the tape and to overwrite its
content with any one of the symbols in I'.

(4) A program table, consisting of a sequence of program lines of the form
(q,s,q9',s',m), wherelis the number of the program line, with | € {1, ...,L}.
Hereq,q' € Q,s,s' €T, and m € Z The lines are unique in the sense that the
exists no more than one line for each combination of {(q, s, . ,.,.)
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The TM is initialized to be in the starting state qs and at tape position p = 0. At every
iteration the state q and tape value s is checked. If there exists no element within the
program table with this specific combination {q, s, .,.,.) then the TM is set onto state q,
and the program is finished. If there exists a line then the state is change according to

q — q', the value of the tape is changed according to s — s’ and the read/write head po-
sition p is changes according to p = p + m. The process is repeated until the machine is

halted.

Of course, this is very abstract so let’s try and turn our addition algorithm into a TM. For the sake of
simplicity, we shall, however, change the notation of number into binary and we shall fix the number
of digits for both A and B to be eight. We shall alsoadopt only eight bits for the result and thus we will
in reality calculate C = (A + B) mod 256. Thus we have:

For the state control we have Q = {qs,,qn,Ra0,Ra1,Rpo,Rp1, Rp2s Wo, W1, W, Ws}
For the alphabet of the tape I' = {0,1,b, start}
The tape is initialized as follows: (s, A¢,...47,b,By, ... B;, b, ....), where A; and B; are the bi-
nary digits of A and B in big endian notation, respectively.

The programtable is as follows:

qS()

I?WQ
RMG

start

o

ST T TR ORPRORPROT R OT

RAO

Ru1

start

o

PO PR OPRPRORPROPRPROT R OT K

+1
+9
+9
0
+9
+9
0
+9
+9
+9
+9
+9
+9
-17
—-17
-17
-17

A typical layout of the band after the machine has run may look like this:

start

0 1 0 1 0 1 0 1 b

1

1

0 O

0 b 1 0 0 1 1 1 0 1 b

Please feel free to do the back conversion into decimal numbers yourself or believe me, that the algo-
rithm has just calculated 170 + 15 = 185 for you. Also note that we have just marked the blanks b in
boldface to make the result a bit easier toread. The first two part of the band still contain the numbers
A and B in their initial form and the resultis in the third block of the band.

A few things to note here are:

we are using the state of the TM q to store intermediate results; this is quite cumbersome but

does the job

an alternative approachis to use the tape itselfto store intermediate results
the TM notation is quite cumbersome and it was never intended as a programming language
but as a tool to ponder on algorithms and programming schemes
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Now that we have understood how TMs work, we shall discuss their impact onto science in general.
Cumbersome as theyare, TMs are surprisingly versatile. You can compute literally anything with them.
This is not just true for any mathematical operation, this is also true for text-based operations, data-
base searches, andsoon.
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Figure 2:Sketch of a Turing Machine

This is not just true for the type of problems to be solved but alsoin regards to possible generalizations:
for example: for the sake of simplicity, we had allowed the read/write head to propagate many steps
to the left and right simultaneously. In fact, this is not required, and you can make the TM work with
just +1 steps allowed, again using states of the machine to keep track of the number of movements
to the left and right. In fact, you can think of a whole lot of generalizations of TMs (two-ended bands,
multiple bands, multiple writing heads, and so on), which all can be simulated on a plain-vanilla TM.
This already hints at the generality of the TM-concept. We shall elaborate on this by inventing a special
type of Turning Machine with a fixed program and a fixed state control Q. The machine is set up in
such a way as to retrieve all the required information to construct an arbitrary Turning machine from
the band it is supplied with. Such a machine is called a Universal Turing Machine (UTM), and it can
therefore be usedto simulate any conceivable TM.

TMs are thus incredibly general in their ability to compute algorithmic problems, so general in fact,
that there is not a single known algorithm, which cannot be implemented on a TM. This was inde-
pendently suggested by Turing and Churchand leads to the axiomatic Church-Turing thesis:

Theorem 1 (Church-Turing-Hypothesis): The class of functions computable by Turing Ma-
chines corresponds exactly to the class of functions, which we would naturally regard as
being computable by an algorithm.

This leads to three important conclusions: (1) The answer to question 1 from above is now a qualified
yes. There is a class of machines that can calculate everything, which we can turn into an algorithm,
namely the Turning machine. (2) Because a TM cansolve any algorithmic problem it can also simulate
any possible algorithmic machine of any type. (3) Any type of machine that can implement a Turning
machine can calculate the result to any possible algorithm. Such machines are called Turing-complete
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and any modern computer that we operate nowadays is an almost (!) perfect example for such a ma-
chine. Therefore, using a computer, we can, in principle, calculate the result to any type of computa-
tion problems, whose solution can be attained algorithmically.

“In principle” here is, however, an important caveat. Real computers have finite memory and, of
course, there is a finite amount of time that we have to calculate any solution to a problem, or else we
may end up like the investors of the great thinking machine in the “Hitchhiker’s Guide to the Galaxy”,
long extinct, before the program has finished.

This leads back to the second question from above, which we shall discuss in detail in the following
section. To do so, we shall, however, clarify this question by breaking it up into three subquestions:

2a. Canwe solve any type of algorithmic problem in finite time?

2b. Can we solve any type of algorithmic problems in efficiently? E.g. can we solve any algo-
rithmic problem in such a waythat the resources (time, memory) do not grow faster than
polynomial for any given increase in the problems parametric complexity?

2c. Are TMs an efficient model for computation? |.e. can TMs simulate any conceivable algo-
rithmical machine efficiently? l.e. are TMs the per-se most efficient type of computational
machine?

The answer to question (2a) is a resounding NO. This was already found in the early days of information
science, when it became clear that there are classes problems that cannot be solved in finite time by
a TM or any other computation device. The first and most prominent example is Hilberts “Entschei-
dungsproblem”. We have added tothe number of such problems in the meantime. Thus, we know that
there are problems which are intrinsically hard to solve in and by themselves. About everything we
know surprisingly little and what we know is surprisingly circumstantial and unsystematic.

1.2 Computational Complexity and Scaling Behavior

Question 2b is probably the one with the most unsatisfactoryanswer: we just don’t know. But before
we go into any level of detail here, let’s just reconsider, how such a question may be answered at all,
e.g. what does an efficient solution actually mean? Suppose for any given class of problem there is a
order-parameter N, which describes the size of the problem. For the summation algorithm from above
this could, e.g. be the size of the numbers to be added. The concept of computation complexity then
describes the asymptotic scaling behaviour of the computational resources (time, memory space, en-
ergy) to be required for a solution, as the order parameterscalestolarge N — co.

For the summation algorithm from above it should be clear that we have the scaling behaviour
0 (log(N)); e.g. ifthe numbers to be added grow by a factor of 10 we just have to carry out one more
addition step. This seems like a pretty efficient algorithm; particularly if you compare it withthe more
straightforward approach of addition by counting (e.g. adding with your fingers). This approach would
scale according to O(N) and therefore much less efficiently. O(N) being worse than O (log(N)) is of
course only strictly true for large numbers and this might be the reason that first graders, who only
operate on fairly small numbers, might be tempted to hone their skills in the addition by counting
algorithm, instead of learning digit-wise addition (you see, | have a small kid in school).

The digit-wise addition with its O(log(N)) scaling then the most efficient algorithm there is? Is not
turns out, probably yes. But already for the textbook-style multiplication of integers the questions be-
comes much more complicated. Ben = log (N) the approximate number of digits of the two numbers
to be multiplied. Then the textbook multiplication scales according to O (n?). From a deeper analysis
of the problem, however, we know from first principles (top-down) that the problem in and by itself
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must be solvable in O(n logn) steps. Indeed in 2019 such an algorithm was demonstrated by Harvey
and Hoeven, but its validity proof rely on at least one unproven (but likely) conjecture, so....make of
this what you like. At any rate for the purpose of this course we shall assume the bottom-up (algorith-
mic) scaling for integer multiplication has met with the top-down scaling, which is a nice result.
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Figure 3:Illustration of the scaling of different types of O. Everything above the green line is pretty bad. Forevery-
thing above the brown line, even Moore’s lawis no consolation. Stolen from the QISKIT book.

Integer multiplicationis a seemingly simple problem and the discussion already points at a fundamen-
tal problem. For any given problem we do probably have a set of algorithms with a specific scaling
(bottom-up). However, the cases, where we know from first principles (top down), what the best pos-
sible scaling is, are rare. So, the question for many computation problems remains: is there a much
better algorithm out there? This question is aggravated by the fact that we in fact know many algo-
rithms with appallingly bad scaling, such as O(expn) or O(n!) = O(n™). Many of such problems are
related tofield of information science of high impact, such as graph problems (frequently encountered
in database and optimization problems) or the simulation of many particle systems in quantum phys-

ICS.

Of course, the searchfor a best possible scaling for computational problems is a big thing, because it
promises algorithmic speedup beyond the power of the scaling of hardware. Therefore, scientists have
not been idle, and they have come up with a zoo of interesting results in this direction. We shall first
discuss some results from the top-down perspective and then switchto the bottom-up perspectivein

the next section.

The most successful approachin top-down analysis of problems is the grouping of problems into com-
plexity classes. Aproblem P’ is said to be in the same complexity class as another problem P, if P'can
be reduced onto the problem P with no more than polynomial complexity. Complexity classes accord-
ing to this definition are rather large things and a lot of conjectures about their mutual relations are
known, which are usually formulatedin the concept of mathematical languages. We are not going into
details, but we will just discuss the two three relevant classes here:
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- P:lsthe class of problems, which can be solved deterministicallyin polynomial time.

- NP:istheclass of problems, for which solutions can be verified deterministically in polynomial
time but thereis not necessarily a possibility to find solutions in polynomial time.

- NP-hard:is a subclass of problems in NP, onto which all N P-problems canbe reduced

As a remark: pleaseignore the word “deterministically” here. We shall get back to it at the beginning
of the next chapter.
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Figure 4: A few complexity classes and what Wikipedia knows about their mutual relations.

Of course, it is trivial to see: P € NP. The question however remainsis P = NP or P c NP? This
question is usually approached by introducing a sub-classification into the NP class, namely the N P-
hard, class. NP-hard problems is a set of problems onto which every N P problem can be reduced. The
most famous of which is the so-called “boolean satisfiability problem”. The P = NP question canthen
be reduced to the following two problems: (bottom-up) Can we find any single NP-hard problem,
which is solvable in polynomial time? If so, then P = NP. (top-down) if we can, however, show that
sucha suchan algorithm cannot exist, then P © NP. The latter problem can be considered as the holy
grail of information science and there is — to this date — no solution. There is — however — also no
bottom-up solution, e.g. no algorithm, which can be run on a TM-complete computer and which can
solve N P-hard problems. After 80 years, or so, of computer science with Turing-complete system since
may serve as a strong hint, that either of the following explanations is true:

- Explanation 1: there is no such solution and indeed P ¢ NP, i.e. there are problems, which
will forever remain hard to solve but easyto verify.
- Explanation 2: the TM-model although universal may not be universally efficient.

We have now set the stage for the quantum computer.
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1.3 The Strong Church-Turing Hypothesis and Path to Quantum Com-

puters

There are tworeasons to suspect that Explanation 2, might be worthwhile to investigate. The first rea-
son is related to the word “deterministically”, which we had asked you toignore in the last chapter. In
fact, people have discovered quite early, that many N P-problems can be solved efficiently on a prob-
abilistic TM (i.e. a TM with an added random number generator), if we allow for a margin of error in
our solution (e.g. we may get a wrong solution with an arbitrary probability € << 1). One example is
the travelling salesman-problem: here a deterministic solution has a scaling of O(n!) but we can (with
certainty) get to within a factor of 1.5 to the best solution within O(poly(n)) using e.g. the so-called
algorithm of Christofides.

Inother words: we know that probabilistic Turning Machines are much more efficient at problem solv-
ing thanordinary TMs and thus people have come up withthe Strong Church Turing Thesis as a conse-
guence:

Theorem 2 (Strong Church-Turing-Thesis): Any model of computation can be simulated
on a probabilistic Turing Machine with at most polynomial increase (i.e. efficiently) in the
number of elementary operation required.

And that’s it. At least from the point of view of the first half of the 20t century. Because, what else
would you add toa Turing Machine? What elseis there toadd? Of course, this cannot be true, because
otherwise we would not make such a hype of Quantum Computer you would not be reading this script,
right?

The first serious cracks inthe strong CTT are typically attributed to our most favourite Richard Feynman
and a few of his lectures in and around 1982. There he elaborated on the notion, that:

Can physics be simulated by a universal computer? [...] the physical world is quantum
mechanical, and therefore the proper problem is the simulation of quantum physics [...]
the full description of quantum mechanics for a large system with R particles][...] has too
many variables, it cannot be simulated with a normal computer with a number of ele-
ments proportionalto R [ ... but it can be simulated with | quantum computer elements.
[...] Can a quantum system be probabilistically simulated by a classical (probabilistic, I’d
assume) universal computer? [...] Ifyou take the computer to be the classical kind I’ve
described so far [..] the answer is certainly, No!

Richard Feynman (1980)

What is he actually referring to? As it turns out many-particle quantum systems are intrinsically hard
to simulate, because each particle (e.g. electron, proton, etc...) lives in it “own” version of (three-di-
mensional) space; all of which interact. If you have R particles and discretise space into n points it
turns out that each simulation step will require atleast O(n®) data points. Thus quantum many-parti-
cle systems are incredibly hard to handle in a classical computer.

Although Feynman is certainly very famous, his ideas (worries?) had been independently formulated
by a few others before:

Perhaps [...] we need a mathematical theory of quantum automata. [...] the quantum
state space has far greater capacity than the classical one: for a classical system with N
states, its quantum version allowing superposition accommodates cV states. When we
join two classical systems, their number of states N, and N, are multiplied, and in the

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 10



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

quantum case we get the exponential growth cV1Nz . [...] These crude estimates show

that the quantum behavior of the system might be much more complex than its classical
simulation.

Yu Manin (1980)

and even earlier:

The quantum-mechanical computation of one molecule of methane requires 10*? grid
points. Assuming that at each point we have to performonly 10 elementary operations,
[...] we would still have to use all the energy produced on Earth during the last century
[for its simulation].

R. P. Poplavskii (1975)

So, what do we make of this? We could certainly just give up and say: quantum systems will forever
remain unsimulatable but we could also choose a more pragmatic approach. We could, as we sayin
German “Den Bock zum Gartner machen”. What | amtrying to sayis: if nature has bequeathed us with
a class of physical systems, whose behaviour we understand but which we cannot predict in detail,
because the systems complexity in intractably large, then, why should we not attempt to use these
systems to make predictions for us? Why should we not try to build a computer, which operates on a
guantum many particle system, to solve quantum mechanical problems, which we cannot solve on
classical computers? If that is possible, what other algorithmic problems can such a computer solve
efficiently, that we cannot solve on a Turing machine efficiently? Are there any such problems at all?
And how can we find them?

500 —

=== Classical Search O(N)

i Quantum Search O(VN)
400 - e

300 -
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Time Taken to Find Solution
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Figure 5: Acase for Quantum Computers. Even a modest improvement from O (n) to O (\'n), as experienced for
quantum search algorithms will outperform a classical computer if the search space is sufficiently big, even if the
quantum computer is much , muuuuuch slower. Stolen from the QISKIT book.

We shall of course seein the following chapter, that all of these questions can be answered positively
with some level of confidence. This also means, that the Strong CTTis definitely wrong. Moreover, it
points to the fact that Theses such as the Strong CTT should not be written down in ignorance of the
limitations of the physical systems, on which our models of computation are based. Or in other words:
if any new physical theory, more fundamental than Quantum Physics is discovered, go looking for the

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 11



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

underlying problems, which are hard to simulate and see if you can make a new and powerful class of
computers from it.

1.4 Definition of a Quantum Computer

Since every computational system s ultimately described by quantum physics, we also need to define,
what we mean, when we say a “quantum computer”. What separates a quantum computer from a
classical computer, is defined at the operational resource level:

Definition 3: A quantum computer is a computational device, which uses quantum infor-
mation (frequently but not necessarily in the form of a set of Qubits) to perform algorith-
mic tasks, using quantum processes which are not accessible to classical systems.

While state-of-the-art classical computers may well leverage quantum technology at the level of hard-
ware (lasers, semiconductor technology, photodetection), they do not take advantage of quantum
principles at the level of information or processing itself. Not yet.

Now that we have convinced you that quantum computers are a hot topic, because they operate on
new physical principles, let’s delve into quantum physics and see what these principles are.

2 Fundamentalsof Quantum Physics

Before we can understand quantum computers, we must first understand (some basics) of quantum
physics. What is quantum physics? To put it simply: quantum physics is a theoretical framework, which
describes the behaviour of everything in the world, expect for gravity. More specifically, quantum the-
ory provides a set of tools for calculating probabilities for outcomes of measurements! applied to a
certainstate of the quantum system to be measured. A measurement corresponds to anything we may
observein alaboratory using a suitable measurement apparatus. Mathematically such anapparatus is
represented by a so-called observable. The toolset for its description comes in the form of postulates,
which are discussed below.

2.1 A Somewhat Physical Introduction to Quantum Physics

This definition is a broad as it is useless, so for the sake of simplicity, we discuss some of the key ingre-
dients. A central role in quantum physics is described by the notion of modes. If you are coming from
a classicalfield theory (e.g. electrodynamics), these modes carry over to the quantum world without
any change inthe waytheyare calculated (e.g. there is either an eigenmode equation or a Hamiltonian
from which they are derived). The difference is that the modes do not have a scalar excitation strength
(e.g. modal amplitude), instead they are populated by a series of discrete states, starting from the
vacuum |vac). These states are what is typically considered a quantum; they get their specific name
from the type of field they describe, usually ending with an “-on”, such as photon for the electricfield
(also: electron, proton, phonon, etc...).

Mathematically the population of a mode j with quanta is done by the repeated operation of a crea-
tion operator de on the vacuum. For example, de |vac)is a field which has one and only one quan-
tum in the j mode. Here j is a quantum number uniquely denoting a specific mode, e.g. a k-vector and
a polarizationsuchas H or V. The depopulation is similarly done by the annihilation operator @;, which
is the Hermitian conjugate of the creation operator. Both operators are relatedto a complex superpo-
sition of the canonical fields and canonical momenta (e.g. a complex superposition of the electricand

1 And nothing more. If youfindthat non-satisfactory, then deal with it. We shall later see that this is not a problem
ofthe theory butthe veryessence of natureitself, as can be testedin e.g. a Bell-Test.
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magnetic fields or the superposition of wave packet location and momentum). Depending on the kind
of field, which is described these operators have different commutators. For boson fields we have:

la;.a;] = [at,.at;] = o[a;,at;] = a,at; — at 4, = 6 (1)
Whereas for fermion fields we have:

{a;,a;} ={af;,at;} = ola, at,} = a;at; + at;a, = 6,5 (2)
For both types of fields we canconstruct a modal number operator

which corresponds to an actual observable and which tells us exactly, how many quanta thereareina
specific mode. We shall later see, what this actually means and how sucha measurement can be con-
structed. The difference in the commutation relations for the two observables has the consequence
that for bosonic fields any mode can have excitations with any positive integer number of bosons in
them (e.g. the creation operators define an infinite ladder), whereas a fermionic mode can only have
zero or one fermions in them. Keep in mind this actually means: it can have superposition of such
guantum number states.

Each boson or fermion number state behaves very much like a classical mode, in the sense that its
excitationis now described by a complex number, which is likewise called “amplitude”. The difference
in classical field theories and quantum theory thus boils down to the fact that each field mode now
consists of a series of quantum modes, which can each be excited by a complex numbered amplitude
and superpositions thereof.

Any quantum system s in a superposition of these fundamental modal number states.

2.2 The Postulates of Quantum Theory

We shall now turn to the postulates of Quantum Physics, which describe how quanta evolve and how
theyarerelated to measurements. Why postulates? Well, it turns out that the rules of quantum physics
cannot be derived from a more underlying theory (this may change, if, one day, quantum gravitation
is developed). These rules have been derived from the results of many experiments and as such are
laws of nature. Inother words: the rules have been written down in a way as to be the simplest set of
rules, which describe experiments. If this seems a little unsatisfactory to you, the opposite is true. It
turns out they can be and have been used to describe gazillions of experimental observations with
mind-numbing precision.

We will assume some level of familiarity with linear algebra and probability theory extensively through-
out. The reader is encouraged to consult the standard quantum theory textbooks for a review if
deemed necessary.

2.2.1 Quantum States and Superposition

Postulate 1: Associated to any isolated physical system is a complex vector space H with
inner product (p|) = (Y|p)* € C (thatis, a Hilbert space) known as the state space
of the system. The system is completely described by its state vector |y), which is a unit
vector in the system’sstate space, e.g. (Y|P) = [Y|? = 1.

The state vector [i) represents a state of complete knowledge about the preparation of the physical
system, i.e., everything that we need to know, and everything that is principle knowable. Implicit in
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the structure of the linear vector space structure is the following statement: If |y, )and |i,) are pos-
sible quantum states, thensois any superpositionsate:

W)= a;|, )+ az[ip) 4)

with complex amplitudes «; and a,. While this may look trivial, it is arguably among the most pro-
found concept in quantum theory: the superposition principle is not only the culprit responsible for
much quantum weirdness, such as the Heisenberg uncertainty principle, it is also the key feature in
many quantum-enhancements such as exponential speedups in computing and secure communica-
tion.

Experimentally accessible quantities, such as expectation values and probabilities are described by
numbers and not the state vectors themselves. Or to put it more bluntly: you cannot measure the state
[t} by any conceivable means (no matter how much money or brains you throw at the problem). To
arrive at these, we need a mapping from vectors to numbers, i.e. an inner product. Denoting the dual
vector to [y ) by the Dirac “bra”:

W =T = aj @] + a3 (,| (5)
The inner product can be written conveniently as a ,, bra-ket“:
(Pl = W) (6)

In particular, the norm of any vector is a real number (y[1)) > 0 that of a permissible stateis 1.

Just exactly what the state space of a quantum system is, is subject to quantum physics and must be
treatedinunderlying theories. The awesome power of quantum physics is related tothe fact that there
is a huge set of physical systems, which behave this way, irrespective of their physical origin.

Qubits
The simplest Hilbert-Space is a two-dimensional one. From the laws of linear Algebra we know, that
within such a Hilbert space we may chose an orthonormal basis set, which we shall simply denote as

0),]1) (7)
Thus, any state within this 2d Hilbert-Space can be writtenas a superposition according to:
) = al0) + B|1) (8)

With |a| 2 + | 2| = 1. Such a system is called a Quantum Bit or in Short a QuBit. The notion comes
from the idea, that a QuBit, just like an ordinary bit, can take the form of two-well defined states |0)
and |1) but, as opposed to an ordinary QuBit, it can alsotake any superposition of such as state.

Definition 4: A system, which can be described by a two-dimensional Hilbert-space is
called QuBit. Any possible state within that system is a valid state of the QuBit. Physical
implementations for QuBits are manyfold but details are irrelevant for the concept.

2.2.2 Evolution

Postulate 2: The evolution of a closed quantum system is described by a unitary transfor-
mation U. Thatis, the state |\) of the system at time t is related to the state |') of the
system at time t, by a unitary operator U (e.g.Ut = U~') which depends only on the
times t{ and t,, such that

ly’) = Op) (9
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While this has the status of a postulate, we mayalso discuss, why this is a plausible postulate. Unitary
operators do not change the norm of a vector upon which it is applied, which can easily be seen by
calculating the norm of U|):

W'y = (|0t O) = Php) (10)

Just like the quantum states, we can’t make any statement here, as to the specifics of the unitary
evolution operator, which define the evolution of a real-world system. This is again subject to quantum
physics and depends on the systemin question. For many systems, however, there are externalfields,
which can be usedto imprint evolution operators with specific properties. Such external fields may be
laser beams, RF-pulses, Lorenz-forces, or anything else. These operators can often be thought of as
acting in a time-discrete manner, i.e. they are active until a certain evolution of the state if achieved
and then they are switched off. These operators will play a crucial role in quantum computers and
there take the notion of a quantum gate, e.g. a discrete step in a computation algorithm thatis used
to manipulate the state of a quantum system.

A special role, however, is played by the free evolution operator, which, of course, acts in a time con-
tinuous manner:

Postulate 2’: The time evolution of the state of a closed quantum system is described by
the Schrédinger equation:

dl)

har =

H 1) (11)
In this equation, h is a physical constant known as Planck’s constant whose value must

be experimentally determined. The exact value is not important to us. In practice, it is

common to absorb the factor h into H, effectively setting h. H is a fixed Hermitian oper-

ator known as the Hamiltonian of the closed system.

The details of the Hamiltonian are again subject to quantum physics and —depending on the systemin
guestion — the finding of a Hamiltonian and the study of its effects on the free evolution of some sys-
tems are long-standing and ongoing research topics. However, with A being Hermitian, we know that
we can decompose it into a set of eigenfunction-eigenvalue pairs

A= Z E|ENE;|. (12)
j

With |Ej) being the systems energy eigenstates and E| its energy. The statewith the lowest Ej is called
the system’s ground state and plays an important role in many physical systems.

If the Hamiltonian acts over a certain time span, then the evolution of the quantum state, e.g. the
solution to the Schrédinger Equation will be:

[v)=0ly) = exp{— ‘H(tT”} ). (13)
You have to keep in mind that the exponential function is an operator-exponential, which in the most
cases has tobe treatedin the infinite sum representation. Note that the relation between the Hermit-
ian H and the evolution operator U is generic and you can use the relation to convert any Hermitian
operator into a unitary operator (and vice versa). This Hermitian for any specific Unitary operator is
then frequently called the gate’s generator and can sometimes be very helpful to gain insight into the
physical system.
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2.2.3 Observables

In accordance with our every-day lab experience, we can think of the measurement of a quantity A
(called observable) as numbers on a read-out device. Thus, we should require measurement outcomes
to be real-valued numbers a; € R (and not, e.g., complex numbers). Moreover, we note that any
known measurement apparatus gives a specific result, which is necessarily inconsistent with the notion
of superposition. After a measurement, the system’s observable is of course known and therefore,
irrespective of the prior state, the system after the measurement must be in a subspace of the Hilbert
space, that belongs to those quantum states, which would lead to the specific measurement results.
This also ensures that two repeated measurements of the same quantity give consistent results. More-
over, a measurement should not change the nature of the system, e.g., it must not force the system
out of its Hilbert-space. Taking all this into account we arrive at the next postulate:

Postulate 3 (Born’s Rule): An observable/measurable A is physical quantity which is de-
scribed using a Hermitian operator A. It can be decomposed into a series of eigenvalue-
projector-pairs A = Y,; a; P, where a; are the possible measurement results for the spe-
cific eigenstates of the observable and P; are the projectors onto the subspace of the Hil-
bert-Space, which belong to a measurement value a;. The measurement processis prob-
abilistic process, which is conducted according to the following rules:

1. The measurement will yield result a; with a probability
p(A=a) = p; = (Y|P ) (14)

2. Given that the result a; occurred, the wavefunction of the system collapsed onto
the subspace consistent with that result, i.e. )} is replaced by:

2w

) N

The replacement is totally random, a-priori unpredictable, instantaneous and leaves no trace of the
original system.

(15)

Projection operators

If the measurement operator is composed of entirely non-degenerate eigenvalues then the projectors
are all one-dimensional projectors onto an orthonormal basis set, e.g. P, = |i){i|. Ifthis is not the case
then an arbitrary orthogonal basis can be constructed with each projector subspace and the projector
operators may be written according to: B = XP_, |i))(ix|, where D is the number of dimensions of
the degenerate subspace.

All projection operators, irrespective, if they are single-dimensional or multi-dimensional projectors
fulfil the following relations:

~2
R =FR (16)
BB =46;;R,

We canthink of a projection operator as an elementary observable that essentially “asks” the quantum
system the question: “are you in my subspace or not"? The operators’ eigenvalues (1 and 0) can be
interpreted as the response (yes=1/no=0) to such a query:

Plj) =&l (17)
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After application of the “are youin my subspace or not" operator the systems state is either exclusively
in the operators subspace (if the answer was “yes”) or completely out of the subspace (if the answer
was “no”).

For the case of non-degenerate projectors, we may use this knowledge to phrase Born’s rule slightly
differently. The probability p; of measuring a particular value a; when we perform a projective meas-
urement on a state preparedin a state [i) is the expected value of the corresponding projection op-
erator or in other words its overlap with the projection subspace:

p(A =a)=p; = (V|| @) = @liXilp) = [li)]? (18)

Whenever a measurement is made our knowledge about the state of the system also changes accord-
ing to the outcome of the measurement. From the numerous potential outcomes, only one occurs in
the measurement. Correspondingly the normalized post-measurement state becomes:

Rl _
VP b

The mere process of measurement will thus project the quantum state |1)) onto the eigenstate ofthe
observable |i), which corresponds to the measurement result a;.

1) |2) (19)

Expected Values and Variance of Measurables
If you have multiple, identical quantum systems at hand, you may attempt to repeat the measurement
and construct statistics from them. The two most important statistical properties of a measurement

are its expectation value E(A) = (A) and its standard deviation A(/T). They are calculated according
to:

2 (20)

Complementarity of Observables

The collapse of a wavefunction leaves quite a bit of room for interpretation and discussion. One of the
most immediate consequences is, the outcome of two different measurements A, B may depend on
their respective ordering. This is clear because B, the second measurement, may be sensitive to the
part of the wavefunction that gets collapsed by the application of A. This is, however, not necessarily
the case because it may also be, that B, still gives meaningful results, if it operates only within the
degenerate subspaces that A projects onto. Everything in between is possible, as well.

If the two measurables depend on each other, they are called complementary; if they don’t depend
on each other they are called compatible/commutating. In quantum formalism, the complementarity
of observables is measured by the respective difference of their reverse-ordered application of the
wavefunction, e.g. A and B are compatible/commutating, if

ABlp) = BAly) (21)

Since this relation must hold, irrespective of the selected wavefunction |y}, we can write down a sim-
ple metric for the complementarity of the two operators in terms of the commutationrelation:
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[4,8] = AB - BA (22)

For any pair of non-commuting observables [4, B] # 0, we can define an uncertainty relation for the
expectationvalues of measurements:

A(8)- A(B) = 5[4, B]) 23)

This means that any consecutive measurement of the quantities A and B on an ensemble of identical
wavefunctions will lead to a product uncertainty of the kind given above. Insimple words, this means:
you can get good statistics on A andthe expense of a high level of noise on B or vice versa.

ed - Maserneaw -Jbk
jmfk(ﬁQ ﬂfkk—( /{,&agwmmk JOLS& _Mm e—frww\k
C%b%ﬂf“"“(“\’* Z- o old ( 1osent o Lelor N ‘M\ *'23
S oA LS PRI
o> 10D Lo\ 7
D P‘&i: E —O ;
y
_ .l w\/
> el Al \apn . BB
d 7 o IR i
0
1 A o
G e
\_/—\4’/-\‘—/
Mo dis

Figure 6: The measurement of anobservable andthe effect it has on a quantum state |Y), defined as a superpo-
sition of three modes.

The relation however also has a meaning on the level of an identical wavefunction. It means that a
precise measurement of quantity A will collapse the wavefunction onto a state, where the quantity B
is particularly ill-defined. An example: if you propagate light through a pinhole with diameter d, you
have knowledge on the location of any photon in the plane of the pinhole with precision Ax = d. This
comes at the expense of having very little knowledge of the light direction of propagation after the
pinhole. The uncertainty of its k-vector is at least (in casethe pinhole is illuminated by a plane wave)

Ak = %d‘l. The product of the two uncertainties is a constant.

2.2.4 Composite Quantum Systems

Up until now we have only been concerned with individual quantum systems (whatever that may be;
there is a more in-depth discussion of the physical background on how to count quantum systems,
based on the state space of an electric field, below), now when shall discuss quantum systems com-
posed of multiple subsystems.

Postulate 4: The state space H of a composite physical system composed of subsystems
numbered 1 through n is the tensor product H = H,®H, ® ... ®H,, of the state spaces
of the component physical systems. Moreover, if system number i is preparedin the
state |1, ), then the joint state of the total system is |11 )®,) @ ...Q|y,).

You canaccept this as a postulate but there is, of course, some physical reason, as to why this postulate
is plausible. Assume that you have a physical system A is state |A) and another physical system B in
state |B). Of course there must be a way to describe the composite system AB, because it is still the
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subject to the quantum nature of the world. This composite system must again be describable by a

state vector (because of postulate 1) and we may call the vector |A)|B). This is true for an possible
state |A) and |B).

Because each of the states must be describable as some kind of superpositition of basis states, e.g.
|A) = X;a;la;), IBY = Xjbj|b;) and |A)|B) = X, aby|ab,), we quickly come to the conclusion that
the tensor product is a plausible choice to describe the state |A)|B) = ¥; ; a;bjla;}|b;).

There are two profound consequences of this postulate, which give a hint of the complexity of quan-
tum physical system.

Exponential Scaling of Measurables

First, we see that each individual quantum system lives in its own individual state space. Ifyou have,
for example two free electrons, each of the systems state spaceis R3, because each of the electrons
is free to move around in 3D-space. The state space of the composite systemis, however, R3QR3 =
R®.To describe two electrons, you require a six-dimensional space!

As we certainly live in a many-particle world, why do we perceive it as three-dimensional? It turns out
that many body interaction (particularly those with thermal baths) tend to destroy (dephase) infor-
mation from the higher dimensions, and you end up with systems that behaves very much like you
would have n particles that all share the same 3D-space. In fact, lots of our difficulties in quantum
systems arise, when the interaction within many-body quantum systems is much stronger that that
with a thermalbath, e.g. in molecule and atom physics. This is alsothe very resource we want to har-
ness with Quantum Computers.

Secondly, and this is reallyjust a quantification of the first argument, we see that composite quantum
systems tends to explode their degrees of freedom (e.g. the number of possible commutating observ-
ables)in an exponential manner.

Assume that system i has an n;-dimensional Hilbert-Space H; = C™.Then we know that we there ex-
ists a set of basis vectors |j;) with j = 1...n; within each of that Hilbert spaces. To each basis there
exists a projection operator F}i = |j; ){j;|, that commutes with each other, e.g. [P]‘I,P‘z] = 0, which is
easy to show. As we can construct any other measurable of that subsystem from superpositions of
these projectors, there are no more commutating observables for that system. In other words: the
consecutive application of the projection observables will give us as much info on the system as we
may ever hope to extract. The consecutive application of P!, will give a series of results with n — 1
zerosand a single 1, e.g. {0,0, ..., 1, ...,0}, if we denote the position of the one-result with number N;,
it is clear that N; € {1, ...,n;}, e.g. the number of possible different results is for any measurementin
subspace is therefore n;.

Within the Hilbert space H; ®H;, the projection operators of different subspaces commute with each

other, too, e.g.: [p]l:p]lzz] = 0. This is obvisou because a measurement on subsystem A must not, by
definition, affect the independent system B. Moreover, the measurement-collapse of the wavefunc-
tion does only affect the subspace within which the projector is active, because in the context of the
joint Hilbert-Space H = H,®H,® ...QH,, the projection operator F}i , really has the form
QRN ... ®H®Pji ®IQ® ...QI. This means that measurements in the individual subspaces are inde-
pendent of each other, because the subsystems are independent.
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Therefore, from a composite quantum system with n subsystems we may extract N = [, N; differ-
ent measurement results (composed of the n different measurements with N; different possible re-
sults). If we have n identical systems, we canget

Joint Number of Measurables = (Individual Number of Measureables)Number of Particles (94

different possible measurement results. Increasing the number of particles is therefore an immensely
more powerful tool in increasing the numbers of degree of freedom of the quantum system as com-
pared to increasing the number of individual degrees of freedom.

A good example here is optics. We can easily distinguish 10° degrees of freedom of a single photon by
mapping it to a single-photon sensitive camera (sCMQOS, EMCCD), measuring, which pixel clicks. This
seems like a lot. On the other hand, if you have a composite state of 30 photons, each of which is
measured with only a simple left/right-detector, thenyou already have 23° ~ 10° degrees of freedom,
which is of course much more. The difficulty is, however, in creating sucha photon state.

Composition versus Modes

We like to put in a word of caution here. Ifyou, like myself, have background in photonics, you may be
confused as to how the discussion in this chapter goes together with the discussion of chapter 2.1.
There we have focussed on the notion of modes, which play two distinct roles here:

e Everyquantum systemis defined on modes of the underlying field; you can think of the modes
as the natural basis choice for the basis vectors of a system |j;). For example, a photon may be
defined to “live” in the superposition of horizontal and vertical polarization or as a superposi-
tion of three different waveguide modes. The number of modes, which are permissible for
superposition therefore also defines the dimensionality of the H; and thus of the different
number of measurement results N;. For the first example this would be N; = 2 and N; = 3 for
the second. Thus, modes play the role of spanning the vector space for individual quantum
particles.

e In chapter 2.1, we had tried to convince you, that in quantum field theories every mode is
excited by a succession of photons, which can be thought of a modes in their own right. The

application of the creation operator on the quantum vacuum d}L |[vac) creates a photon, by
populating the first number state mode of the spatial mode j. Number state modes thus play

the role of creating individual photons. A repeated application of the creation operator will
create a composite system of multiple modes.

Mathematically the two types of modes are, however, not different at all. So why do they seemto play
such a different role, as s visible in the equation from above? Why do the number of modes, that we
excite on the one hand appear in the basis of the formula for the degrees of freedom and the other
one in the exponent?

We would like to give two explanations here, one more mathematically inspired, whereas the other
one is more physically inspired. They both come down to the very same thing; the question of possible
correlation measurements and the way that projection operators act on the quantum fields.

From a mathematical point of view the difference lies entirely in the structure of the projection oper-
ators. A projection operator Pji =IQRI® ...®H®F}i ®IQ® ... Rl collapses the subspace only for the
degrees of freedom of the i-th particle and leaves the degrees of freedom, which belong to the other
operators entirely untouched. The structureis, of course a matter of definition (or of the specific ex-
periment) and is entirely negotiable. Superposition modes and composite particles are thus —to a cer-
tain extend —in quantum physics negotiable concepts and the currency is the type of measurement,
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which is applied (as you will see in what follows, you are however not entire free in your choice here:
many thinkable measurements are pointless because they ALWAYSwill returnthe same result). This is
a profound statement and again highlights, that in Quantum Physics the observer and his observables
areanintrinsic and irreducible part of any experiment.
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Figure 7: Acomposite quantumsystems composed of two photons, created as superpositions of two distinguisha-
ble sets of three modes, each.

We may also answer the question from a more physical point of view. Suppose we have a system of
two photons, which each occupy three different, and thus independent, modes. These could be, for
example, photons which travelin a two-different three mode-waveguides or two electrons, which pop-
ulate two copies of a three-level system. We can create the state by applying the creation operator for
the two particles onto the vacuum. For the sake of simplicity, we shall excite the particles, such that
they have equal amplitude in each of their respective modes:

1
ly) = a'* a?"jvac) = 5(&? +a} +al") (at’' + a3" +a3") vac) (25)

This creates the state:

1
) =3 (1120 +120) + 131D (112) +125) + 132)) (26)

Without loss of generality, we will first measure, if the first particle is in state | 1), by applying the
projector Pt = |1,)(1,|®I,. Let’s assume we find that the observable comes out with result 1 (which
happens with probability 1/3 ), the resulting state of the system should then be:

1
lp) = \/_§|11)(|12)+ 122)+132)) (27)

This has indeed destroyed all left-over info on the first particle but perfectly retained the information
carried by the second particles, just as expected. But how is that done on a level of the fields them-
selves? To better understand this operation, we need to look at the structure of the measurement
operator. Keep in mind that:

113) = @' lvac;) - P = [1,)(1,|®1, = (@}’ Ivac,)(vac |a} ) &I, (28)

Where |vac, ) denotes the vacuum state for the first class of modes only, |vac,)is the same for the

second mode and |vac) = |vac;)|vac,). Note that (dflvacl)(vaclm%)@]lz can be thought of as a

selective photon counting operator, which only counts, if the first mode is in a one photon state.
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The measurement (with the result 1) is carried out by the application of P! onto [):

Ptly) (a1 lvac, )(vac,|a@ %)@HZ (“fr +al' + “ﬂ) (d{r +ad +a )Ivacl)lvacz)

A1t Az'l'

At R qt ot
=ail Ivacl)(vacllall( '+al +ai )Ivac1)®(a1 + as + a3 )Ivacz)

= (a1 |vac, ){vac,| (a +a} +aj )d%lvacl)+ al’ IVacl)(Vac1|]I|vac1))

®(a3" +a3" +a3") vacy) (29)
= al Ivac1)®(a1 +az" +a?'
= d{r (“2+ +a AZT + a3 ) |vac)

11)(112) + 125) + 132))

We have gotten from the first line to the second by sorting all the terms according to the photon they

lvac,)

. ~ . . oy ant
operate at. The next step is to note that @} commutes with all creation operators, expect with a% ,

here we have [d%,df] = 1. The first term from the third line is dropped out, becausea |vac) =

Which leads, together with (vac, |I|vac;) = 1 tothe fourth line. The fourth and fifth line are then triv-
ial.

& & Uy 000 gl 0 wao®: - /\z@hul
gt - M%\m e

co ‘)DL-

Figure 8: The action of different types of observables (Single Particle Projectors and Two Particle Correlators) on
the aboveintroduced system.

Thus, the projection operation really does the following: it destroys all photons which are in superpo-
sition (e.g. which have been created at the same times as) the target mode and recreated the photon
in the target mode exclusively. It does literally nothing to the product modes, e.g. the photon, which
has been createdin a second step. We could now take this state and apply any of the three P-Z projec-

tors to measure a correlation: e.g. Pl PZ measures if the first photon in mode j; is correlated (is sim-
ultaneously measured) with the second photon in mode j,. Results which belong to different photons
can correlate, whereas results which belong to the same photon cannot correlate.

This concept of correlation-based observables brings the two ideas together: the mathematical struc-
ture of the projection (measurement) operators defines the kind of correlations that we measure. All
possible outcomes and correlation measurements spanthe (composite) systems Hilbert space. How-
ever, we can’tjust arbitrarily define correlation operators and then go about measure them, because
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we must make sure that the systemisin a quantum state as to even have a chance of getting aresult
from that correlation measurement. This is done by constructing an appropriate quantum state, e.g.
by creating photons in distinguishable modes.

In our example: the photon state is constructed insuch a way that either of the nine correlation meas-

urements could P! P? returntrue, however, P! P! with j; # j, will never give a “yes” answer (photon

1is never measuredin two different modes at the same time), because that part of the Hilbert-Space
was never populated by the wayour photons have been created.

ro&& gfﬂ,t&é

A veu—ers P
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Figure 9: The number of distinguishable measurement, which can be made onthe aboveintroduced system,
counted as two-mode correlators. The scaling is according to “number of modes per particle” to the power of the
number of particles.

Inthat sense the creation of a series of photons boils down to the preparation of your quantum system
in sucha way as to predefine the set of possible (and impossible) outcomes of modal correlation meas-
urements with photon counting detectors. From an observable point of view, a photon is thus nothing
more, than a measurement (with non-zero information content) waiting to happen.

2.3 Matrix representations

If the so-far pursued bra-ket notation is a bit abstract for your taste, rest assured, all what we have
really done is matrix operations. And if the observables are discrete the matrices in question are even
finite-dimensional! In this chapter we shall see how this works.

Using any set of orthonormal eigenvectors |n) we canwrite any state vector in terms of the orthonor-
mal eigenvector basis, i.e.:

)= Yayln)
(Y| = Zan(n| (30)
where a,, are complex coefficients. If we group the ket coefficients «,, into a column vector
41
a;
a
W)= | . 1)
4
and bra vectors into row vectors
<1/]| - (a11a2)a3ra4:-:--)* (32)

We can express the action of any operator O on a state vector as a simple matrix multiplication:
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with a matrix with elements 0;; = (i|0[}).
011 01
R 021 02] H
0 i 031 e 03] T E (34)

The matrix elements of a Hermitian operator A are then given by transpositionand complex conjuga-
tion Oi’j:Oj*l-. In the eigenvector basis of the observable A, the matrix representation A;jis diagonal
matrix:

a;, 0 0 0 0
0 az 0 0 0

A-10 0 a3 0 0 (35)
0 0 0 a, O
0 0 0 0 -

which is called the spectral decomposition of the observable.

Note that the sameis true for unitary evolution (gate) operators, with the difference that the diago-

nal elements here are not real numbers a; € R but complex number of unit length exp (i¢p;) with
¢; ER.

In the following we will mostly consider cases in which possible measurement outcomes are discrete
and finite {a,, a,, ... a,}, i.e. we will mostly deal with vectors of dimensionality N and matrices of di-
mensionality of N X N.

Tensor products can alsobe expressedin terms of their matrix representations. Suppose that we
want to express A®B then we canwrite according to:

a1B a,B .. a,B
AQB > azle a,B (36)
an B Ann B
Let’s express the above-discussed P! = |1,)(1,|®I, operator:
I, 0 0
Pl =14 |®I, - [0 0 0 (37)
0 00

Keep in mind this isa 9 X 9 matrix! A joint projection operator P]11F322 (e.g. a correlation operator)
therefore has the form:

p1p2 = 0 (38)

J17J2
0
Which as you cansee is the “real” type of projection operator for a joint system, as you can see. We
can carry out the same type of exercise for a state vector:
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an,b, 1

Where the latter example is the state of the example above: [y) = §(|11) +2)+3.)(1,)+
125) + [32)).

2.4 Mixed States and the density matrix

So far, we have looked into the state of a particular quantum system per-se. In reality, however, we
will typically make experiments on a series of more-or-less identical copies of a system, for example to
generate some kind of statistical data. In practice it may well be that any quantum systemis in fact far
from reproducible and will generate a different quantum state for each repetition. In a summary, we
will get an ensemble of quantum states, with some degree of statistical distribution between the dif-
ferent pure quantum states.

In practice, many things can contribute to such effects: emitters may have multiple decay channels,
dipole-vectors jitter in their orientation, various processes maylead to inhomogeneous broadening of
spectroscopic lines, your helpful co-worker may occasionally change the temperature of some nonlin-
ear crystal, just because he can. And he will. Your hands may shake slightly upon adjustment of some
setup, due to a lack of Thorlabs sending lab snacks or the coffee machine being broken down. May that
never happen to you. But it will.

Such statistical ensembles of quantum states may be described with the help of the density operator

p= Zpiﬁi = ZPiW’i)(lPd (39)

where p; is the probability that the quantum systemis instate |;)and }};p; = 1 and p; = |y, ;s
the pure state density operator.

In reality, we are, however, more interested in measurables thanin the quantum state itself (remem-
ber: only the measurement is really real). Any measurable is, of course, defined by its measurement

operator A and canbe characterized by expectation value (4), which is defined as:
A=) p () = ) p; Tr(p;A) =Tr| Y.y 5A | = Tr(pA) (40)
J j j
Where Tr(.) is the trace operator, i.e. the sum of the diagonal elements of the density matrix. We

don’t show this relation here, please look it up if you areinterested.

Itis noteworthy that p is Hermitian (being a sum of obviously Hermitian §; with real factors)and thus
can always be decomposed into eigenstates and appropriate eigenvalues, such that:

p= MIANA (41)

which is called the spectral decomposition of the density matrix. For example, a light source may emit
50% horizontally polarized photons and 50% diagonally upwards polarized photons, thus:
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= —Ih)(hl + [u)ul

:E[l 0][0]+Z[1 1] [ﬂ

1442
_1 1+v2 1 4+zﬁ
4(2+ﬁ)[\/4+2\/7 \/4+2\/7
4+2\/_ (42)
1 \/4+2 l
+4(2 \/_)[\/4+2\/_ \/4+2\/_][
Ja+ 242
1-42 1 0
( \/_){ 4+ 22 . OH+\/4+2\/§ ° 1][1]}

Which means that the spectrally decomposed version of this are againlinear states of light. And this is
surprisingly cumbersome.

Also note that:
Tr(p) =1 (43)

And furthermore, for any quantum state |Y), we get:

(Wlply) =0 (44)

i.e. the density operatoris always positive. For pure quantum state vectors the density matrix reduces
to a projection operator [1); }(1p,|, for which the relation % = fis readily shown. This relation is useful
as it allows us to quantify the “degree of mixedness”, i.e. the state purity:

Purity(p) = Tr(p?) (45)

The reader can readily verify that Purity(h,l)l-)(?,bi |) = 1 for a pure state and Purity(py) = 1/N for a
completely mixed state of dimension N.

Note that the type of uncertainty here is a different one from the uncertainty introduced by the quan-
tum measurement process. Each of these effects may in fact be fully quantified and measured, this
may just be practicallyimpossible or impracticalto deal with. Also note that each of the effects, which
contribute tosome kind of statistical uncertainty are themselves subject tothe laws of quantum phys-
ics (even your co-worker is!). They derive from a pure state andif the systemis large enough, they are
unaffected by external noise. Thus, any mixed state can be purified into a pure state of a larger system.
We won’t show the mathematical proof here.

2.4.1 Entropyin Quantum Physics

In classical physics there is an intricate relation between the notion of Entropy and Information in a
System. If you are more interested in that please consult the seminal works by Landauer. We'll just
summarize here: the more entropy a system has, the more information it contains. | typically think
about the room of my kids: if there are toys lying around everywhere there s lots of information in the
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room (e.g. todescribe which toyis where takes a loooong time), whereas if the room is cleaned up you
can describe it with a single piece of info: everything is where it belongs?.

We would now like extend this concept to quantum physics and the idea that a pure quantum state s
a minimum information/entropy state a little more formally. For a pure state, where we have complete
information of the preparation procedure, we expect a measure describing disorder (if you're from a
physics background) or information content (if you’re a telecom engineering background) to be mini-
mized. The von Neumann entropy is the extension of the concept of entropy from classical thermody-
namics (Gibbs entropy) or information theory (Shannon entropy) to the quantum realm. Itis defined
as:

S(p) = —Tr{p Log(p)} (46)

Itis straightforwardto verify that the von Neumann entropy? of a physical system preparedinany pure
quantum state [) is zero:

SC(pXpD) = 0 (47)

With the pure quantum states thus corresponding to minimum information. The state of maximum
confusion, i.e. the opposite of a pure state, is the maximally mixed state in which each eigenstate of
the system |i) appears with equal likelihood:

1 i
pu =5 D NIl = (48)

where 1 is the unit operator and N is the dimension of the state space. This is the state of maximum
entropy in a Hilbert space of dimension N:

S(Pu) « log(d) (49)

Hence you can see that the concept of the impurity of the stateis closely related to the entropy of a
guantum system. When you think about this for a while you can come to a few nifty conclusions on
the relation of entropy, information, and the nature of coincidences:

There are two distinguishable types of randomness in a quantum measurement: If you make meas-
urements on a mixed state you have two contributions to the statistics of the measurement: the sta-
tistics of the quantum measurement process and the classical ensemble statisticsthat comes from the
mixed’ness of the states. While the latter does contribute to the entropy the former does not. So, there
is a conceptual difference betweenthe two classes of randomness. Only classic-statistical randomness
it attributed to entropy. The reason is: the quantum randomness can be reduced to zero by virtue of
choosing a measurement operator, where the quantum state is an eigenstate, e.g. A = |)(3|. The
selection of the (virtual) measurement operator, however, should not contribute to the systems’ en-

tropy.

Quantum states have a fixed entropy when not measured: A pure state does not have entropy. Any
guantum operation that does not affect the purity of a state thus does not increase entropy. We know
from the postulates that Unitary operators/gates U leave the purity of a quantum state unaffected. In

2 My colleagues tell me this example shows more than anything else, that | am German. Alas.
3inthe following the entropy is commonlydefinedin terms of the base-2 logarithm, so that a maximally mixed
state of atwo-level system corresponds to one bit of entropy.
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other words: unless you measure a quantum system, its entropy does not increase by its intrinsic evo-
lution or by the application of gates. Quantum circuits do not produce entropy and are thus reversible.

A measurement operation caninduce entropy and is thus irreversible ifthe measurement outcome
was notyet known: As anexample takea [¢) = \/iE(|0) + |1)) state, whichis measured withthe S, =

|0){(0] — |1){1] operator (we shalllater see, that this e.g. corresponds to a diagonally polarized photon
measured with an HV-polarization beamsplitter). Theresultis a |0) or a | 1) state, each with 50% prob-
ability, thus a mixed state with p = 1/2(]0){0| + |1){1|) and an entropy of S(p) = Tr(plogp) =
log(2) = 1 (e.g. this is a maximum entropy state). As we have increased the entropy we have made
anirreversible operation.

A measurement operation does not need to induce entropy and may thus bereversible if the meas-
urement outcome was known to begin with: If the measurement had been in parallel with the state,
then we would have gotten one answer with certaintyandretained a pure state. This operationis thus
NOT irreversible.

Thus: If the measurement apparatus extracts information from the quantum system. It must thus
increase the quantumsystems entropy: If the entire system (measurement apparatus plus quantum
system)is closed, then the overall entropy of the system cannot have been changed by the measure-
ment. Thus, the measurement must have reduced the entropy of the measurement apparatus (by in-
creasing that of the measured system). In other words: the measurement has transferred a certain
degree of order from the quantum system to the measurement apparatus (its quantum information
being measured leaves the measurement apparatus in a more well-defined state as before; e.g. it
shows a specific reading and not just noise) but the apparatus must likewise transfer disorder to the
quantum system. Inthis respect the measurement process in quantum physics may be a bit less mys-
terious: it’s “simply” the random dephasing of a highly ordered state, when it gets in contact with a
thermal bath of alarge apparatus.

3 From Single Qubits to Circuits

As we now have a fundamental understanding of how the world works on a quantum level, we shall
dive deeper into the realm of quantum information. We do so by dumbing down all the concepts from
the last chapter until nothing is left but the simplest quantum system, that you can still righteously call
a quantum system. A quantum system which is composed of two modes and only two modes: the
Quibit.

3.1 The Qubit

In the classical case we can encode information in any physical system that has at least two clearly
distinguishable states —a bit. Such states maybe a low or high voltage; a light being turned on or off
or an apple having a bite taken out of it or not. Inany case we can give these two specific states logical
representations and call them:

|0}, 1) (50)

Note that the formal similarityto quantum states is at this case purposefully selected but not yet ob-
vious. Let’s callthese the computational basis states (CBS). We can of course also use two basis states
of an arbitrary quantum system as the physical representation for a bit, these basis states are also
distinguishable with an appropriate measurement. Since we are in the realm of quantum physics, we
now have the possibility of introducing general superposition states, called qubit states

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 28



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

l¥) = a|0)+ B 1) (51)

which is something, that one, of course, cannot do with a classical bit. Such physical system is thus
called a QuBit.
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Figure 10: Some important classes of photonic Qubits.

How can we physically realize Qubits? The first option, only available if we use Bosons, is to encode
the qubit in the number state of a single fixed mode with index i, which we shallcall @;. This is known
as the single-rail qubit representation and one possible implementation would be to differentiate be-
tweenthe excited and non-excited states of the field in this particular mode:

0)= |n; =1)= diTlvac)

(52)
[1)= |n; =2)= dﬁdﬁlvac)

Note that we have changed the notation of the number-States somewhat (they are now called |n; =
1), to differentiate betweenthem (and the vacuum-state) and the CBS. That is, the computational basis
state |1) corresponds to a state of the field with a two bosons in mode @; and the state |0) correspond-
ing to a state with one boso. Keep in mind the specific numbers are chosen completely arbitrary, in
fact we are not even fixed to the notion of Fock states, should we not feel comfortable with them.

The problem with single-rail qubit encoding in optics is that loss will affect the qubit state in the sense
of that it changes its value. Moreover, it requires a handle on detectors and even more so on devices
and sources that create and/or mix different number states at will. This is indeed difficult. Moreover,
if you want toimplement operations which work differently, depending on the state of the qubit you’ll
have to resort to highly nonlinear elements and that’s generallya bugger. They are nevertheless used
quite frequently in quantum computation, e.g. superconducting Qubits are most frequently single-rail,
i.e. Transmon qubits they use two different excitation states of an anharmonic electronic resonator
circuit.

The second way is to fix the number-state and use a pair of orthogonal field modes M; and M; to en-
code the qubit. If we use photons, we may employ orthogonal polarized photonic modes, Gauss-La-
guerre modes of different order or azimuthal phase, different modes of a single waveguide or modes
of different waveguides, or different wavelengths or different time-bins or anything that you can im-
agine. Other systems are also frequently used: different excited states in atoms and ions. Different
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topological states®. This is called the dual-rail qubit representation. If photons are used, the Fock state
is then typically fixed to a single photon state —everything else is complicated enough already:

|0)= |n; =1,n; = 0) = a;|vac)

(53)
1) = n; =0,n; = 1) = djflvac)

To make things less abstract, let’s take these modes to be orthogonal polarization modes. Two partic-
ularly popular polarization modes are the linear horizontal |H) and linear vertical |V) polarization (typ-
ically in reference to an optical table or a polarizing beam splitter):

|0)= |H) = dHflvac)
5
11) = |V) = @, Tlvac) )

But again, we will only use that to exemplify the physical meaning of what we discuss here, and you
can take any kind of qubit and apply the following discussion, becauseit’s nice and abstract.

3.2 The Bloch Sphere

The first thing we do is a bit of bookkeeping. We have introduced the expansion coefficient @ and
which both are, of course complex numbers. However, this in — in fact — a bit overly complex (unin-
tended pun!) and we can describe the entire state space with only two real numbers, which represent
the latitude and longitude of an imaginarysphere, according to:

[Y) = alHY+ B |V) = cos20 [H) + esin20 |V) (55)

2
0)-|1

i

11)

Figure 11: Representationof a qubit on the Poincaré sphere.

4In fact, we need not limit ourselves to two basis vectors but couldtake more. These states are then call qu -dit
states.
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QISKIT Code to Plot the Vector corresponding to the |0) state on a Poincaré
Sphere.

from giskit textbook.widgets import plot bloch vector spherical

coords = [0,0,1] # [Theta, Phi, Radius]
plot bloch vector spherical(coords) # Bloch Vector with spherical coordi-
nates

Where we have used the fact that a? + 2 = 1 as ajustification to introduce the polar angle © (longi-
tude) and the azimuthal angle ¢ (latitude) and have also utilized the fact that a cumulative phase is
irrelevant (this is true for any qubit system: the total phase is irrelevant and cannot be measured). It
thus becomes clear that the state of any polarization qubit and therefore ANY qubit state altogether
can be represented as a point on the surface of a sphere; the infamous Bloch sphere according to the
equation:

x =rsin® cos ¢
y =7rsin®sing
Z=1cos0 (56)

Where r = 1 (we’ll selater, that r # 1) also has a physical meaning.

3.3 Single Qubit Gates, Rotations, Universality

On the Bloch sphere the state |0) = |H) is represented by the north pole and |1) = |V)is repre-
sented by the south pole, e.g. the CBS are exclusively along the z-axis of the Bloch sphere. The other
axes have a profound meaning, too: The points on the x-axis, e.g. those on the equator facing the
viewer or point straight awayalso belong to linear polarization, namely to the diagonal basis vectors
| +)and | =), which can be constructed using the Hadamard operator H:

4] H[m) Lpoago
57
1 5l=alml=5z 0 Al (57)
Here the Hadamard operator is given in its matrix representation (with the CBS as an expansion basis)
as:
1 1
A= — (58)
In other words:
=0+ ) =—=(I0)— 1) (59)
V2 V2

Inthe case of photons, we will later see that find that such an action can be connected to a Half-Wave-
Plate with its fast axis rotated 22.5 degrees with respect to the horizontal.

Another set of special points on the Bloch sphere are those, where the sphere intersects the y-axis.
This is where the left-handed and right-handed circular basis states |L) and |R) (sometimes also
called | U) and | L))are located. They can also be constructed from |H) and |V) according to:

HfLe; 0l Il;i] =i | lf;; (60)

In other words:
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1 , S
|L)=ﬁ(|0)+l|1>) I—)—ﬁ(IO) i1 (61)

The procedure makes used of the now well-established Hadamard Gate H and the phase gate S:

$= [3 ?] (62)

It is obvious that S is a bitwise selective phase-shifter, i.e. it shifts the phase of the |1) component of
the state by g and does nothing to the |0) component. Quite logically this gate is called the quarter-pi
gate (no joke).

Note that H as well as S are unitary operators (which can be easily seen, be multiplication of their
matrix with the conjugated adjoint matrices). At this point it makes sense to introduce a third unitary

gate, ther/8 or T-gate, as:
1 0
7= (63)

i
0 exp(z)

Please not the somewhat strange notationas a g gate, eventhough the phase shift is E. This was done
because, if you come from a quantum physics background, it makes sense tointroduce a symmetrized
version of the gate with i—g phase shift.

Each of these operators has a distinct effect on a quantum state, which can most easily be described
in terms of how the states Bloch-Vector moves over the Bloch-Sphere. Keep in mind that any unitary
operator must be representable by its action on the Bloch-Sphere because there is a one-to-one con-
nection between the sphere’s surface and any possible state of a Qubit. For the three introduced op-
erators H, S, T we have the following situation:

10) |0)

Figure 12: Actions of the qs, T—gates on a quantum state, interpreted as rotations on the Bloch-sphere.
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3.3.1 Universality

Of course, thereis an infinite number of unitary gates U. However, any U (except for an unimportant
phase @) can be described as a rotation on the Bloch-sphere around a specific unit 77 vector with an
angular distance 6 that tells you how farto rotate, i.e.:

U= e*Rz(6) (64)

There is another interesting feature: if 8 is an irrational number, we will never get back to the same

angle (modulus 2m) if we apply the R;(8) operator repeatedly. Moreover, one can show that for any

target angle 8' there is a number n < N which minimizes the distance between the rotation by the

targetangle 8’ andthe repeated application of a rotation by the given angle né mod 2m. The minimum

distance roughly scales as rn<1151 E (ﬁ,—i (9)”,Rﬁ(9’)) = O(N~1).5 This means, that you can approxi-
n

mate a rotation around a fixed axis by any (irrational angle) 8" with around the same axis but a fixed
angle 8 with a worst case error, whichscales as 1/N, for a maximum number of repeatedrotations N.

0=3.0497 0'=5.0283

8 : - 10’
10° =
6 1~
9 102 8
g4r 5 E
= 107 2
= 4=
2} 107 =
g Lo 10_5 §

10° 10" 02 10° 104 103

Figure 13: Approximation of a rotationof ' = 5.0283 by the multiple application of a rotation with @ = 3.0497
with @ maximum repetition number of N = 10°. The resulting angle is plotted in blue, the precision of the best
approximation is plottedin orange. Precision scalingis roughly O(N 1)

Two important rotation matrices with irrational rotation angled can be constructed from the Hada-
mard and the g—gate. Thefirstis:

0 s s T yia
(») _ 0) _ 27 2 - ip— -
Rﬁa (6,) =THTH cos ( > ) =costg Mg = (cos8 ,sing, cos 8) (65)
The second rotates by the same angle but around a different axis:
(b) _ (@) = E . E E
Rﬂb (6y) = Hﬁﬁa (6,)H n, = (c058 ,—sing, cos 8) (66)

SThe E(.,.) < € notation means that all measurables of the two operators will give at maximum ¢ different
probabilitiesfor any type of measurement.
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This together with the identity from above means that from the Hadamard gate H and the g—gate T
we can construct arbitrary rotations around the unit vectors 7, and 11, with high precision via a mul-
tiple application of the R@5 (6,) and the ﬁg;) (6,) gate.

This in and by itself is not more than a mathematical oddity. It becomes interesting however, when
we take another matrix identity, which we shall not prove here: suppose that you are not free to
choose 7 but instead have two fixed, arbitrary but non-parallel unit vectors 11, and 11, given, then you
can still construct anysingle qubit gate using a series of three rotations around these two axes, except
for a trivial phase factor®:

0= ¢Re, (B) R, (1) R, (8 (67)
If we take all of this together, we have seenthat:

Theorem 3: Universality of H, S, T for single Qubit gates:
Theset of H, S, T gatesis an efficient universal set for single qubit operations. This
means that we can approximate any single qubit gate U by a series of N of these three

gates with an overall error that scales not worse then %

3.4 Observables and the Pauli-Matricies

Now that we have investigated the evolution dynamics of single qubit states, we shall focus on their
measurement. For the sake of simplicity we shall identify the basis vectors as the eigenstates of the
respective projection operators and construct measurement operators from the individual projectors,
with measurement values 1, for the first basis vector and measurement value — 1 for the second basis
vector. The constructionis particularly simple for the CBS set

6,=6, = ojol-l=[; °| (68)

Where the matrix representationis done in the computational basis state. The operator is termedthe
Pauli-z or first Pauli operator, and the alphabetic naming takes its name from the corresponding axis
of the Bloch sphere.

Of course, we can construct similar measurement operators from the other two sets of basis vectors,
namely:

61 =0 = | HN{+|—| —N-
1
=S [(0) + I L]+ (0D = (10} = [TH (1] + (O]

1
= [OXT +10)(O] + [1)(L] + [1)0 +[0)(L] = [0XO] = [1)(1] + [1)XO]]

o (69)
1 0
G, = 6y = |RXR|— |LXL|
=1%ol
-1 0

5 1f you wantto prove thesetwo identities, you canjust go about and plugin the matrices for the operators and
see that their products lead to a matrix of the type: U= [—aic lﬂ Witha, b,c € R which is the most general

formfor aunitary 2 X 2 matrix thereis.
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Frequently there is a fourth Pauli-Operator 6, = 1 introduced, which is the unit matrix. All for of these
are obviously Hermitian, e.g.:

6= 6/ (70)
We also note that:
6,6;= 6,1+ +ie; 6 (71)
where €, j ist the Levi-Civita-Symbol or antisymmetric epsilontensor.

Any linear operator M on the qubit state space (e.g. any operator that acts on a two-dimensional Hil-
bert space and whose result still is in that space) can be constructed from a superposition of the Pauli-

Operators:
A = Z ai Ai (72)

i=0..3

If the expansion coefficients are real, then the resulting operator M is Hermitian, i.e. it belongs to a
measurement. In other words: any quantum measurement you can make on a qubit is a superposition
of the Pauli measurement operators, or, froman optics point of view a polarization measurement.

The three types of basis state sets are mutually unbiased. You can see this relation by looking at the
commutation relation of their observables & , 3, for which the relation

[6;,6;] = 2i€; 6y (73)

where € j ist the Levi-Civita-Symbol or antisymmetric epsilon tensor, holds. You can compare this with
the uncertainty relation of chapter 2.2.3 and you will find, that the Pauli operators are mutually com-
plementary, in the sense of that complete knowledge about the result of a measurement of the first
means that we have absolutely no knowledge of the measurement outcome of the second.

In other words: if you decide to measure your Qubit ) in the CBS (which from now on in shall mean
that we apply the &, operator) then there is absolutely no information left of the qubit, which you
could measure in any of the other bases. Or, to put it in an even more blunt language:

Although the state of a qubit is characterized by two real numbers (e.qg., the latitude and
longitude on the Bloch-Sphere) you can only ever hope to extract a single bit of infor-
mation from them.

This is a profound finding, which cannot be stressed enough, because it limits the power of computa-
tional machines quite drastically. Although we have seen from above that quantum systems have this
super high-dimensional and complex internal dynamics that we can utilize for computation, they still
only give very simple answers. We may never even hope to extract their full internal state as ananswer
to our algorithmic problems. This is a profound difference to Turing-Machines, where you can — after
the machine is finished — easily inspect the complete tape. Therefore, a large part of the difficulty in
designing quantum algorithms derives from the challenge to formulate sufficiently simple “questions”
that you can ask you quantum state or. In other words: quantum algorithms require the design of
useful observables.

3.5 Mixed Single-Qubit States

In chapter 2.4 we have introduced mixed states as a representation for the statistical uncertainty ofa
guantum field. Of course, such kind of uncertainty mayalso be attributed tothe state of a qubit. It may
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e.g. be initialized into the |1) state but might — over time — flip into the |0) with probability p. The
physical implementation of quantum computers aims to reduce this probability, but these probabilities
are still a significant issue; they may be caused by thermal noise, vibrations, decoherence and many
other effects. The final state, however, can be described by the mixed state:

p = pl0X0[+(1 - p)|1K1] (74)

If the state was pure, e.g. p = 0, then the density matrix would correspond to the pure state |1) and
its representative point on the pole of the Bloch-Sphere. The same is true for p = 1. The mixed state
above can thus be thought of as lying on the connection line between the |1) and the |0) point, with
a fraction of p of the way from |1) to |0) complete. Thus, mixed states lie inside the Bloch sphere and
the center of the sphere at pyppo = %IO)(0| + %Il)(1| is the maximally mixed state, i.e. completely
mixed (unpolarized).

Itis alsoobvious that any point inside the Bloch-Sphere may be reached with multiple mixtures. As one
~ 1 1 1 1 1 1

example, Pynpol = 5 IRNR| +ZILXL| = 7 IRXR| + 7 ILXL|+; [+){+] + 7| —}~| may be decomposed

into mixtures of left- and right handed circular states or mixtures of left-and right handed and up- and

down-polarized states, etc...

A density matrix decomposition of any point on inside the Bloch-sphere is therefore never unique. It
is, however, conceptually simple to use the three orthogonal axes to define the position of any point,
which we have seenabove are defined by the Pauli-Matricies. Thus, one can define any mixed polari-
zationstate (and thus any mixed Qubit state)according to:

1
p=5(1+5-9) (75)

where § ist the so-called Stokes-Vector, with each entry s; € (—1,1). We immediately note that
Tr(p) = 1is automatically fulfilled and the expectation value for a polarization measured along the
axis [ is given as

1
Tr(ﬁa'l) = ETT(é\'l + ZSL') =S (76)
Which is just, what we expected, i.e. if we measure any type of polarized light (pure or mixed) with a

polarization beam splitter along the axis j, then we will get the value of the appropriate stokes vector
entry as an average measurement result.

(a) 0) (b)

Po A PM

! P1

1) 1)
Figure 14: A mixed state is represented by a Point inside the Poincaré-sphere. (a) Representation of the state as
Py =pl0X0[+(1— p)[1){1] and (b) as an alternative but equally viable mixture. (stolen from Lovett/Kok)
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3.6 The Circuit Representation

We shall prettysoon see that Quantum Algorithms may be composed of fairly complicated sequences
of gates and measurement operations. It is therefore altogether fitting to introduce a representation,
which is both instructive but also concise and precise. We take flow-charts in classical computers as a
role model and note that quantum flow charts are actually even more simple, because quantum algo-
rithms must be composed of reversible quantum gates, hence the number of topologies in quantum
flow charts is somewhat more restricted. But | digress.

Quantum circuits are generally composed of four types elements, with the flow of time from the left
to the right.

1. Qubits (or sets thereof) are representedas solid lines, with a marker for theinitial state
atthe left.

2. Classical bits (or sets thereof) are represented as double lines. A marker for the initial
state may be omitted because their values may be overwritten (Unitarity does not apply
to them).

3. Gates (Unitary Operations) are represented by squares with inputs at the left and out-
puts to the right. The type of gates is marked in the box. Gate parameters may be con-
trolled by a (sequence of) classical bits. This is indicated by an extra input wire. Gates
may operate on a single qubit or multiple qubits.

4. Measurement operators are marked similar togates but indicated with a gauge symbol.
They also have a classical output bit (or sequence thereof), which stores the result of
the measurement.

Of course, this is extremely theoretical and we shall start with the simplest example:

q o 1 |0) . mz

cl
0

Figure 15: Circuit Representation of a simple 1-gate circuit. The circuit starts from the left with a qubit (named q,,)
in the |0) state. AHadamard operator is then applied. The qubit is then measured (in the computation basis, hence
the z-notation ofthe measurement operator!), the resultis stored in the classical bit c;.

Because people are lazyit has become somewhat customary to skip initialization step and the meas-
urement unless the measuredresult is explicitly needed in a downstream part of the code.
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Figure 16:Sameas Figure 15, in a simplified notation however. The initialization and measurement steps are left
outforbrevity.

We can, of course, also compose more complicated types of circuits, evenif thereis only a single qubit
floating around. Here are a few examples, taken from the chapters above. We always start witha |0)-
state and we end up with a few of the Pauli-Basis states discussed above:

Circuit Result Comment
08 |O) - | +)

0.6
g o
= 0.4
0.2
o
0 1

Computational basis states

Amplitude

0.8 IO) g |L>

0.6
q o
- 0.4
0.2
0
0 1

Computational basis states

Amplitude

0.8 |0) b |—)

0.6
g o
= 0.4
0 1

Computational basis states

Amplitude
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Circuit Result Comment

1 H?2=1

0.8

Amplitude

0 1

Computational basis states

Figure 17:Afew examples for 1-bit quantum circuits.

We shall later see, how we can use this scheme toimplement and represent complex quantum circuits.

4 Multiple Qubits, Entanglement, and Universality

So far, we have only discussed individual Quits. Most protocols in Quantum Information Processing
rely explicitly on composite systems of multiple Qubits. Image a physical system, which consists of
multiple qubits, say for example multiple photons, which we shall number from 1 to N. Thus, the state
of this qubits must be given by

;) = alP10;) + aP]1;) (77)

In other words: each Qubit’s Basis spans its own two-dimensional Hilbert-Space #;. A system of N
Qubits is must there span a Hilbert space H:

H =H,QH,Q..QHy (78)

Which means that the Hilbert space is spanned by the basis vectors composed of all possible combi-
nations of individual computational basis vectors for the individual basis states |b;)®|b,)® ... ®|by),
where |b;) € {0,1}. Thus, any state in the complete systemis given by

[
M-
MH
M-

lyp) Ap,by..by |1D1)B|D2)Q ...Qby )
b1=0by=0 by=0
11 21 Nl (79)
= Z Z z ablbz...leble"'bN)
b1=0 b2=0 bN=O

Where X} 025 — - 2by=0 %, b,..by 1=1 must hold for reasons of normalization. The second line
differs from the firstin just the fact that the tensorial product of the basis vectors has been written in
a shorthanded notation. To make this more obvious: |b,b, ...by ) is the state, where each Qubit i is in
the state |b;); e.g.|000)is a three Qubit systemin a state where all Qubits have value zero, e.g. they
are all horizontally polarized. These basis vectors |b,b, ...by ) are called the computational basis states
(CBS) of the composite system. Ifthe composite system |1)isin a product state

[V} = [Y1)BY2)® ... @Yy ) (80)
then the relation of the quantum amplitudes is simply:

1 ) N
Ay b, by = algl) @y at()N) (81)
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However, most states in the combined system cannot be rewrittenin terms of individual product
states, as defined above, which becomes immediately clear from simple combinatorial arguments. As-
sume that you have a N-Qubit system, thenyou require 2V quantum amplitudes @p,p,..pyt0 describe
any possible state of that system. If you, however, have N individual states there are just 2N individual
quantum amplitudes a;, 5; . To make that more obvious: assume you have a three-qubit system. There
are eight possible combinations of the individual qubit states |b;) andthus eight possible basis states
|b1b, b3) with eight expansion coefficients aj, p,p,,, running from oo to a;,1. If the state was com-

posed of individual states there were only six a(()l) ...aé3) and ail) a§3)

From this simple argument you immediately see that multi-qubit systems have a much larger complex-
ity than all of their composite systems individually. Moreover, the difference scales exponentially and
it is exactly that exponential scaling of the number of internal degrees of freedom, which is leveraged
in a quantum computers to make complex calculations. We can use this revised understanding to try
and refine Definition 3:

Definition 5: A quantum computer is a device, which makes use of the exponential scal-
ing of the degrees of freedom of a multipartite quantum system (typically of multiple
qubits) as a resource in solving computational tasks.

4.1 Two-Qubit States and Entanglement
Let’s now focus on a system composed of two Qubits, to elaborate on the nature of the internal de-
grees of freedom inherent in a multipartite quantum system and some of its consequences.

4.1.1 Product Statesand Non-Correlation
So far, we have used the computational basis states: [00),]01),|10), |11) and superpositions thereof
to describe any state of the quantum system [()) = a|00) + @y, |01) + @14]10) + a4, |11).

Ifthe quantum system in question is in any product state [y) = |1 )|, ), thenwe can be certain, that
any measurement (i.e. a polarization measurement) on the first Qubit does not affect the outcome of
the measurement on the second Qubit, whatsoever. Nor does it produce any information on the state
of the second Qubit. To show this we assume an arbitrary measurement on Qubit one A4, , which we
shall describe by its two orthogonal projection operators and measurement results of +1. The basis
states of the projection operators shall be called |a, ) and |a, ) without loos of generality

Ay = laXay| - layXa,l (82)

We can decompose the state of the first qubit into the basis states of the first measurement operator,
accordingto [¢;) = cos 8 |a,) + sinf exp(i¢) |a, ).

[1 ;) = cos @ la;,) + sin 6 exp(iep) |az ;) (83)

The measurement then collapses the first Qubit onto |a,) with probability cos? 8 resulting in a joint
stateof |a; )|[y,) andonto |a, ) with probability sin? 8 resulting in a joint state of |a, )[y,). The result
is classically random ensemble and must therefore be treated in the mixed state formalism with a
density matrix:

p = cos?0 |a) |, )W, {as |+ sin® 6 |ay) |y, )W, [(a, |
= (cos? 6 |a;Xa;| + sin® 6 |a, Xa, D@, Xy, | (84)
= .51®|1/’2><1/’2|
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From this result you can clearly see, that the measurement procedure has neither extracted any infor-
mation from the second qubit, nor has it affected the second qubit in any tangible way or form. The
measurement results are thus uncorrelated. Moreover, the result has left Qubit 2 in a pure state.

Altogether this seems like a rather classical result: a measurement on Qubit 1 does not affect Qubit 2
and it also does not produce any prior information on Qubit 2. Or to put it in other terms: product
states behave like classicallyindependent systems, theyare thus kind of boring.

4.1.2 Non-Product States, Correlation, and Entanglement

We shall now see that this classicality is not maintained for non-product states. For this we shall intro-
duce a new basis set for the two-qubit system as an alternative to the CBS |00),|01),[10),]11).
Among the many possible set of basis states, one, which stands out particularly, is the set of maximally

entangled Bell-States |¥/d*):
1

i) = 01)+|10
|we) onE10)
: (85)
dt)=—(00)+ |11
| ) 5100 £111)
Let’s repeat our measurement experiment for any of these, say [) = |® 1)
1
=—(]0,0,)+ |11 86
) \/7012) 11,1;)) (86)

We measure the first Qubit in an arbitrary observable, which is defined by its projection-based meas-
urement operator. As a reminder this operator is

A(Q: ¢)1 = |a1)<a1| - |b1)<b1| (87)

The measurement corresponds to some arbitrary basis (not necessarily the CBS), which can be repre-
sented by a point on the Bloch sphere for |a;) and a point on the opposite side for |a, ), which we can
describe by the two angles 8 and ¢ according to the equations:

|a;) = cos 6 [0,)+sinfexpi¢p |1,) |b;) = sin B exp(—i¢) |0,) — cos O |1,), (88)

This simply means, that 8 represents how far away on the Bloch-Sphere we are from the CBS. Here
6 =0andf = g represent measurements in the CBS basisand 8 = if represent measurements on
the equator of the Bloch-Sphere, e.g. the |1) orthe |L/R) bases or superpositions thereof. The specific
choice of factors also automatically ensures that |a,)and |b;) are orthonormal, i.e. they are a valid
basis set.

As we must expand the CBS in which the initial state was defined into these states anyway it makes
sense to expand the basis states intothe eigenstates of the observable:

|0,) =cos@ |a;)+ sinB expip |by) |1,) = sin 8 exp(—i¢) |a;) — cos b |by) (89)

At any rate, we can now describe the first Qubit state as a superposition of the measurement basis
and we get:

1
[p) = ﬁ [(cos O |a,)+ sinB exp(iph) |b1))10,) + (sin 8 exp(—i¢h) |a;) — cos 6 | by )[1,)]
1
= ﬁ [(cosB0,)+ sin B exp(—igp)|1,))]a,) + (sin 6 exp(igp) [0,) — cos 6)[1,)|b;)]  (90)
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The measurement then collapses the first Qubit and each of the terms has a certain probability of
being the resulting state after collapse. The probabilities are:

p(A; = +1) = (p|P,p)
= (YlaXa4lp)
= %[(cos 00, | + sin 8 exp(igp) (1,)][(cosB |0,) + sinB exp(—ig)[1,))]

1
= E[cos2 0 + sin? 6] (91)
_ 1
2

1
p(d:=-1) = ([P, |p) =5
The states after the measurement are:

[]A; = +1) = (cos 610,) + sin@ exp(—ip)[1,))la;)
llA; = —1) = (sin 8 exp(igh) |0,) — cos 6 |1,))|b;) (92)

Here we note the first curios thing. The resulting probability distributions of Qubit 1 do not at all de-
pend on the type of measurement applied. From the single particle picture, you would expect that a
guantum particle must have one specific observable, where the result is fixed. Or to put it more bluntly:
by now you have accepted that it may not be clear what property a Quantum Particle may have, but
you would surely expect that it should have some fixed property. Yet, any possible measurement,
which you can apply on Qubit 1 gives the same result. It seems like Qubit 1 has become a particle
without properties. This also means that there is no point on the Bloch Sphere, which describes the
state of Qubit 1.

In a sense Qubit 1 has ceasedto exist as an independent particle. Instead, it has gone into a state, in
which it does not make sense tothink about the properties of Qubit 1 without resolving its connection
with Qubit 2. Both Qubits have become ENTANGLED.

That said, let’s explore the status of the joint system after the measurement on Qubit 1. As it is in a
mixed state it must be described using the density matrix approach, where we can simply read off the
entirety of the density operator from the table above

1
p =514y = +1)lA; = +11 + [plA; = —1)@l4, = 1] (93)

Which is clearly not factorizable in the same way, as the non-correlated state from above. Let’s elabo-
rate on this a bit more in-depth by explicitly calculating the state of the second Qubit. This is done by
calculating the partial trace over the first Qubit (e.g. a hypothetical measurement with the identity
operator for Qubit 1).
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pr=Trip = ) (ailpla)
i

(cos 810,) + sin@ exp(—i¢)|1,))(cos 8 (0, | + sin 8 exp(ig){1,])

[l SR

+ E(sin@ exp(ig)|0,) — cos 6)|1,)(sinB exp(—i¢) (0,]| — cos 6)(1,])
= %(cos2 0 +sin20)|0,){0,| + %(cos2 0 +sin?0)[1,)(1,]

1
+ 3 (cos 8sin B exp(igh) — cos O sin B exp(idh))[0,)(1,|

1
+ > (cos 6sin 6 exp(—i¢p) — cos 6 sin exp(—ig))|1,X0,|

1
=5 1102)02] + 12111 (94)

This is not just any mixed state but a maximally mixed state according to the definition in chapter 2.4.1.
This means that a measurementin Qubit 1 does not only increase the information content (entropy)
of Qubit 1 it also increases the entropy of Qubit 2. Indeed, this is much weirder than you would initially
expect. Let’s set this aside for a second and use this finding to define the entangledness of a quantum
system:

Definition 6: The degree of Entanglement of a two-Qubit quantum system in a joined
state |Y) is measured by testing the purity of the state of Qubit 2 after a measurement
A, is applied onto Qubit 1, i.e. let p be the state of the joint system after application of
measurement A, then the entanglement E is calculated using E = 2 Tr[(Tr,p)?].E €
[0,1] with E = 0 indicating non-entanglement and E = 1 indicating maximum entangle-
ment.

The specific kind of measurement of Qubit 1 does not matter. A generalization with
larger systems is straightforward.

Let’s return to the weirdness of entangled systems. Previously, we had seen that Quantum Systems
aretransferred from a pure into a mixed state by measurement only. But we have never even touched
Qubit 2. We have only measured Qubit 1. Still, inthe process we have transformed Qubit 2 into a mixed
state. This means we must have made implicitly made some sort of measurement with Qubit 2. Let’s
find this out and do so by applying the observable A(8, —¢),, onto Qubit 2 (this is the same as for
Qubit 1, with the only exceptionthat the phase shift between the two measurement bases is reversed,
e.g.thesense of the chirality is flipped).

We rewrite the state of the second Qubit systeminto two parts, according to the measurement out-
come of A, (we could proceed with the complete p from above but then the equations get somewhat
lengthy):

[Y,]A; = +1) = cos 6 |0,) + sin 6 exp(—ig)|1,)
[p,|4; = —1) = sin@ exp(ig) |0,) — cos ]1,) (95)

Let’s now apply the same measurement (let’s call it A,), which have applied to the first Qubit on the
second qubit. We now calculate the probabilities of A, by noting that p(A2 =aqld; = ar) =
Tr(p2 (A1 = a,)|agiaql) = X{a;p2 (4, = a,)|ag)aqla;). We read them off as:
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p(4, = +1|A; = +1) = [Ka, lY,]4, = +1)|?

= |(a;|(cosB [0,) + sin 8 exp(—ig) |1, )I?
= | cos? 8 + sin? 9)|?

=1

p(4, = —1|A; = +1) = Ka,ly,l4, = +1)? (96)
= |cos 8 sin 8 exp(—i¢p) — cos 0 sin@ exp(—i¢)|?
=0

(A, = +114,= -1 =0
P4, = —114,= -1 =1

Note, that we have explicitly shown, how the first solution is obtained and then just given the result
for the second to fourth. We now group the four cases into two classes. The situation
(A, = +1|A; = +1) and (4, = —1]|A; = —1) mean that the measurements on Qubit Number 2 will
yield the SAME result as the measurement on Qubit Number 1 (correlation). The other twosituations
correspond to measurements with different results (anticorrelation). We find that both members in
both of the classes are equal and they are 1 and 0 exclusively.

This resultis profound: a measurement of Qubit 1 with observable A; with any result will force Qubit
2 to instantly collapse into the same resulting state for observable A,. The results are perfectly corre-
lated. Moreover, and this in as important point: the correlation is maintained irrespective of the meas-
urement basis! The two Qubit give the same results, irrespective of what you measure, as long as you
make the same measurement.

Or in other words, the observable in the A; measurement basis is perfectly correlated to the observa-
ble in the same basis, with a flipped phase as represented by the observable 4,. Here we have only
discussed this relation for an initial two-Qubit systemin the |®* ) state but one can show that for the
other three Bell-States there is a correlated Basis for Qubit 2 for any possible measurement of Qubit
1, too (there is relation is just a slight bit more complicated than just a flip of the ¢-phase). This leads
us to an alternative definition of entanglement:

Definition 7: Two Qubits are completely entangled, if for any basis set for Qubit 1 there
exists a corresponding basis set for Qubit 2, in which a measurement is guaranteed to
yield the identical result. The degree of entanglement can be quantified by the maximum
degree of correlation between a measurement in a basis set in Qubit 1 and the most cor-
related basis set in Qubit 2.

In other words: measurements in entangled systems produce correlated results, irrespective of the
measurement!

Infact, one can show, that such a behaviour produces a stronger correlation than could be constructed
for anykind of classicalinteraction. This is done by generalizing our analysis to measurements on Qubit
1 and Qubit 2 into combinations of three different bases and the derivation of a quantity E (not to be
confused withthe degree of entangledness), which expresses the correlations of these different meas-
urements. It can be shown, that there is a range of values for E which can be reached by Quantum
Systems but not by classical systems; the resulting inequality is the so-called CHSH-Version of Bell's
inequalities. They can be tested for experimentally (which has been done first by a team around A.
Aspectin 1984, see below) and it was indeed shown that two entangled Qubits exhibits correlations,
which cannot be explained with classical particles; this is generally considered a resounding proof that
guantum physics is required to describe nature properly.
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Figure 18 Schematic of a two-channel Bell-test with polarization splitters using two time-like separated observer
Alice and Bob. The test has to be re-run at least fourtimes forall combinations of two different settings A, A Of
the left and B, By of the right polarizer. The strongest deviation for the classical prediction of S = 2 V2 an be
found ata=0°, b=45°andc=22.5°,d=67.5°(Tsirelson’s bound)

FOURFOLD COINCIDENCE
MONITORING

Figure 19 Scheme of the Aspect-experiment, the first to successfully demonstrate S > 2. PRL49 1804 (1982).

4.2 Controlled Operations on a single Qubit

In one of the last chapters we discussed single Qubit gates, in depth. Although there is a surprinsing
amount stuff to learn there, it is of course not enough o build a quantum computer, the same way,
that single bit operation are not enough to build an ordinary. One particular operation of a classical
computer, that inherent requires two bit gates are controlled operations, i.e. operation in which the
action on one bit depends on the value of another.

4.2.1 The CNOT Operation

The simplest (and as we shall soon see the only one which is really required) is the controlled NOT or
CNOT operation; typically abbreviated as CX. The CNOT operation has two inputs, dubbed the control
Qubit |c) and the target Qubits |c). The state of the target Qubit is supposed toflip, if the control Qubit
is in state |0). You can quite easily see that the CNOT is in principle the quantum version of an EXOR
or a half-adder, e.g.

CX([o)]t)) = c)|cdt) (97)
We can, of course, alsowrite the gate as a superposition of projectors:
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CX = 10)(10:)0,] + 11e)(1eD{O0C] + [ 1) A0 N Te| + 11001 (98)
= [0:)I(0.] + |1c)(1 - Ht)<1c|

Or we can write it as a matrix:

1 000
1o 1.0 0

CAX‘0001 (99)
0 010

And thereis, as you probably expected also a specific symbol, which is used in the circuit-model nota-
tion:

Figure 20: Circuit Representation of a CNOT register.

While the CNOT-Gates seems rather trivial there are a lot of fancy things that you can do with CNOTs
and just a few other gates. The first fancy thing to note, is that for CNOT operation the roles of the
control and the target Qubit are largelyinterchangeable, indeed, we find that:

A A.CX(A |c)A,It)) = CX(|t)|c)) = |cdt)|t) (100)

N BN FE
. HOm

Figure 21: Two equivalent representations of the CNOT gates with the roles of the control and target Qubit inter-
changed.

4.2.2 Bell State Creation and Measurement
Another fancy use of the CNOT-gate is the construction and measurement of Bell states from CBS-
states. Indeed, we find the simple relation:
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o) | 1t) | CX(H|c)|t))

0) | [0) |®)
0) | 1) L)
1) | 10) [¥)
1) | [1) I¥7)

We can exploit the invertibility of quantum circuits to also map Bell states onto CBS and thereby cre-
ating measurement systems for Bell states.

| Qo Iélm‘

z
@ m
inB1 |
inll |
out?
0 1

Figure 22: A Bell-State creator (left of the Barrier), which creates any of the four Bell states according to the input
bitsinO and in1 and a Bell state measurement circuit, which measures the Bell state and ouputs the result (0,1,2,3)
into the classical two-bit register out.

Hereis an alternative circuit, which creates a random Bell-states and then measures it:

T T
R S
s

asurement outcom

out2 fe

in2
1 0

200 400 600 800 1000

Figure 23: A Bell-State creator (left of the Barrier), which first creates two QuBits with a random distribution of | 0)
and |1) states using a Hadamard operator and a measurement. Right of the Barries is the Bell State Measurement
operator. Results are plotted to the right for 1000 runs. Note that only those measurements occur, in which the
pairs of bits (in and out) are equal. This show that the algorithmdoes its job.

4.2.3 Quantum Teleportation and Related Protocols

Bell state measurements are fancier than you may think, as they allow us to implement a lot of awe-
some operations. While these are not at the core subject of this lecture, we shall here introduce an
algorithm for quantum teleportation. The synopsis is as follows. We create two Qubits (q1 and g2) in
a |@*)-state and a third qubit g0 in a random state |i)). Then we apply Bell State measurement on
Qubit g0 and gl. The resulting two classical bits will drive (or not drive) unitary operations in Qubit 1.
After these, Qubit g2 will be in state [)) . Hence, we have transported the quantum state |y) from
Qubit g0 to Qubit g2 (keep in mind, the state is destroyed in Qubit q0), hence the name quantum
teleportation.
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Figure 24: A Quantum Teleportation Circuit, which teleports an |+)state from QO to Q2. Note the initial state is
defined in a random state using the “init” Gate. The disentangle-Gate is simply the inverse of the init-gate. The
application ofthe Disentangler-Gate always produces the |0) state as shown in the result (the leading bit is always
zero) irrespective of the equally distributed output of the BS-measurement.

4.2.4 Controlled U-Operations

As a next step we shall expand the scope of controlled operations. So far, we have only discussedthe
CNOT gate. We shall now expand the discussionto a controlled-U operation, thatis, an operation that
applys a single-qubit gate U onto a target bit, if the control bit is in the |1)-state and does nothing
otherwise.

The common notation is:
CO(|c)|t)) = |c)T°|t) (101)

Note that the controlled-U operation is not a binary do-something or do-nothing operation, unless the
control bit in a CBS. In the more general state this will enact a superposition of application and non-
application of U on the target qubit and thus leave the qubit pair in an entangled state.

From a practical point of view the questions arises: how ca we implement controlled controlled-U
operations? Are they new or can be break them down into well-known gates, which we have discussed

prior. To do so, we need a corollary, which extends the discussion in single qubit gates from chapter
3.3.

Assume we have an arbitrary unitary gate U then we can find unitary operators 4, B, and € and
ABC =1 and a phase factor a such that

U = exp(ia) AXBXC (102)
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Where X = $2isthe NOT gate X = |0){(0| — |1)(1]. We will not give a proof here but the simplest way
is to find specific angles in the triple-rotation theorem from chapter 3.3 that yield this result. If you
read this for the first time you are guaranteed to find the corollary quite mysterious, but indeed it is
very helpful, for the construction of controlled U-gates from CNOTs. Indeed we find, that

1 0
0 G-ia

U Cro B A

Figure 25: A controlled ﬁ-operation incircuit notation andthe equivalent gate composed of single-gate operations
and CNOTs.

We verify by this in two steps. Thefirstis phase kickback relation depicted in Figure 26:

0 e-ia'

Figure 26: Phase kickback fortwo Qubits.

You can do so by noting that both sides mapthe CBS-states according to the following rules
0.0.) > |00) |01) - |01) [10) — expia [10) [11)— expia [11) (103)

The rest of the relation in Figure 25 can be shown by plugging in |0) into the control qubit, which leaves

ABC =1.Ifyouinsteadplug ina |1) thenyou get exp(ia) AXBX C, which we have constructed to be
0.

Hence, we have seen that we can construct any single-qubit controlled U operation from CNOT and
single qubit operations.

4.2.5 Multiple Controls
We might require the use of multiple (bitwise connected) control operations. E.g., a control-bit may
only gointo the active states if multiple criteria are matched (AND) or if any of a number of criteria is

met (OR). Moreover, we may require operations which do fire on a control bit being |0) as opposed to
being |1).

Let’s begin with the AND case. Assume we have n control bits and we desire to operate U onthe n +
1" qubit, if all control bits arein the |1) state. This controlled gate is accordingly called the C™U gate
and its notation is:
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CmU(Jcy - Ca)|E)) = |c) T Cr]t) (104)
In case of U being the NOT operation we write
CX(|cg )t = |O)|t®c1 6y ... Cp) (105)

Let’s start withn = 2 by introducing an operator 7 with 72 = 0. Such an operator s in principle easy
to construct. It is the same rotation as U with half the angle or your can decompose U into eigenvec-
tor-eigenvalue pairs and divide the (phase only) eigenvalues by two. Then we can show the following
relation:

il " A
. L w1

U Vi—VIi—V

Figure 27: Decomposition of a double controlled U operation into CNOTs and square rrot operators.

We can easily verify this relation by plugging in all four combinations of the CBS bases into the two
control lines. In the |00)-case nothing ever happens. Inthe [01) case we do nothing to the control bits
and apply a 7T = 1. Inthe |10) case we apply a double NOT to the second Qubit and a7 Tl =1 to
the target qubit. Inthe |[11) we apply a V¥V = U.

The most important double-controlled operation is the double CNOT for which we only need to find

L 11 =i\,
the proper 7, which is the so-called root swapgateﬁ(_i 1 )

adaidli

1 0 2

S H =
W A

200 400 600 800 1000

Frequency

Figure 28: Adouble CNOT gate using composed of CNOT and SQRT-NOT gates only. The target bitis initially in the
|0) state and the control bit are initialized in a random manner. Note the result of target qubit g2 is always 0 unless
qo = q111), thenitisin theone |1) state just as expected. Alsonote that QISKIT does not support the inverse of the
controlled SQRT-NOT so this is implemented a controlled NOT plus a controlled SQRT-NOT (three quarters clockwise
instead of a one quarter counterclockwise).

We can now generalize to an arbitrary number of inputs at the expense of a few ancilla quibts, and
give a construction for an n = 3 case, which may serve as a generic example:
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Figure 29: Atriple CNOT gate using three control qubitsqO0...q2 two ancilla qubits g3, g4 and a target qubit g5. The
target bitis initially in the |Q) state and the control bit are initialized in a random manner. Note the result of qubit
g5isalwaysOunless q, = q, = q, = |1), thenitisin the one |1) state just as expected.

To construct more complex logic we introduce the inverted CNOT gate, whichis defined as:

‘WR 1010

q 1

- -
- -
rement outcome

2

Meas U

(o]
M2

0 1

200 400 600 80D 1000

Figure 30: A|0) active CNOT gate using. The target bitis initially in the |0) state and the control bitis initialized in
a random manner. Note the result of the target bitis only flipped if the control bitis in the |0) state.

4.3 Classic Computation on a Quantum Computer

Quantum Algorithms are frequently used to solve problems which are formulated in the language of
classical algorithms and we must find a method to make these problems accessible on a quantum
computer. This issue is much more profound as you might think, because classical computers are based
on irreversible operations, which you cannot — by definition — implement on a Quantum Computer.

Nevertheless classical computers are subject to the laws of quantum physics, so it would come as a
great surprise, if we could not implement logical operations on a quantum computer and hence clas-
sical computation in a more generalsense.

We shall tackle the issue in a two-pronged approach, by first introducing quantum logic gates (i.e. the
guantum equivalents of binary logic gates)andthen have alook at the consequences of superposition
on classicalalgorithms.

4.3.1 Implementing Logical Operations ona Quantum Computer
We start by taking the NAND-operation as an example. It has the following truth-table:

A | B| ANANDB

0|0 1
1|0 1
0|1 1
11 0

You canimmediately see that this operationis not reversible, i.e. you cannot “uncompute” the A NAND
B, if the result is 1 because three different inputs will produce the same result. We have previously
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discussed that irreversibility leads to an increase of entropy and indeed there is a series of ground-
breaking results by Landauer from the 1960s, which identify the deletion of information as the action,
which increases the entropy by kT. Strange enough, this puts a lower limit on the power consumption
of classical computers, but this is still a few orders of magnitude lower than the power consumption
that we see today (but not somany). But | am digressing.

We chose the NAND-example for a fundamental reason, because the NAND is a universal gate for
classical computers, i.e. youcanconstruct a Turing-complete computer only from NAND-gates. Hence,
in principle we only need to find a reversible implementation of the NAND gate in the quantum lan-
guage to be able to port any classical algorithm into the quantum domain.

The trick with reversibility is easily achieved, by retaining in input qubits in their initial state and con-
structing the gate in a waythat the output bit is loaded with a predefined state |0). Toimplement the
NAND-gate we resort tothe double controlled NOT gate (the toffoli-gate) from chapter 4.2.5 and turn
it into a NAND by application of a NOT.

. B R
flw.ngz

q 2

q

1 0 2

200 400 600 800 1000

Frequency

Figure 31:Areversible NAND-Gate.

We can also define an OR operator by simply using the fact that AORB =
NOT ((NOT A) AND (NOT B)), thus we find the following layout for a quantum OR-gate:

HE 1010
H ®!1010
|
|

—-—— e -
—— o -
m

0 1 2

00 400 600 800 1000

Figure 32: A reversible OR-gate. The target bit is initially in the |0) state and the control bits are initialized in a

random manner. Note the result of target qubitq2 is Oifand only if q, = q, = |0). Otherwise itis flipped in the
one |1) state just as expected.

The last of the bunch, which is frequently employed is the XOR-gate, which the only one inthe common
set of logic operations that is reversible, if one input state is know, hence, we can implement it in two
possible ways, the usage of which depends on the question if we need the second input for further
processing:
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Figure 33: Two possible ways of implementing a quantum XOR-gate. (left) Stores the result of the XOR directly in
QuBit1. (right) Stores the result in Qbit2 and requires Qubit2 to be initialized in the |0) state.

4.3.2 Classical Algorithms on Quantum Computers

Logical gates implement a complete basis set for classic computers, we therefore conclude that we can
use to thisto castany classicalalgorithmin a quantum form. What does this mean? This means that
the algorithm behaves exactly like the classical one, if we run it with CBS as an input (where the CBS
are supposed to be read like binary numbers for the classical input). However, we can also run the
algorithm with an entangled superposition state and retain a true quantum result. As a example we
take an entirely fictitious algorithm that is fed with a four bit number. We run it twice, once with the
input number “12” and once with the input “6”. Suppose the algorithm us VERY hard to compute then
we would, after a long wait compile the following table:

Input Ouput

1100 (12) | 1110 (14)

0110(6) | 0011 (3)
We can now turn the algorithm into a quantum version by replacing all its NANDs with their quantum
equivalents and we would be guaranteedto get:

Input Ouput

[1100)(12) | [1110)(14)

[0110)(6) | [0011)(3)
This is certainly not an improvement. However, because the quantum algorithm is necessarily linear
(it is a unitary matrix!) this means that if we input a superposition of CBS-states we obtain a result,
which is superimposed of both classical runs:

Input Ouput

«[1100)+ £]0110) | «|1110)+ B|0011)
Of course, we can generalize this to all possible superpositions, if we wanted to. We are now in a
position, where we can run a classical algorithm with all possible classical inputs at once! This is, how-
ever, not really useful, because upon a simple measurement in the CBS we would still collapse onto

ONE particular solution of the algorithm, and we would not even know which one. So, we canonly get
a real advantage out of this, if what we are really looking for are not individual solutions but specific
properties, which come from superpositions of solutions. Think Averaging. Think statistics. Think Fou-
rier transformations.

4.3.3 A wordon Uncomputation
As we have discussedthere is no easy way to delete data in quantum computation, because all oper-
ations must be reversible. We have also seen that many operations require the usage of ancilla qubits
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to storeintermediate states of the calculation. Some quantum algorithms, as we shall see later, how-
ever require the return of allancillas into a cleanstate, e.g. the rely on you to clean up all the interme-
diate values of your calculation, except for the final result. This process is called “uncalculation”.

For operations, which are based on the CNOT-gates, this is, ingeneral, not more complicated thanthe
original calculation, because you can uncalculated by recalculating the result, e.g assume thatyou have
an intermediate QuBit, which is created by a CNOT operation. A second application will restore the
ancilla bit into the previous state, because CX(CX(|c)|t))) = |c)|t B c D c) = |c)|t). Thus can be
used as discussedin the image below:

ql[O]

ql[1]

ql2]

ql3]

Figure 34:Some Quantumoperation U relies onthe ancilla QuBitq1 fortheinput. It will create a result in g2 and/or
q3. Afterthe operationis carried out, we can uncalculated g1 by recalculatingit.

We shall see in the next chapter that this approach is indeed universal because CNOTSs are universal.

4.4 Generic Operations and Universality

So far, we have restrained ourselves to operations, which are active on a single qubit only. In general,
this is not the case, and we can, of course, define gates which are active on any number of qubits or
any number or combinations of parts of qubits. We shall spend this chapter to show, that even such
complicated operations can be broken down into a series of single Qubit operations and CNOTs. This
will then conclude the universality proof, with the result, that we can decompose any possible quan-
tum operations in a series of CNOTs, Hadamard, and Phase Shift Gates.

We shall however see that this constructionis not terribly efficient. On the other hand, it should not
be terribly efficient, because we can efficiently simulate those three gates ona classical computer and
if we could decompose any quantum operation efficiently into them, we could efficiently simulate a
complete Quantum Computer and there would be not much to learn from them.

Any arbitrary gate is characterized by its unitary operator U, which can be represented by a matrix.
Here we shall restrain ourselves to a 3x3 matrix and introduce an algorithm, which we can use to re-
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duce the 3x3 matrix by one dimension into a series of 2x2 matrices. The algorithm can straightfor-
wardly be extended to any number of N X N and by consecutive application we can use it to reduce
the N X N into aseriesof N —1X N — 1 and soon, until we are againat a series of 2 X 2 matrices.

The matrixis given as:
a d g
U= [b e h]

c f i

We next find three 2 x 2 matrices Uy, U,, and U, such that 0;0,0,0 = 1 and hence U = U] 0} U} .
We use the first 2 the submatrices to produce zeros in the first column below the top-left diagonal
element and then the last one to produce zeros in the top row, again ignoring the top left. We start by
choosing:

(106)

a* b*
Vlalz+1b12  /lal? + [b[?
U, = b a 0 (107)
Vlal?> +1b|? Vlal? +|b|?
0 0 1
Which produces a zero in the first row:
al dl gl
U,0=|0 e R (108)
CI fl il
Then we set:
a” c'”
/|a1|2+|cl|2 /|a1|2+|cl|2
U, = 0 1 1 (109)
c’ a'
—_— 0 —_
/|a1|2+|C1|2 /|a1|2+|C/|2
Which produces a second zero in the first row:
1 dll gll
0,0,0=10 e" h” (110)
0 fll ill

Since U,, U,, and U are all unitary U, U, U must be unitary, too it follows thatd’’ = g’’ = 0. This also

implies that the submatrix composed of e, h", f
Thus we have:

oerr

is by itself unitary and therefore f'' = —h'"".

1 0 0
0,0,0=[0 e" n"” (111)
0o —=h'" i"

We can then simply define U; as a Hermitian conjugate of unitary submatrix, which we know is the

inverse due to the unitarity:

1
ﬁ3 =0 e'*
0 hll

(112)

NS

0
—h'"
l
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And we can therefore guarantee that:

1 0 0

0,0,0,0 = [0 1 0]=11 (113)
0 0 1

Thus, we have successfully reduced the 3 X 3 gate into a series of three 2 X 2 gates! A word of cau-

tion: we have, so far ignored the case, when b = 0 or ¢’ = 0. In such cases you can simply skip the

stepandsetU; =lor U, =1.

If you have a larger N X N matrixyou can generalize the algorithm to work on the first column, then
the second column, until all of the subdiagonal elements (except for a 2 X 2 matrix) are zero. This
requires O (N?) operations. Ifthe operation spans n qubits then we have N = 2™ and thus we 0(22")
operations. Again, this is not very efficient, but as we have discussed this is necessarily the case. Nev-
ertheless, there are a few important subclasses, were a decomposition is in fact quite efficient; we
shall discuss themin the following chapter.

There is one piece missing in the completeness proof. Although we have decomposed an n-Qubit uni-
taryinto 0(22™) = 0(4™) 2 X 2 matrices U; this does not yet mean that we have decomposed it onto
0(22™) single Qubit Gates, because the matrices willin general spanany possible combination of CBS
(e.g. they may operate on the subspace spanned by the |01) and the [10) CBS, which belong to two
different qubits). To map that onto single qubit operations we must implement a swapping scheme
first, map the two states onto the states of one specific qubit, enact the single qubit operation U on
that specific qubit and then swap everything back into place. For swapping we use controlled NOT
operations is a specific manner.

Assume we have a three Qubit system and we want to implement the following operation on it:

0 00 00O

(114)

ST OO OO OO Q
S OO OO O
S OO OO ko
[=NeNelol e N
S OO R O OO0
S OR OO OO
OSORrRr OO O OO0
QLO OO O OONn

Obviously, this operation is a 2 X 2 matrixJ’ = (Z 2), which acts on the states [000)and |[111).
Let’s call the three qubits by the names q, g1, and g,. Let’s further write down a sequence of qubit-
wise swapping operations, which transforms the [000) state into the |011) state, which shares the
same qubit with |111), in the sense that these are the CBSof g,. This sequence is:

Opera- Action Explanation where is |000) the
tion amplitude after the
operation
Swap 1 Swap |000) with |001) | Not g, under the condition that [001)
g, and g, arein the |0)-state
Swap 2 swap |001)with |[011) | Not g, under the condition that [011)

q, is in the |0)-state and q is in
the |1)-state
Apply U’ Apply U’ on q, under the condi- unaffected
tion that gyand g4 are in the |1)-
state
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Unswap2 | swap|011)with |[010) | Not g, under the condition that [001)
g, is in the |0)-state and q is in
the |1)-state

Unswapl | swap|001)with [000) | Not g, under the condition that |000)
g, and g, are in the |0)-state

We can of course also write this as a quantum circuit:

qle]

e%e o !

1 11 111
Computational basis states

Figure 35: A swap-based implementation of an arbitrary rank-2 operator U’ acting on |000) and |111) based on
CNOTs and single Qubit operations only. See resulting state for the illustration of the result. The barriers represent
the different steps of the algorithm (Swap 1, Swap 2, Apply, Unswap 2, Unswap 1).

For any possible ' in an n-Qubit system we may require up to 2(n — 1) CNOT operations, which can
be implemented with O (n) operations, using only single qubits and 2-qubit CNOTs. Thus, we require
up to O(n?) elementary operation to implement the entire swap sequence. Together with the previ-
ous result, we therefore conclude that we canimplement anarbitrary unitary operation on an n-Qubit
state with O (n?4") elementary operations.

We therefore conclude:

Summary: Any possible gate on an n-Qubit System can be implemented with a series of
Hadamard, g, and two Qubit CNOT gates. Any universal quantum computer can be con-

structed if these three gates can be implemented.

A word of caution, which should not go unmentioned. The conclusion is actually not completely true,
because of quantum errors. First of all, we have discussedin section 3.3.1, we can only ever hope to
approximate single Qubit gates, yielding an approximation error for every gate. Since the construction
of multi-qubit gates heavily relies on replacing a few complex operations with a lot of single-qubit
operations, this means that approximation errors will occur many, many times in a quantum circuit
constructed from fundamental gates. Moreover, any realistic Quantum computer will add external
noise sources, which will add an intrinsic error over time. The source for these errors are complicated
and involved but most can be understood in the context of decoherence, which means that after a
certaindecoherence time, quantum interference is no longer observable and all entanglement is lost.
Since any gaterequires a certain process time, this means that any execution of a gate will also intro-
duce noise-based errors.

While this seems rather bleak, there is also a beacon of hope, in the form of the error accumulation
theorem. This means that a sequence of N imperfect gates U;, each of which produces an error €, will
produce a total error that scales no worse than 0 (eN). We conclude that Quantum Errors are, more
or less, additive and a reduction of the per-gate-error of € yields a linear increase in the number of
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possible gates N, which can be implemented, before the results of the algorithm get killed of by accu-
mulating errors.

The way to more powerful quantum computers therefore involves:

e the implementation of more Qubits

e the reduction of gateerrors

e the direct implementation of more complicated gates

e the reduction of the number of gates using more efficient algorithms

e the reduction of statistical noise using error correction (which requires more Qubits)

5 QuantumAlgorithms

In this chapter we shall return to the canonical circuit model and use it to introduce, discuss, and un-
derstand a few key algorithms in Quantum Computing. Up until three or four years ago this would have
comprised an almost complete list of the algorithms which have been found and discussed on Quan-
tum Computers but, loand behold, the number of algorithms available for Quantum Computers grows
as quickly as does their computational power.

We shall nevertheless stick to the traditional basics for two reasons. The first reason is that these al-
gorithms are incredibly well-understood, including their limitations but also including the impact of
noise on such algorithms. This is very important from an application point of view and also for the
development of Quantum Computers: these classical algorithms are near-ideal to test and characterize
the power of real world implementations of Quantum Computers. The second reason is that these
algorithms nicely highlight some of the specific feature, which make Quantum Computers particularly
powerful. As such, that can serve as a goof starting point to design novel quantum algorithms. If you,
like me, have are accustomedto writing classical computer programs you will see that quantum soft-
ware does not seemto naturally come about. A proper analysis may give us the kind of natural under-
standing of the strengths of Quantum Computers and the essential building blocks of quantum soft-
ware such that we may hope to end of withthe ability to come up with novel way of applying Quantum
Computers.

5.1 Josza-Deutsch’s Algorithm: a Case of Useless but Powerful

The first algorithm which we will discuss was alsothe first algorithm even to be developed specifically
for Quantum Computers. To be more precise: it was custom-designed as a demonstration for Quantum
Advantage, i.e. it gives the solution to a very artificial problem, which scales much more efficiently on
a Quantum Computer as opposed to a classical computer.

Assume the following problem: you play a game with a friend of yours, thatis located somewherein a
small village in rural Thuringia. It’s one of those places, where mobile reception is nil; cable-based
internet keeps on breaking down constantlyand you can’t travel because it’s Corona-lockdown. Again.
So, you have to resort to writing letters backand forth (you know: pieces of written paper stuck in an
envelope, like they usedto do in the 19t century), which is slow and expensive.

The friend of yours has invented a mathematical function f, which inputs a (binary) number x from,
sayx € {1,2"}and returns asingle bit, e.g. f(x) € {0,1}. The function is guaranteedto be either con-
stant or even. Constant means that either Vx: f(x) = 0 or Vx: f(x) = 1. Even means that there exist
exactly 2™ distinct values for x for which f(x) = 0 and equally many for which f(x) = 1 but you
don’t know in advance which ones.
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Your part in the games is to find out as fast as possible: is the function constant? Oris it even? There
is a catch, however. You are only allowed to askthe result for one specific input in a single letter. E.g.
or letter may read x = 63 and the answerwould be f(x = 63) = 0.

As you see: we have constructed the game in such a way that the evaluation of the function is very
expensive (in terms of time) because you have to write a sperate letter for each evaluation and wait
for the answer to arrive. This is a bit artificial but in reality, the function may just be very hard and
expensive to compute or n may just be a very large number under which circumstances the number
of letters mayeven be too much to handle for a very fast postal service. What matters moreis: we are
not interested in the specifics of a particular game, rather inthe cost that a solution to this game would
incur as a function of the number of bits n in general.

The classical solution to this problem is indeed quite simple. You start with some value of choice, say
n = 0 and ask your friend the result f(x = 0). Then you go on and ask f(x = 1) et cetera and com-
pare the results. If f(0) # f(1) then you know the function is not constant and thus even. However,
if f(0) = f(1) you can’t make and statement because the function may be constant or it may be even
and you have just happened to select two specific values of x that produce the same result. Youwould
thengo on tox = 2,3,4...and so on. If you keep on getting the same results you end up stuck in the
same dilemma as you cannot guarantee that the functionis constant unless you have check more than
half of the possible inputs, e.g. until you have progressedto x = 2™~ ! + 1. Thus, we find that the so-
lution to the algorithm may require O(2") (expensive) steps for a solution and is thus very, very inef-
ficient.

Keep in mind that the inefficiency experience above is of an extremely annoying type. We have to
make a shitload of function evaluations and we don’t even care about and of the specific results. All
we care about is a — to some degree — averaged result over a large subset of possible inputs. If you
remember the last paragraphs of chapter 4.3, you may start tofeel that Quantum Computers may be
a good thing to apply here. Ifyou don’t, than just bear with me anyway.

First we’ll construct the quantum equivalent of the function f to be evaluated by turning it a unitary
operation Uf, which operated on the set of input Qubits |x)and the result Qubit |y). Keep in mind that
|x) = |x4 ... x,,) is @a number of quits, equivalent tothe number of bits that may be input into the func-
tion f. As we may encounter this quite frequently, we will tryand use the boldface notation whenever
we feel thatit is required for notational clarity. And also keep in mind @ is the XOR operation which
is canbe implemented using a simple CNOT.

U (10)1y)) = 10y ® f(x)) (115)
We start the algorithm with the initial CBS state:
o) = 10)®7]1) (116)

This, however, is not helpful for the computation, which we would like to carryout, as it would simply
evaluate the function f(x = 0) at one specific value; i.e. is would do the same thing as a classical com-
puter would do. The same is true for any other CBS on the |x)-part of the Qubit. Instead we are looking
for a compound property; i.e. we would like to evaluate the function at as many input bits, as we
possibly can, anthis can be done by transforming |x) into a balanced superposition of all possible CBS.
Luckily this is simple task, which can be achieved by applying Hadamard-Gates onto each and every
Qubit of |x). For good measure we also apply the Hadamard onto the result qubit.
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x=1..2"

Next we evaluate the function on this register and obtain:

0)— 11
0f|l/)1)=< Z (—1)f<x>\|/’;_)n> (' ) ﬁl >) (118)
x=1..2"

Because (|0) — (1)) @ 1 = [1) — |0) = —(]|0) — |1)). This is a noteworthy result in its own right be-
cause this means that the result of the evaluation of Uf is not stored in the Qubit value of |y) but in
the phases of the computation basis states |x) of the input register. This, somewhat unexpected inter-
mediary result, sheds light on a rather fundamental property of Quantum Computation: compared to
classical computationthere is no differentiation of input and output registers, whatsoever. This is due
to the global nature of the wavefunction and the reversibility of the computational paradigm.

Of course, we can’t measure the phases of the input registers directly. So what to do with this result?
Think physics: the generic way of measuring phases is by measuring interference, using beam splitters.
The Quantum Computer equivalent is the application of the Hadamard operator and this is just what

we do: we H to all of the input register QuBits again:

0)—11
|¢2)=H®"( > (—1)f<x>J’;ln><' ! ﬁ' >> (119)

x=1..2"

The calculation of the result is a tiny bit cumbersome and we’ll do it separately by each of the elements
of the sum. Keep in mind that |x) is any possible CBS, e.g. |x) = |27)=[00011011) =
[0)]0)[0)]1)|1)|0)}|1)|1). From this we get:

|x')

A®|x) = Z —1)X% — 120
|} (-1 oD (120)

Where x - z is the bitwise inner product modulo 2 of x and z, e.g.if x = 27 and x' = 15 we have 27 -
16 =00011011-00001111=(0+04+0+0+1+0+ 1+ 1) mod2=3mod2=1. We can
now evaluate what happens to our wavefunction:

|1/’2> — ( Z z (_1)x-x’+f(x) |;C_n)> (l()L\/;l)) (121)

x'=1..2"x=1..2"

xr=1..2"

Now we observe the query register. This will force the superposition state tocollapse into any of the
CBS-states. Let’s check for the probability of the |0)®" state first, e.g. we are looking for the amplitude
withx’ = 0. It’s amplitudeiis:

. (F1er@=o0
Z (—1)® m=1tle flx) =+1 (122)
x=1..2" 0 © f(x) is even

Thus if the function f is constant a result of |0) is observed with p = 1. If, however, the function is
even then one of the resulting Qubits is certain to produce a nonzero result. So we can answer the
initial question by just checking, whether the result is zero, then we have a constant function or if itis
nonzero, then we have an even function.
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Keep in mind thatin the procedure we have only applied the function f once and thus we have found
a Quantum Algorithm that solves Deutsch-Josza’s problem with O (1) evaluations of f and O (n) quan-
tum gates altogether. This is a tremendous speedup if compared tothe O (2™) for the classical solution
and showcases the power of the Quantum Computer.

Of course, we shall also give you a proper circuit diagram and have it run on a (simulated) Quantum
Computer and we’ll start with two implementations of the constant case:
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Figure 36: Josa-Deutsch with a constant function f. At the top the functionis f (x) = 0, whereas at the bottomit is
f(x) = 1. As expected the results are exclusively |0000).

Let’s now move to the even case, by flipping the resulting qubit, if the last input registeris in the |1)
state, whichis happens in exactly 50 of the cases. We’lldo so first for a error.free quantum simulator
and then for a real quantum computer which has exactly N = 5 Qubit and a fairly low error rate.

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 61



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

. ,1: 1000
. n\z 800
H <

H ey

o
=
=

Frequency

IS
=3
=3

200

2]
U

0 1 2 3 ¢ T 000
. A 4+1 QuBiIt JoszaDeutsch (16 Input Possibilities)
Ica)
mx
« H EH EEE & . \
« &z é

Figure 37: Josa-Deutsch with an even function f. Where f = 0 ifq; =|0) and f = 1ifq; =|1). At the top is the
plain vanillaimplementation andthe result on a quantum simulator. As expected, the results are never |0000). At
the bottom is the transpiled version, which was run on a proper QC(IBM Santiago) and the results which are correct
roughly 93% of the time.

Using 4 input register Qubits we have therefore run through 2 = 16 possibilities and of course the
speedup is still very...minimal. Let’s take this to the next level and use publicly available QC with the
largest number of Qubits that is available at the moment; this one has 15 Qbits but the gates are not
of particularly high quality. At and rate we still calculate a task, which does otherwise require 21% =
16653 individual queries.
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Figure 38: Even Josa-Deutsch on 15 QuBIt machine (IBM_melbourne). The machine has a fairly low Quantum Vol-
ume and hence thealgorithm produces wrong results most of thetimes. Only 9% of the runs produce correct results.

The results are pretty disappointing; we get the proper results in only 9% of the cases and we have not
even used a particularly complicated function f; Josza-Deutsch is of course particularly interesting if
exactly this is case; namely if f is difficult to compute.

After marvelling on the tremendous speedup I’d like to add two afterthoughts. While the classical so-
lution | have presentedyou above is the most straightforward one, it is not the most elegant sotosay.
An arguably more elegant classical approach would be to simply calculate the average over all possible
solutions Zinzxf(x). If the solution is equal to 0 or 1 then we know the function is constant; if the

solution is anything else, then the function is even. Keep in mind that we have previously discussed
that Quantum Parallelismis very good for the calculation of momenta of functions and the averagesis,
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of course, the simplest moment. Hence, what we have done is somewhat related toa quantum version
of calculating the average.

The second thought that comes to mind is that one way of calculating the average is the Fourier trans-
formation. The if £(k)is the Fourier transform of f(x) then we know, that f(k = 0) is the average.
As the fourier transform is a tremendously powerful tool in mathematics, this begs the question: is
there an (efficient) quantum version of the Fourier transformation? And if yes, what can we use it for?

5.2 Quantum Fourier Transformation: Divide et Conquera

So let’s dive right in, after this flawless transitionintothe Quantum Fourier Transformation Algorithm.
Because we are in the realms of QuBits we shall, of course, think strictly about the discrete fourier
transformation of function with N = 2™ entries:

N-1
1 y
ye=—= 2 e2MKIN . = (123)
VIV i

The difference here being that the numbers x; and y, are supposed to be the amplitudes of the cor-
responding CBS |j)and | k) before and after the application of the Fourier transform operator, e.g.

=

-1

N-1
5= ) yilk) (124)

0 k=0

-
I]

The operator thus must act on the CBSin the way:

oS ey Zo (125)
)-o—= ) e =
\/Nkzo

While this is all nice and well it is a pretty useless formulation for a quantum computer, becauseit is
written in terms of sums of phase shifts that have to be acquired for individual CBS and, as we now
know, this is not well-implemented in a QC. If this is no obvious from the equation above, you can also
write down the matrix U for a, say three Qubit QFT, which is:

1 1 1 1 1 1 1 1
1 0! w? 0w w* 0w 0w w’
1 w? w* w 1 w? o*
g=|1 w?® w® o' 0w 0w w? w (126)
1 w* 1 w* 1 w* 1 w?
1 0w w? o w* o' 0w
1 w® w* w2 1 w® o' w?
1 0 w® 0w w* 0w w !

Were we have introduced the abbreviation w = exp (%).

As from the last chapters, we know, that this may not be an operation, which canbe easy or efficiently
implemented in a Quantum Computer. So, does that mean, that Fourier transformations are per-se
not efficiently implementable on a Quantum computer? Actually, this could not be further from the
truth. But what we really need to do is to reformulate the above equation in a way, that we can imple-
ment into a series of controlled controlled and single QuBit operations, where each operation acts on
the basis states |0, ) and|1,), whereas the details of the operation in question may depend on the
specific computational state, represented by the index j (in the sense of some type of control). This
means, we must strive to reformulate the equation into a type of equation that looks like:
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1 n
I W—N@Uk(lokmkm (127)

To achieve this, it is helpful to think of the CBS-indicies j and k as binary numbers composed of the
binary digits j;_,, €.8.j = j; 2" 1 4+ )22 + ... +jn_121 +j,2%. We shaII alsointroduce the binary

fractionrepresentationof theindex j as 0.j;j;11 «. jm = + ”“ +--+ zm "7 - Using these notations
we find that we can indeed rewrite the fourier transformatlon into a series of controlled single QuBit
operations, using the following series of transformations:

1 1 1

1 i a2 T kg2 R 4k 20
i) *_Z I o lkyky o k)

k1 =0 kz_o kn=0
1 1 1

_)an Z Z e2mti(Caz™) |k, k, . k)

22 | =0 k=0 kn—O
11

LY Y5 e

22 =0 k2=0 kn—O =1

N Lﬂ Z Z |01>® 2mijk2™ llk )+ Z Z 2mij2~ 1|1 )® ijklz_l |k )
22

k2=0  kn=0 k=0 kp=0

S l% (l0y)+ 2™ |1 ))Z Z ® 2mijiep™ | (128)

kz =0 kn—O =2

1 P -
= — (10))+ €227 [1,)) Z Zlo >® 2™ [f) 4
2

k3=0 knp=0

n
Z 2mij272 11,) ® ezmjklz‘l k)
kp=0 =

1

k3:0
1
= = (101) + 2727 [1,))(10,) + €252 |1, >)Z z @ 22
22 k3—0 kn—o =3
1 o o
= =5 (10) + 227 1y))... (10,) + 27927 [1,))
22

If we now also decompose the index j into its bitwise representation and we note that e 2™% is periodic
in the non-fractional parts of j (e.g. e2™{(1:5) = ¢27i(0:5)) we come to the following useful expression

1 . o
iz o din) = =1 (10,) + €270 |1,)) ... (10,) + 270 s2Jn|1,)) (129)
22

Keep in mind that, just to confuse you, we have swapped the order of the factors to adhere with the
standard notations of having the lowest index Qubits to the right of the equation. Itis useful because
the representationis in a product form that tells us exactly, what we have to do to each qubit in order
to implement the quantum fourier transform. The approach is quite simple; we

1. Apply a Hamadard operator H to each qubit to construct the transformation |j,,) — \/% (10, £
115))
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2. Apply a phase shift of exp (2mi/2%) to the |1) state using the operator R, , =

[3 anzz_k] if any of the of higher Qubits |l > k) are in the |1) state (or in other words,
e

conditionally on |I).
3. Repeat for all Qubits

Here’s the circuit representation for a four qubit case:
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Figure 39: (Top) Circuit Representation of a 4 QuBit QFT. (Middle) Transpiled circuit on the 5-Qbit IBM_Athens
machine. (bottom, left) Results on a Quantum Simulator. As expected the |0000)-state, which is equivalent to a
single §-peak at x = 0000, is transformedinto a an equalsuperposition of allplane waves. (bottom, right) Result
fromthe 5-Qbit IBM_Athens machine. Note that the circuit depthis way beyondthat what the QC can do and the
results are more orless random.

Now let’s sit back, relax and have some fun. We’ll use a 6-bit version of the QFT to create sine waves
on N = 2° = 64 positions by superimposing two exp (i ... ) functions. We can do soin the high bits to
create low frequency waves:
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Figure 40: (left) Circuit Representationof a 6-QuBlIt QFT used to create a low-frequency sine wave by seeding the
inputof the QFT with two delta peaks |0)|0)(]0)+ |1))|0)]|0)|0). Note that the red box contains the complete QFT
logic. (right) Probability amplitudes showing the sine behaviour as expected (note: color=phase).

Or in the low bits to create high frequency waves:
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Figure 41: (left) Circuit Representationof a 6-QuBIt QFT used to create a high-frequency sine wave by seeding the
inputof the QFT with two delta peaks |0)|0)|0)]0}]0)(|0) + |1)). Note that the red box contains the complete QFT
logic. (right) Probability amplitudesshowing the sine behaviour as expected (note: color=phase).

We can also superimpose an equal superposition of waves to retaina § (x = 0)-peak:
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Figure 42: (left) Circuit Representation of a 6-QuBlIt QFT usedto create a delta-peak sine wave by seeding the input
of the QFT with an balanced superposition of all possible waves (|0} + |1))(|0)+ [1))(]0)+ |1))(]0)+
[1)(|0) + |1)). Note thatthe red boxcontains the complete QFT logic. (right) Probability amplitudes showing the
peak-behaviour as expected (note: color=phase).

Now, let’s take a look at efficiency. Keep in mind this is important. Nobody gives a damn, if Quantum
Computers can calculate a QFT, as a normal FFT is already very efficient, namely it requires O (Nlog N)
computations steps to Fourier-Transform a function with N elements. The QFT operates on n QuBits
requires O (n) Hadamard operations and O(n?) controlled rotation operations. As per chapter 4.2.4
each of these operations requires four single Qubit operations and three CNOTSs, so the altogether
required number of gates is O(n?). Keep in mind that with n QuBits we can describe a function which
has 2" entries and thus n = log N and therefore, the entire QFT scales as O(log? N). The QFT thus
provides an exponential speedup over the FFT, which is a tremendous result.

Thereis a (major) catch, however. While the FFT produces the result of the discrete Fourier transform
as a series of numbers, we here have the result only in the quantum amplitude. A measurement would
collapse the result onto a single CBS and the measurement of the entire Fourier transform would re-
quire many, many measurements and an equal number of computations of the QFT. We therefore
cannot straight up use quantum parallelism to replace all FFTs with QFTs and end up with a tremen-
dous performance boost. Instead, we must use the QFT as anintermediate step, whichis then mapped
onto a specific observable, which is of interest in the context of specific algorithms. These must make
sure to concentrate the entire amplitude of the QFT in a single (or a few) CBS and the solution to the
algorithm must boil down to the question: “which CBS” is the entire wavefunction concentratedin. In
physical words: we must create algorithms in such a way, that the solutions are embedded in reso-
nances of the algorithmic structure; then we canuse the QFT tofind locate these resonances precisely.

5.3 Quantum Phase Estimation: Eigenvalue where Art Thou?

Before we finally make the move towards the infamous algorithms of Shor and Grover we shall discuss
a rather nifty mathematical problem, which has gazillions of applications, particularly in physics. The
name of the Algorithm is quantum phase estimation, but this is really all about eigenvalue decompo-
sition.

We'll start withthe (somewhat arbitraryand, as youshall soon see, also unnecessary) assumption that
we know an eigenstate |u) toa Unitary operator U, but we don’t know the eigenvalue. Of course, with
the U being unitary, we can guarantee that the eigenvalue is located somewhere on the complex unit
circle and that we can represent it with a phase ¢, e.g. the eigenvalue takes the form exp(2mi ¢).
Hence the name “phase estimation”.
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Figure 43:Abstractcircuit representation of the Quantum Phase Estimation algorithm.

The algorithm requires two registers of Qubits. The first register of t Qubits shall be initialized in the
|0), whereas the second register is preparedin the state |u) and requires as many Qubits as are needed

to hold this eigenstate and to operate U. In a first step we apply Hadmard operators H onto each of
the t Qubits of the first register, bringing this into the state:

®t
10)+ 1)
—_— (130)
V2

We have omitted the state of the |u) register from this notation, as there is no appreciate impact of
this operation on the |u)-state.

l,) = (10))%" = (

In the second step we apply a series of controlled U?/ operations onto the |u) register. Here j is run-
ning from 0 to t — 1 and for each stepthe j* Qubit acts as the control register. Keepin mind that |u)
is an eigenvalue to U and applying U?/ thus does nothing but changing the phase of |u), e.g.

0?7 |u) = exp(2mi 2j ¢) (131)

However, we don’t just apply %/, we use the jt* Qubit as the control for the application. This enacts
the phase kickback effect discussed in chapter 4.2.4 and in Figure 26. This means that the phase ac-
quired by the |u)-registeris transferred ontothe |1)-stateFigure 26: Phase kickback for two Qubits. of
the control register, whereas the |u)-Register is again unchanged. Thus, we end up with the first reg-
isterin the state:

2t-1

|o>+e2ﬂi2“1w|1>> <|O)+eZ"i21‘/’|1)><|0)+62"i20¢|1)> 1 z st ok
= e [ — Tl k
o) ( V2 V2 V2 V2t ¢ k) (132)

This is clearly a plane wave with phase gradient ¢ and we make use of the Quantum Fourier transfor-
mation on the first register toretaina 6 (x = ¢)-function whose location and thus phase we can meas-
ure with certainty. What does this mean in terms of Qubits-however? To understand this a bit better,
it makes sense to decompose ¢ into a binary fraction, e.g. ¢ = 0.¢@; ¢, ... ¢;.Note that we can guar-
antee that ¢ < 1 without loss of generality because of the 2 ambiguity of phases. Then our stateis
simply:
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2 V2 V2 V2
The inverse fourier transformation can be retained from the Fourier transformationinthe last chapter,

just with the order of the gates reversed andall the phases negated. And the resulting state after the
Fourier transformationis:

(133)

[3) = l@¢ ... 1)) (134)

When we then measure the first register we are guaranteed to find the register in the CBS, which
corresponds to the phase ¢.

There are two important generalizations, which we have to make for this algorithmto be useful. The
firstis relatedto precision. Obviously, the phase ¢ is not guaranteedto have a value that can be writ-
tenin a sufficiently short binary fraction to be completely representable with a given number of Qubits

t. Assume for example that we have t = 3, thus a phase of ¢ = %can be represented as ¢ = 0.100,

whereas ¢ = % + i cannot because it sits right in the middle between ¢ = 0.100and ¢ = 0.101. In
this case the resulting wavefunction will be in a weighed superposition of |[100)and |101) and you will
measure either ¢ = 0.1000r ¢ = 0.101 depending on your luck. Or more general, one can show that
the algorithmiis likely to produce a good estimate @ tothe real solution ¢. The estimate is accurate to
n bits with a success probability of at least 1 — ¢, if

1
t=n+log<2 +2_e) (135)

Which means that for any given success probability 1 — € anincreasein t goes one-to-one into an ex-
ponential increasein precision.

The second generalizationis related to the requirement to beforehand know |u), which is quite useless
because if you need to calculate eigenstates on a classical computer you usually get the eigenvalue for
free. Assume that we don’t know any eigenvector and just supply the QC with a random input state
lY) = >, culu), which can be, of course, decomposed into a superposition of eigenstates. The algo-
rithm itselfis linear so one canshow that the resulting state is a superposition of the CBS-states, which
belong to the eigenvector’s phases, e.g.

l¥3) =Zcu|¢)u)lu> (136)

u

If we then measure the state of the first register, we will collapse onto a random |, )|u) and thus
measure this specific phase. So, even if you do not know any eigenstate, you are guaranteed to observe
one specific eigenvalue after running the code, you just cannot predict, which value you will observe
and you can’t (completely) measure the eigenstate either.

Nevertheless, the algorithm is quite useful and supremely efficient. Finding an eigenvalue to an (un-
known) eigenstate requires O (22™) operations ona classical computer, where n is the number of vec-
tor dimensions. Here we require O (t2) operations for the QFT and O(t?) controlled U-oprations. As-
suming a more or less even distribution of eigenvalues on the unit circle we should probably aim for a
precision of much more than 1/n, e.g. we should choose t such thatt > log (n), yielding a total of
O (log?n) controlled U-operations. If we can implement these efficiently (and in many cases we can),
then this is a massive speedup.

Let’s tryon a Quantum simulator and see, what the actual circuit looks like:
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Figure 44: (left, top) Circuit representation of the Quantum Phase Estimation Algorithm fora 2 QuBit Operator U
and a 5-Qubit eigenvalue estimator. Note that the iQFT operator is the same as the QFT but with inverted order

and inverted phases. (right, top) The Operator U has a four eigenva/ues%n, 2?71' 0,2m G + %) (right, bottom) The
U? operatoris composed of two repetitions of U.

Note that for the given operator U = [é 629‘/6] [3 622/4] we have the following four eigenvector

eigenvalue pairs:

Eigenvector Eigenphase [27] Eigenphase [27] decimal
|00) 0 0
101) 1 0.25
4
110) 1 0.1666
111) 1 f_ 1 0.4166
4 6

Let’s now see, if we can find the appropriate eigenvalues if we initialize to specific eigenvectors and
let’s alsosee what happens, if we initialize into a balanced superposition of all possible eigenstates:
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|00) +[01)
+ [10) + |11)

[u) Result
N -+
g s
l01)
1
1= 0.25; Correct
q a
Q@

03,

é i = 0.15625; off by 0.01 (6 bit equivalent)
0; Correct

i 0.25; Correct

g 31 = 0 15625; off by 0.01 (6 bit equivalent)
1

= + + — = 0.40625; off by 0.01 (6 bit equivalent)

As you can see, the algonthm does just whatit is supposedto do. If the initializationis perfectly on an
eigenvector and the eigenvalue is representable by a binary fraction we get exactlythe correct value
out. If we hit an eigenvector but the eigenstate is not representable by a binary fraction, we get within
to the resolution of the binary fraction (in this case towithin 1/32=0.03) and we get the correct answer
most of the times. If we just guess the initial state, we still get peaks at the probability distribution at

the values of the eigenvalues and we can, after a few runs, find all eigenvectors, no matter what.

5.3.1 A Graphic Interpretation

From above we have seen that the phase estimator makes use of the phase-kickback in conjunction
with the inverse QFT algorithm. The phase-kickback acts on the initial state | (s, ) of the t-register,

which is a balanced superposition with zero phase. Such as this one here:
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Figure 45:Initial state [, ) of the t-register.
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The application of the Uzj—gates never changes the amplitudes of the t-register only the phases are
changed. It makes sense to look at the phases starting with the most significant digit. If the most sig-
nificant digit is 1 then gozt_l is applied. In the phase graph this means that the right half is elevated by
qozt_l. In the next step half of this phase stepis applied if the second-most digit is equal to one, e.g. on
the right half of each of the half, such that the initial box is now a four-step staircase. The process goes
on. Byeach stepthe stair is filled with twice as many smaller boxes and made smootherand smoother
until a perfectly regular staircase witha step-size of ¢ is created.

12

(=}
o =

Phase [phi]
o = N w - wv (=2} ~ oo
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Figure 46: (left) Phase of the t-register after the application of the series of discrete power-controlled phase-shifts.
Coloured boxes indicates contributions of (gray) most significant bit (4¢), (orange) middle bit (2¢), and (blue) least
significant bit (@). (right) state of t-register after application of the iQFT. The specific location of the delta-peak is
indicative of the valueof ¢ andcan be retrieved from a single. the CBS-measurement.

This is nothing but a plane wave with a slope of ¢. Since @ itselfis the number we are actually looking
for, we must now just measure the slope. This is were the iQFT comes on handy. We know that the
fourier transformation of a plane wave is a delta-function located at the position of the slope, hence
the iQFT transforms the staircaseinto a delta-peak (e.g. a perfect CBS!), whose value indicates its slope
and hence @. We must know just measure once and the resulting CBS-code is the sought-after slope.

5.4 Shor’s Algorithm: The Internet will Hate You

The arguably most famous algorithm for Quantum Computers is the algorithm published in 1997 by
Peter Shor. The algorithm uses our prefound knowledge on QFTs and Quantum Phase Estimation to
create an extremely efficient solution to the problem of number factoring.

5.4.1 Classic Number Factoring

Assume that we have aninteger number N and we would like to decompose this number into its prime
factors. As an example we know that 39 = 13- 3, which appears to be quite simple. However, this
problem is harder thanit may appear, because instead of 39 | might just give you a verylarge number,
e.g. N = 7906198 969. The most efficient classic solutions to this problem is to take a table of all
known random numbers n starting from 2 and dividing N by all of these number until you have one
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division, where the reminder (called the modulus) is 0, e.g. N mod n = 0. Using a Turing machine, in

the worst case you’d have to try all prime number up to O(+/N). You may hope the density of prime
numbers within the set of positive integers would eventually drop for large numbers but this in fact
not the case, e.g. evenfor large integers the density of prime numbers only drops logarithmically, e.g.

the number of prime up to /N is roughly /N / log N. Assume that integer division is asymptotically as
complex as integer multiplication (which is not proven to my understanding, but seems a reasonable
conjecture) we know from section 1.2, that an n digit number requires O(n logn) operations to carry
out a single division on a Turing machine. Thus, the grand total, given N =exp(n) is

o0 (n_ilogn exp 2) ~0 (exp?).

To cut a long story short; if | were to give you a large number, splitting it up into primes is really hard.
To the contrary, the inverse problem is really simple. Multiplying two prime numbers to get a large
number is an O(nlogn) operation, as you can tell my proving that 7 906 198 969 = 103 643
76 283.

Note that most of the statements here have no hard mathematical proof. There may be more efficient
approaches on a Turing machine, that would solve the prime factoring problem which we simply do
not know. However, prime factoring is a mathematical problem dates back to the ancient Greek and
possibly before that, and ever since the time of Euclid until the seminal paper by Shor we have not
found a more efficient algorithm that the above-mentioned number sieve (actually the above one is
not the number sieve but it’s sufficiently close).

5.4.2 Connectionto Cryptography

The prime factorization problem this seems to belong to a class of problems, which are called “trap-
door” functions. E.g. there are fairly easy to compute but very hard to “uncompute” (if you find this
wording suggestive in the context of quantum computers, it is on purpose: Quantum Computers are
reversible and thus we may expect that at least some trapdoors functions should be able to run more
efficiently on Quantum Computers). Trap-door functions are not just a mere oddity, they are of para-
mount importance to our digitally connected world. You may be aware that pretty much all data-com-
munication in the internetis encrypted using some type of encryption algorithm.

An encryption algorithm take a message and turns it into unintelligible garbage using a specific key.
The recipient of the message can turn the garbage into the message using the same key and known
algorithm. A particularly simple example is the letter shifting algorithm (caesarian cipher, named after
Julius Caesar). Assume the key k = 5, which means that we shift each letter in the message by five
positions (modulus 26) in the alphabet. E.g. “HELLO WORLD” - “MJQQT BTWQI”. The recipient can
undo encoding using a shift of k = —5 and retain “HELLO WORLD”. These type if encryption algorithms
are called “symmetric ciphers” because the secret key is required on both sides. Modern algorithms
such as AES or RC6 are probably rather secure and are used to encrypt everything from digital money
transfers, to WhatsApp messages, from power grid controls to interconnected sensors in hospitals,
from warehouse databases to nuclear weapons codes.
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Shared Secret
Key

115™mod 314
=67

287" mod 314 Seivid
=67 i

17* mod 28=12 hard to solve
(unless you can factor large prime numbers)

Fig. 1: The Diffie-Hellman-Scheme uses asymmetric encryption to established ashared secret, i.e. it distributes keys,
using trap-doortype functions. The most comm trap-door is the discrete log I = a®mod ¢, where | easy to calcu-
lateifa, b, c are given butb is hard to calculateif a, ¢, l are known. (red) Secret Data, (green) public data, (yellow)
shared secret.

The real challenge and weak point of such systems is the secret key. The symmetric cipher is useless if
you can’t guarantee that the key is identical and secret at both sides. For some application an offline
exchange of secret keys may be feasible (e.g. in TAN number systems for bank transfer) but this is
generally cumbersome. You really want to be able to establish a secret between two parties over a
public channel and indeed, using trapdoor functions, you can do just that. The must famous method
here is the Diffie-Hellman-algorithm (Diffie-Hellman-Merkle).

| will not discuss the entire algorithm here but just sketch its outline. Assume Alice and Bob want to
generate a shared secret. They start by picking an individual secret key each (called a and b), which
they will never share with anyone. Moreover, they agree publicly on a shared prime number p and a
small publicly known integer g. They then generate a public key A, B each, e.g. A= g%*modp, a
method which is known a discrete logarithms,

The public keys are virtually impossible to uncompute because g% mod p is a trapdoor function. Its
uncomputation does require a fast algorithm for number factoring (the connection here is not dis-
cussed). Therefore the public keys can be exchanged safely over an unsecured line. Alice then takes
Bob’s public key B and calculates K, = B* mod p. Bob takes Alice’s public key and calculates K;, =
AP mod p. One can show that K, = K;, = K and this Alice and Bob are guaranteed to have the shared
secret K, which is only known to them because the last step of the computation requires the
knowledge of the individual secret keys. This key canthen be used as a key for a fast symmetric cipher.

5.4.3 An Alternative Approach to Prime Number Factoring

Before we can harness the power of the Quantum Computers we must reformulate the number fac-
toring problem. Assume we have a number N, which we would like to decompose into prime factors.
We then follow the following procedure:

1. Select another positive integer x with 1 < x < N.
2. Checkif the greatest commondevisor gcd(x, N) of n and x is larger than 1. You cando so
quite efficiently e.g. with Euklid’s algorithm. Ifgcd(x, N) > 1 then you are one hell of a lucky
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student, because you have found one prime factor to n and you canterminate the algorithm
successfully.

3. Find the period of the function x"mod N, e.g. the smallest number 1 for which x™*mod N =
1. Note that 1y is also a positive integer. Also note that one can show thatry, < N.

4. Ifryis uneven or if x™/2mod N = N — 1 then you are really unlucky. Select a different x and
restart the algorithm.

L L
5. Calculaten,; = gcd (xz - 1,N) andn, = gcd (xz + 1,N) . Both are prime factors of N.

Note that this algorithm, if run on a classical computer, is not more efficient than, e.g. a number sieve.
Also note, that the difficult stepis the period finding step (3). It turns out that quantum computers are
very good at period finding. So the key of implementing this ona QC is implementing Step 3; everything
else canbe run on anordinary computer very efficiently. Before we turn tothe implementation, | want
to prove some of the key points here.

Firstlet’s look at the function x"mod N with the exampleof x = 3and N = 35

40
37Ar0/2 mod 35=29

o 30
kS

20
&
<
™ 10

0

0 5 10 15 20 25 30 35
r

Figure 47:x"mod n, with x = 3 and n = 35. Clearlythe period is 1, = 12.

We find that every six calculations the return value is 1, therefore the period of the function is r, =
12, e.g. weseethat x12 mod N = 1. We also pass the test inthe fourth step of the algorithm, e.g. the
period is even and 3% mod 35 = 29, which is not 35 — 1. We can therefore proceed by calculating

r

xz — 1= 28. Inthe last step we calculate gcd (28,35) and find ny = 7, which is one prime factor of

21. The second prime factor can be determined easily by dividing % =5. We can also find
gcd(30,35) = 5, same thing. Let me stress one more time that the gcd algorithm is efficient; you can
for example use Euclid’s algorithm (check Wikipedia if you like).

The magical stepto understandis obviously, why gcd (xél - 1,N) and gcd (xél + 1,N) should be a
prime factor of N. What we can do, is tosimply multiply:

(x%)—l)(x%o+1) =x" -1
Then we take mod N on both sides:
(x%0 — 1) (x%o + 1) mod N = (x™ — 1) mod N

We first manipulate the right hand side, using our knowledge of x™ mod N =1 and (x™ —
1) mod N = x™ mod N — 1, unless x™ mod N = N — 1, which is not the case becausex™ mod N =
1.
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To To
(x2 - 1)(x2 + 1)mod N=0
10_ T
This means, that (xz - 1)(x2 + 1) is a multiple of N (say mN, where the specific value of m does

not matter)and hence:
o To
(x2 - 1) (xZ + 1) =mN=m;m,nn,

Where m = mym, and m, and m, are some unimportant integers and n, and n, are the unknown
prime factors of N = n,n,. Because the factors of the left hand side are integers, too, we canguaran-

L
tee, that the two factors on the left hand each contain ann; and ann,, e.g. (x 2 — 1) =myn,and

To
(x 2 + 1) = m,n,. We can guarantee this distribution of factors because any other distribution (e.g.

n, and n, being a part of the same factor) would imply x™/2 mod N = N — 1, which we have tested
for in step number 4.

T T

-0
Therefore, we know, that both x 2 — 1and also x2 + 1 contain nontrivial factors of N, which we can
L} o L}
find by simply taking n; = gecd (x2 —1,N) and n, = gcd (xz + 1,N). Note that both xz — 1 and
L}
x2 + 1are both typically very large numbers, which may be hard to calculate but you may just use

o
(x2 £ 1) mod N to begin with, because this is calculated in the first step of Euklid’s gcd-Algorithm
anyway and it’s a number that you have already calculatedin the period-finding part of the algorithm.

Now that we understand the connection between period-finding and prime-number factoring, it is
time for two remarks:

1. The algorithmin the classical sense is very inefficient. The only thing you know a-priori is that
1y < N and therefore the algorithm requires up to O (expn) operations to complete for ann
digit prime number (e.g. N = expn).

2. Ifyou find the algorithm weird, then keep in mind that it is nothing more thana generalization

to the divide by 10 rule that you learn in school. (e.g. N =90 = 9 - 10). Obviously, this rule
works for base x = 10 because we write down numbers in this format and there is a certain
compatibility with 10 and 90.
The algorithm generalizes this rule to off-by-one-pairs: 99 =9-11 and 9999=99- 101,
which can be easily factored using the binomial rule. The algorithm then looks at these num-
bers 99, 9 999, 999 999, 99 999 999 and sees if they are a multiples of N, which can then be
easilyfactored. It does so in a modular sense to keep the numbers small.

5.4.4 Quantum Order Finding

We shall now use the Quantum Phase Estimation algorithm to efficiently solve the Quantum Order
Finding problem. The overall structure of the algorithm looks like this:
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Register 1 1) ,
t qubits 0) = H®' FTT =1
Register 2 .

L qubits 1) 27 mod N

Figure 48: The structure of the quantum period finding algorithm. Stolen from Nielsen and Chuangs magnificent
book.

For this we simply need to define anappropriate operator and show what kind of eigenstates /eigen-
vectors this operators has. The operatoris simply:

Jly) = |xy mod N)

Where N is of course the number we would like to factor and x is the random base integer as intro-
duced above. Herey € {0,1}" are all the numbers CBS states of the eigenstate register. Note that
when y > N we just use the convention that xy mod N =y, in other words: the register only acts
nontrivially, only up to a CBS with number N but unless you fuck up the initialization this will never
happen. | personally find this a bit tough to graspsowe’llgo by anexample taking x = 3 and N = 35,
starting withy = 1.

0°11) = |1)

0*11) = 13)

0%]1) =13 - 3mod 35) = |9)
03]1) =19 - 3 mod 35) = |27)
0*|1) = |27 - 3 mod 35) = |11)

or=t1) = [12)
o1y = |1)
It should alsobe clear that a balanced superposition |u,) of this cycle is an eigenstate of U, e.g.

ro—1 ro—1

1 1
Olugy=0—= |xkmod Ny = — ) |x¥mod N)

This canbe seen in the following representation:
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Figure 49: The representation of the |u,) eigenstate of the problem with x = 3 and N = 35. The colors are justa
guide to the eye. The arrows indicate the succession states, if seeded with any of the CBS which are a part of this
series (e.g. |x" mod N)).
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This figure displays the quantum amplitudes of the eigenstate |u,)withx = 3 and N = 35, with the
colors as a guide to the eye toindicate the succession of CBSstates, ifthe |x" mod N) was seeded with
|0). Itis obvious that the displayed stateis a eigenstate of U, because it application merely shifts the
guantum amplitude from the r = 1 (orange)to the r = 2 (yellow) CBS, and the amplitude from r = 2
(yellow) to the r = 3 (brown) CBS and soon. The lastatr = 11 (blue) then fills the void left behind at
r = 1 (orange). The shfting of quantum amplitudes has thus occurred in a completely circular manner
and nothing has changed globally.

However, |u,) is a pretty boring eigenstate because it is eigenphaseis ¢, = 0. However, we are free
to make the balanced superpositions with phases, where we just have to make sure to distribute the
1, phases on the complex unit circle evenly and over exactly s revolutions. Thus, we find that for any
integer0 < s <1y — 1 thatthe states

10— 1

lug) = %; eXp[—

2

misk] .
[x*mod N)

7y

arealso eigenstates tothe operator U since

To—l
1 2misk
Olug)= W z exp [— . ] |x**1mod N)
k=0

T0—1

0

1 2mis 2misk +1

= ——exp [ ] Z exp [— —] |xk*1mod N)
\/?0 To 1= To

_ 2mis

= exp| lus)

with the eigenphase ¢, = s /1, where 1y is the sought after periodicity. This is a quite remarkable
finding. We know that the dimensionality of the part of the operator U that is of interest is 1, and we
have found 7, eigenstates. So we know, that we have now found all eigenstates. Therefore, we can
guarantee that the phase estimation procedure will return an eigenvalue which is guaranteedto con-
tain the sought-after periodicity 7y.
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Figure 50: |u,) and |u,) eigenstates on the complex plane for N = 35 and x = 3. Note that the respective
eigenphases are , = 2n /12 and @, = 2 - 2w /12, respectively. Coloring more or less identical to figure from
above. Note that al eigenstates have a probability amplitude at ¢ = 0 (r = 0).

This leaves us with four problems;

=

we need to find good initial conditions
we need to determine a sensible number of qubits t in register one

N

H W

)
)
) we need to implement the 0% operations efficiently
) we need to extract r from the eigenvalues.

The first problem is the missing initial state of |u), (which is unknown because it depends on 1) can
be solved by simply taking the initial state as |y) = |1). This works because:

ro—l
1
1) =—= > luy)
\/r—o s=0
Which means that irrespective of the unknownry, the |1) stateis guaranteed to be in a superposition

of the eigenstates of the operator U and thus we know that the phase estimator will collapse onto one
specific ¢, = s /7y.

More specifically, it follows that we have to uset = 2L + 1 + [log(2 + ZLS)] qubits in the first register
to obtain, for each s in the range of 0 tor — 1, an estimate of the phase ¢ =~ s/r accurateto2L + 1
bits with probability p = (1 — &) /r. A quick note: we need the 2L + 1 bit precision to avoid ambigui-
ties. E.g. if your prime number N is in the range of say 1° then L ~ 30 and you canaccept a fail rate of
% then you need roughly t = 61 + log(2 + 2) = 63 qubits. So altogether you need a bit more then
3L qubits for the entire circuit.

Then we need toimplement a series of o7’ gates, which do the following (keep in mind, we have again
introduced a binary digit representationj = j; 2871 + j, 2872 + o, 21+, 29):

Nly) = [T .0712° |y)
= [)|acie™ . .- %012’ y mod N)
= |j)|x/y mod N)

I shall not go into the details on how to implement this operation and there are indeed quite a few
solutions for this problem but will just sketch the outline here. We shall first calculate x/ mod N by
introducing a third register. This register holds x? mod N (calculated by squaring x mod N). Then we
calculate x* mod N by squaring this and then x® mod N etc. x/ mod N is then calculated by using
x/ mod N by multiply the factors according to the bit pattern of j. E.g. if j = 6 we multiply
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(x* mod N)(x? mod N). The resultis then multiplied onto |y) (modulus N) and then uncomputed in
the third register. All this can be done quite efficiently, albeit at the cost of a few more qubits.

This leaves only the last problem. Can we obtain r, from the phase s /1, without knowing s (e.g. the
wavefunction will collapse on one possible s/ryand we don’t know a priori, which s this belongs to)?
Moreover, we only know s/7, with a precision of 2L + 1 bits but what we know is that both s andr,
and integer numbers. Surprisingly, this problem can be solved uniquely and efficiently, if s and r, have
no common denominator. The algorithm can be implemented on a classical computer andis called the
continuous fraction expansion. Look it up on Wikipedia.

If gcd(s, 75) > 1 thenyou just had back luck and you have totryagain. There is also aniterative version
to solve this problem even more efficiently thanjust trying again by just running the phase estimate a
few times and observing that with exponentially growing likelihood we can get a pair of the s, to s,
with no common denominator.

Now is the algorithm efficient? The inverse FT requires O (L?) gates. The modal expansion requires
O(L3). The continuous fraction requires O(L?) (classical) operations, including the s; to s, extension.
The algorithm can deal with numbers up to N < 2% so the total cost is O (log3N), which is an expo-
nential speedup over all classically known solutions.

5.5 Grover’s Algorithm: Whacking the Oracle

In the last chapter we have discussed trapdoor function, or at least one specific type of trapdoor func-
tion in detail. There we have found that we could speed up the solution of the trapdoor function prime
number decomposition and discrete logarithm exponentially with a quantum computer. Do Quantum
Computers always behave that way? No, they don’t. In general, there is no known algorithm to expo-
nentially speedup trapdoor function and in detail there is no known algorithm to exponentially speed
up any NP-complete problem, which would amount to the same thing.

5.5.1 Overview

In fact, for many computationally hard to solve problems, the best solution is systematically test pos-
sible solution candidates until a proper solution is found. This approach is said touse an “oracle” func-
tion: a function f(x), which return f(x) = 0 for all x, which are not solutions to the problem (“incor-
rect guess/solution”)and f(x) = 1 for proper solutions to the problem (“correct guess/solution”). In
generalone may assume that there are only very few correct solutions (say M of them) among a very
large number of correct solutions (say N of them),i.e. M < N.

The name “oracle” is altogether fitting because it contains two centralideas to this solution approach

1. the answeris always correct but in the most cases of very minimal use, and
2. asking the oracle is connected to some cost (the difference of the 215t century and the 2™
century BCis that this cost is due in computational resources and not in sacrificial goats)

Using our understanding of reversible computation (i.e. the ideas discussedin chapter 4.3) we can, of
course, create a quantum version of the oracle 0, i.e.:

Olx)q) = |x)|q®f (x))
Where |x) is the register of input Qubits and |q) is the single output qubit. It is helpful to initialize the
output Qubit into a superposition state |q) = \/%(l 0) — | 1)) because this implies that:

01 —= (1) — 0)) = (17D ) = (1) — |0)
7z 7z
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Which is a rather funny result, because it tells us that the result qubit does not change its state irre-
spective of the input being a solution or not but that the quantum oracle rather marks solutions to
search problems by shifting their phase by 7. Since the oracle Qubit never changes its state, we shall
omit it from the rest of the discussion |q) and only concern ourselves with the oracle qubit |x).

Let’s further assume that we have N possible input states and M <« N correct solutions to the prob-
lems, e.g. M distinct CBS |x), whichare correct answers tothe problems. The size N of the search state
is, of course, connected to the number of input Qubits by N = 2™. Classically you don’t have much
choice but totest O(N /M) solutions to get a “correct” answer fromthe oracle but it turns out that the
quantum version of the oracle can facilitate the same with O(/N/M) queries to the quantum oracle.
While this is not an exponential speedup, which would be required to be able to make the claim of
being able to solve NP-complete problems efficiently, this is still a ridiculous speedup considering the
generality of the oracle and the lack of prescribed internal mathematical structures thereof.

The algorithm was first described by Lov Groverin 1996 and consists of an iterative application of the
iteration operator G onto the input register |x). The operator itself can be decomposed into four
steps:

1. Apply the oracle operator O
Apply the Hadamard-Operator H®™ ontoall Qubits
3. Performthe conditional phase shift of 1, onto every computational basis state except the state
|0), i.e. |x) » —(=1)%]|x).
4. Apply the Hadamard-Operator H®™ ontoall Qubits, again
Note that steps 2 to 4 are very similar to the Josza-Deutsch algorithm and indeed it turns out that

Josza-Deutsch canboth be described as a special case of the QFT-based class of quantum algorithms,
as well as, a special case of the quantum search based algorithms.

5.5.2 Analysis of the Grover Iteration Step
In a next step we rewrite step 3 into an operatorform P , i.e.
Plx) = 2|0)0|—1
Where [ is the identify operator. With this understanding we can concatenate steps 2,3,4, intoa single
operator, the so-called inversion about the mean operator M:

M= A%"(2(0)0| - )A®" = 2lpXyp| 1

Where i) = %NZX [x), is the equally weighted superposition of all CBS |x). The entire grover opera-

tor canthen be writtenas:

G = (2lp)yp| - 1)0

But what does the operator actually do? To answer that question, it is useful to imagine the entire
search space as a high-dimensional vector space. This space is spanned by two linearily independent
subspaces, the M-dimensional subspace of “correct” answers |x’)and the N — M dimensional sub-
space or incorrect answers |x'"). Within both of these subspaces we define normalized superposition
states:
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1
|ex) =\/ﬁ2|x )

1 xrr
1) W_MZ"‘ )

The initial state of the input register 1)), produced by anequal superposition of all CBS 1)) = H®"|0)

is then simply:
N—-—M M
) = / o) +glﬁ>
0 0

) 20
= cos |a) + sin > 13)

Where we have introduced the angle 6, suchthat cos 8,/2 = /(N — M)/N. For a balanced superpo-
sition of all possible states the angle is fixed but we shall see that it is exactly this angles which changes

during the grover iteration and

balanced
‘ |B> superposition of

all correct

solutions

balanced

superposition of
|w> all possible

solutions

balanced
superposition of

> |O{> all incorrect

solutions

* Ol

Figure 51: Geometric interpretation of the Grover iteration, as a rotation in the plane spanned by the balanced
superposition of all correct solutions |B) and the balanced superpositon of all incorrect solutions |a). The two sub-
steps amount to a reflection at |a) and then refection at the balanced superposition of all possible solutions|y)
yielding a counterclockwise rotation of the state by 8, (marked as 8 in the sketch). Note that |y} is very close to
|a) forthe common case, when M < N.

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 82



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

To understand, what the Grover algorithm actually does, we need to understand, what the Oracle O
and the inversion about mean operator M actually do to the state from above. We start with the ora-

cle: O performs a reflection about the incorrect average state vector |a) in the plane defined by |a)
and |B), i.e.

0 0
Oly(9)) = cos lary — sinilﬂ) = |Y(—0))

Then we apply the inversion about the mean operator M and notice that it, too, performs a reflection,
also in the plane defined plane defined by |a) and |f) but this time about the average vector [i))
(which is also in the |a)-|f)-plane). The average vector [i)) is tilted with respect to the superposition
of all false answers |a) by 6, /2.

Because bothreflections operate in the same plane, we know that for all k the state of the system will
remainin the |a@)-|f)-plane, sowe canvisualize the entire operationin this plane. Moreover, we know
that a double reflection is a rotationand indeed we can express the action of the entire Grover oper-
ator G = MO as asingle angle rotation.

C1pO) = cos 2210y 15020815y — ycas, + )

Because we start the firstiterationat 8, we find the state of the system after the k" application of G
in the state:

G ly) = [Y((2k + 1)6,))

The geometricinterpretationis indeed quite simple. The application of G has rotates the state [yy(8))
by 26, counterclockwise from the |a) towards the |} direction and has thus increased the relative
quantum amplitude and therefore the likelihood of observing a correct answer.

Action of the Grover Iteration Step on the Quantum Amplitudes

Apart from the canonical interpretation as a rotation in the |a)-|8) plane we can also interpret the
action of the Grover iteration directly on the quantum amplitudes. We will do so assuming M = 1 and
only for the first Grover Iteration. Note that | have stolen the picture from the QISKIT book. We start
in the balanced superposition [1)) and we will mark the amplitudes of the CBS states as the height of
gray boxes, like this:

Amplitude

L
VN

Items
0] W N

Figure 52: Initial distribution of the amplitudes at the beginning of the first Grover step. The correct solution is
marked in purple.
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We have markedthe correct solutionin purple as a guide tothe eye. We then apply the oracle operator
0, which marks the correct solution by negating its phase.

Amplitude

| W>

Figure 53: Distribution of the amplitudes after application of the oracle function 0. The dashed line at the top marks
the average of the amplitudes.

As you can see the oracle has two effects. Thefirst is that it flips the state of the correct solution and
thereby it reduces the average of the amplitudes to below 1/+/N, which is marked by the dashed line
in the image. The next step is the application of the inversion about the mean operator M , which
mirrors the amplitudes at the aforementioned dashed line. Thereby the gray boxes shrink, whereas
the pruple box flips towards the positive and grows in size, yielding:

Amplitude

Items

0 | W> N

Figure 54: Distribution of the amplitudes after application ofthe inversion about the mean operator M. The obser-
vation of the correct answer is now more likely than before.

As is obvious, the likelihood of observing a correct answer has increased. By repeated application we
can drop the size of the grayboxes almost to zero and concentrate all the quantum amplitude in the
purple box.

5.5.3 Termination Conditions and Optimality
Itis now a mere question of when to terminate, such that we do not “overrotate” and again decrease

the likelihood of the system being in any of the CBS, which comprise |$). Quantitatively we must ter-

. . 2k+1 .
minate the algorithm, when T+ 6, = gthls means that:

T 1

k=2572
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Let’s assume for simplicity that M << N, e.g. that a correct answer is a fairly rare event. Note that this
approximation is an exclusively technical approximation. As long as M < N/2 this just impacts the ter-
mination condition and if M > N/2 then we can just add one (or more) idle input Qubit to the Oracle
to artificially increase the N by factors of 2 to retain a situation where M < N/2.1f M < N then we

can approximate 8 = 2,/M /N and thus we get:

LT (N)l/2 1 (N)
T4\M/) 2 4\M
Here we see the algorithm terminates with O (v/N) operations, which is, of course the scaling behav-
iour that we desire.

1/2

Because we can only choose an integer number of k we however also see that, unless we get really
lucky, we will never get | 8) exactly and angle of 6 = gwill never be obtained exactly. We can, how-
ever, estimate the maximal error of failure, because the maximal angle deviation is at most Af <
2\/M_/N giving a failure probability of not more than e = M/N <« 1. In practice this is not a problem,
because we can run the oracle once more for any attainedsolution and check if it really is a solution

and run the entire algorithm again if we have failed. Since the probability of failure is low (per con-
structionit is always < 1/2) the probability of repeated failure drops exponentially.

This still does not solve the problem that it seems like we must know M tobe able torun the algorithm.
Without giving a proper mathematical proof | am just gonna state here, that we canjust run the algo-

rithm in a series assume that M = 1,2,4,8,16,.... e.g. we run it for k = fx/ﬁ,k =f N/2, k=
f N /4,...andthen we test the retainedresult for all iterations. Once can show that the overall failure

probability remains at e = M /N « 1and the overall number of Grover iterations K is then K = E\/N
which is just thesameasif M = 1.

5.5.4 A Physical Model

Let’s attempt to physically understand, where the VN dependence comes from. Assume we have an
arrayof N waveguides, which are all identical expect for one, which is different. You job is to find out,
which one is different, by propagating light down the waveguide array. However, you can only launch
light into a single fixed waveguide. The waveguides are arranged in a line and each waveguide is cou-
pled evanescentlyto both neighbours; i.e. of you launch light into one waveguide it will couple to the
neighbouring waveguides. You have a second “perfect” waveguide array, which you can use as an (in-
terferometric) source of reference.

The classical approachis totake incoherent light (e.g. white light). Incoherent light behaves classically,
i.e. it does not exhibit interference. Its spreading through the waveguide array follows the laws of
classical statistics (light does a classical random walk) and after length of L your light has spread over
N = O(M) individual waveguides (note: L is some characteristic length that corresponds to the
interwaveguide coupling). The type of diffraction is called diffusive.
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Figure 55: Numerical and exper/'menta/ observations of(/eft) ballisticand (right) diffusive diffraction pattems in a
waveguide array. Note that in this case the transition in enforced by a variation of waveguide perturbations and
notby incoherentillumination. The effects is the same. Stolen from U. Naetheretal 2013 New J. Phys. 15 013045.

The quantum approach is to take coherent light. Coherent light exhibits interference. Its spreading
through the waveguide array follows the laws of quantum statistics (light does a so-called quantum
random walk) and after length L you light has spreadover N = O(L) individual waveguides. This type
is spreading is called ballistic. You can therefore find the solution waveguide with a squareroot en-
hanced efficiency.

Also note that there is quite an interesting work by Anderson from already 1958, which shows that
even very small (random) perturbations to such a kind of array eventually stops the ballistic spreading
of the quantum wave altogether (the effect is called Anderson Localization). This can be transferred
one-to-one to quantum computers: noise in quantum computers limit your search space exponentially.

5.5.5 Example: Solvinga+b=17in QISKIT

Will be discussedin the lecture. Material is available in moodle.

5.6 Quantum Error Correction

6 Quantum Galore

This lecture only serves tointroduce the basics of quantum computers, shine some light on the imple-
mentation of physical gates, discuss a few key quantum algorithms and give some super-simple circuit
examples. Andit really is just that: an appetizer. All of the mentioned fields of science have undergone
dramatic and self-accelerating improvements in the last years and new devices and methods are in-
vested as we speak.

Some developers have 1000+ QuBits on single chips on their roadmaps until 2025; particularily super-
conducting QuBit system seem to lead the way in scaling of the sheer number of QuBits. lon-Trap
computers on the other hand are a close contender and they seem to move more towards better Gate
qualities, complementing Quantum Computers. Photonic QCs have moved heavily towards Boson-
sampling, whichis a subset of Quantum Computing, but can draw from the amazing quality with which
we can scale photonic circuits and the precision with which we can manipulate them.
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I DONT ALWAYS THINK QUANTUM |
IBIIMPIITE;_@ ;I‘I’?BE THE SOLUTION

BUTWHEN1DO ¢
I'M USUALLY WRONG
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Figure 56: Don’t ask me about Quantum Computers. Ask the world’s most interesting man.

The development of algorithms and their applications are also going through the roof and am not even
trying to given an overview here. What is probably most noteworthy, is that quantum computers are
now so easily accessible that the g-software community starts to become disconnected from the g-
hardware community. Historically this was one of the points of ignition for classical computers: the
ability to develop software without the requirement to understandthe hardware in all details.

There are also many more and exciting algorithms, which we have not discussed here. Some should
find their mention here. The QFT can be extended to the HHL algorithm, with which linear systems of
equations can be solved; the amount of applications is gargantuan. Afield that we have not touched
base on is the field of Quantum Simulation; this field is particularly interesting: the simulation of the
structure of atoms and molecules is one where we don’t have good classical algorithms at all, were an
approximate solution is often acceptable and were the connectivity of contemporary quantum chips
is often compatible with the problem: both field simulation but also Variational Quantum Eigensolvers
(VQE) areimportant classes of algorithms here. A related problem is the search for minima of function
and the solution of optimization problems, which is done with Quantum Approximate Optimization
Algorithms (QAOA). All of these above can be arbitrarily confined with hype topics: QAOA+Neural Net-
works = Quantum Machine Learning. Or how about Quantum Image processing?

The future has just begun...
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7 Alternative Computational Models

7.1 Measurement-based Quantum Computing

We have now establishedthat a universal quantum computer can be constructed using a certain min-
imal set of single-qubit and two-qubit gates, and have seen that — depending on the choice of these
gates -we may require a large number of quantum gates to produce a desired transformation. Not all
of these gate operations will be equally accessible from an experimental point of view - in particular,
as we shallseein the following, multi-qubit controlled gates are technologically challenging. The prac-
tical implementation of quantum computers thus requires careful consideration of the types of re-
sources involved in a computation, along with methods that will allow overcoming inevitable experi-
mental imperfections in physical systems. Over the years several alternatives to the quantum circuit
model have been proposed, and in the following we shall discuss one that has gained particular trac-
tion in photonics platforms: measurement-based quantum computing and the cluster state model.
Other approaches, such as the adiabatic model of quantum computing? are beyond the scope of this
lecture series.

In their seminal 1999 paper8, Gottesmann and Chuang proposed a variant of quantum computing in
which quantum gates are applied to quantum states via quantum teleportation. They proved that sin-
gle-qubit unitary gates, Bell state measurements, and entangled resource states are sufficient to con-
struct a universal quantum computer. Inessence, their approach was to substitute multi-qubit control
gates with entangled resource states and multi-qubit Bell state measurements —aningenious feat that
has since become known as the “teleportationtrick”. The benefit that this entails might not be imme-
diately obvious - after all we have seen that a Bell state measurement and entanglement may be
achieved using Hadamard operations and CNOT gates, the latter being exactly the type of gate we
would hope to avoid. The key point to note is that the preparation and detection of a particular entan-
gled state can be substantially easier torealize than a multi-qubit gate that works for the most general
multi-qubit input state. This makes it practical for implementations where gates cannot be applied
directly, such as optical quantum computing, where single-qubit operations and Bell state measure-
ments based on quantum interference and photodetection are substantially easier torealize thangen-
eral qubit-controlled operations. The teleportation trick was a breakthrough for linear optical quantum
computing and the starting point for the KLM approach to universal photonic quantum computing?®
and more general measurement-based approaches, such as the one-way cluster-state model.

7.1.1 Quantum Teleportation

To understand the Gottesmannand Chuang “teleportationtrick”, let us cycle back and appreciate the
guantum teleportation protocol in a little more detail. The quantum teleportation protocol is typically
discussed in the context of quantum communication where a key challenge is to get quantum infor-
mation from Alice (A) to Bob (B). Quantum Teleportation was initially conceived to facilitate the trans-
fer quantum states over a noisy quantum communication channel°. Teleportation allows Alice tosend
an unknown quantum bit (oblivious protocol) to Bob with the help of an entangledresource state and
classical communication. In other words, Alice can transmit a quantum state to Bob without physically

7 https://en.wikipedia.org/wiki/Adiabatic_quantum_computation

8Gottesman, D. &Chuang I.L. Demorstrating the viability of universal quantum computation using teleportationand single -qubit operations. Nature 402, 390+393 (1999).

9 E. Knill, R. Laflamme, and G.J. Milburn, Nature 409, 46 (2001).
0 Bennett, Charles H., et al. "Teleporting an unknown quantum state via dual classical and Einstein-
Podolsky-Rosen channels." Physical review letters 70.13 (1993): 1895.
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transmitting the information carrier on which the qubit is encoded. We can express quantum tele-
portation in the following communication resource inequality:

[9q] + 2[c > c] > [q - 4] (137)

where [gq] is an entangled resource state shared between Alice and Bob, and [¢ — €] denotes a
single use of a classical bit channel. The teleportation protocol consumes shared entanglement and

two uses of classical bit channel to transmit a quantum state [q - q]. Inquantum computing we are
less concerned about communication resources, and usually more worried about the required number
of gate operations and circuit depth. This is contrast toa quantum communication setting, where local
operations, no matter how complex are usually considered “free” resources (for more on such re-
source inequalities and distributed quantum protocols, you’d best sign up for the quantum communi-
cations lecture).

Q |in) = 1¢) @ B

I a
|(D+>1,2 :— —————— —i-l- _____ 1 |
{92 ——@ : Tl out) = |¢) g
cl v o -
0

Figure 57: Quantum Teleportation in the circuit model. Alice and Bob are a remnant of the protocol’s origins in
quantum communication. As we shall see in the following, the protocol is equally useful in a quantum computing
setting.

The sequence of gates required to implement the teleportation protocol is illustrated in the now fa-
miliar circuit gate mode in the figure above. Qubit 0 is initialized in an unknown qubit in the state

|p)o = al0) + £11) (138)
and Alice and Bob share an entangled state on qubits 1 and 2,
)12 = —=(100) + 11)) (139)
N2

This stateis can be obtained by applying the Hadamard and CNOT operations to qubits 1 and 2 (pink
box). At the first barrier, the joint system of qubits 0,1,2is thus described by the quantum state:

1 1
)o@ T2 =al0) +I1) & ﬁ(lOO) +111) = \/—7(le00) + Bl100) + «|011) + B1111))(140)

Next, using the fact that the Bell-state basis is a complete basis,

! SI01) = —— (@) + [P
100) = (16*) + 10 -DI01) = =104+ 1¥7) (141)
[10) = 2 (W*) — WD) = = (1) +[97)) (142)

we can rewrite this in terms of the Bell state Basis on qubits O and 1, as:
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|¢))0 |Cb+>1,2 = #(143)

1
E[“(|q’6r,1> + |q)0_,1))|0)2 + [))(|lp(f1> - |qj(f1>)|0>2 + “('ql(;ﬁ)_ |‘P(f1))|1>2
+B(|®g1) = @52 )11, [#(144)

1
= E[|¢Jl>(“|0)2 +B11),) + |(D0_,1>(“|0)2 = Bl1),) + |‘{JJ:1)(a|1)2 +$10);)
+ W51 Mal1), — B10),)]

1
|¢>o|q’+>1,2 = EH(DJJ)'(P)Z + |(D0"1)Z|¢)2 + |1P(;:1>X|¢>2 + |W0_,1)XZ|¢)2]

We see that, depending on the Bell State of qubits 0 and 1 the state, which was initially on qubit O,
now re-appears on qubit 2, up to some corrective Z and X operations. To execute the teleportation
protocol, Alice performs a Bell State measurement on the qubits 0,1. She then sends two classical bits
which indicate the outcome of her Bell state measurement (00:®*,01:®~,10: {*,11: ¢y~ )to Bob.
Bob then applies the corresponding a corrective operation to his qubit. To recover the initial state on

qubit |¢),
Bob's State  Bits Received Gate Applied

(a]0) + B|1)) 00 1
(a]1) + B|0Y) 01 X
(a|0) — B|1)) 10 Z
(a|1) = B|0Y) 11 7X

Notice that if Bob does not apply the corrective Pauli operation to qubit 2, then the teleported state is
identical up to the corresponding Pauli gate, i.e. X'Z/|¢),. The “feedforward” of the classical bits to
apply the corrective Pauli gates is not strictly necessary - as long as the impact of the additional Pauli
gates that are consequentlyincurred by the state can be tracked throughout all subsequent processing
steps they canbe undone atthe end of the computation.

o i

P)

2N J

D%,z

xDz0) |p)

Figure 58: QuantumTeleportation without the corrective Pauli operations results in a modified output state.

7.1.2 Theteleportationtrick; or: teleporting a qubit “through a gate”

The teleportation protocol consumes a particular entangled state and transfers the state of qubit 0 to
qubit 2, up to a corrective Pauli Gate. But what if we are provided with a different entangledstate? In
the above example we used |® 1), but we might equally have used a maximally entangled |® ~) state
to run the protocol. In this case the output state would be mapped as follows:

1
|¢>0|qj+)1,2 = |¢>0X|‘b+>1,2 = E[|‘p0+.1 >X|¢)2 + |<D0_,1)XZ|¢))2 + |q’0+,1)|¢)2 + |W€1>Z|¢)2] (145)

In other words, if the entangled resource state is changed, then so does the mapping of Bell-state
measurement (BSM) outcomes to gate operations. Gottesmann and Chuang key result was to notice
that this could be used to perform targeted manipulation of the teleported state. To see how this
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works, we check what happens to the teleported state when we manipulateU |® * )o8% - with our hope
being that this will give us a result that U|¢p): Ul|¢):as illustrated below:

) HAY|

X Ax|

D7)y,

U UZOXxD|gp) = ZOXx' O U|¢p)

Figure 59: Quantum Gate Teleportation. Acting on the entangled resource state results in transformed output state.
The unitary should act directly on the state, which can be accomplished by commuting the unitary through the Pauli
gates.

Since the circuit has no gate connecting qubits 0 and 1 with qubit 2, we can simply apply the unitary
operator to the teleported state!?,i.e. U ZU)X® |¢). This looks quite good already, but we still have
the additional Pauli gates between the unitary and the state to be acted on. Fortunately, for a large
class of unitaries the Pauli gates can be commuted to the front without adding other gates, i.e.
UZDXD |p)y= Z’DxX'O U |¢p). To illustrate by means of example, consider the Hadamard opera-
tor: HZWX® = 11+ 7D XD K At this point the teleportation trick may seem no more than a con-
juring trick; in the end, what have we really gained from this —we need to act on a quantum state with
a unitary operation in either case. This is undoubtedly true, however there is a marked practical differ-
ence between a perfect gate that acts on an unknown guantum state (that is embedded in a larger
computational process) and applying the same operation to a known resource state. The entangled
resource state may be prepared beforehand, and independent of any quantum data to be acted on.
The benefit becomes even more obvious when we consider qubit-control gates, where can simply du-
plicate the teleportation trickery. In the example below we have applied the CNOT operation to the
resource state, and again verify that the Pauli gates can be commuted to the front, leaving us with a
CNOT acting directly on the teleported qubits.

e 1
H ]
lpo i HARY i
I BSM i
[m————————————— 1
| : ] ]
1
DY), ] R
1 ” [}
| s
i i CNOTZ(j)X(i)Z([)XU‘)Iqb,qb’)
i X = o
| D%)s | N . =70x'® @ 7’Ox'® cNOT |¢, ¢')
(]
| : ] 1 -
e 1 : 1
I BSM !
1
lp")s ! A !
et

Figure 60: Quantum Gate Teleportation with a CNOT operation. The box contains the required resource state, that
can be constructed offline.

11 The fact that we can apply the unitaryto the state “after” teleportation, even though we may have applied the

unitary to qubit 2 well before the Bell state measurement, might seem counter-intuitive. It is a result of the

linearity of quantum theory - since qubit 2 and qubits 1 and 2 are not connected by any multi-qubit gates the

order in whichan experimentalist applies the unitary operationand the Bell state measurementis irrelevant.
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The required resource state canalso be generated via Bell State measurements and single qubit uni-
taries acting on a larger entangled state (Figure 61). We can see this as follows:
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Figure 61: Constructionof the resource state for CNOT from two 3-qubit entangled states.

In summary, this shows by means of example that 1- and 2-qubit gates of the can be applied to un-
known input states by teleporting the state through the circuit. To achieve this, we need only single
qubit-unitaries for correction, entangled resource states, and Bell state measurements. Strictly speak-
ing, here we have only shown it for gates that canbe commuted through Pauli gates at no additional
resource (unitaries of this type are part of the so-called Clifford Group) — the readeris referredto the
original article by Gottesmann et al. for a proof that the scheme also works for general unitary opera-
tors. The teleportation trick was thus the starting point for what has since become known as meas-
urement-based or one-way quantum computing.

/.2 One-Way Quantum Computing

The concept of one-way quantum computing was introduced by Raussendorf and Briegel forms an
alternative tothe circuit/gate model. The centralresourcein this architectureis a large, highly entan-
gled resource state, a so-called “Cluster State”. The computation is moved along by a sequence of
single qubit measurements onthe cluster state. This is a very powerful tool in part because the cluster
state can be prepared beforehand or grown on the fly —it lends itself to both implementations that
have limited success rate in creating large cluster states or systems with limited coherence time (i.e.
shallow circuit depth). Before we introduce these cluster states we shall illustrate the basics of the
measurement based quantum computing approach by mapping some simple circuits to measurements
on entangledresource states.

To do so, let us first consider a simplification of the teleportation circuit (Figure 62), which is also know
as a local teleportation circuit. Formally this local teleportation can be describe as follows:

CNOT (a|0) + £|1)]0) = a|00) + BI11) = |+) (l0) + BI1)) + |-) (al0) — BI1))

o) r 0 o tand I

|0) X ZD| )

Figure 62: Simplified teleportation circuit. While very similarto “reqular” teleportation, the approach is not terribly
useful if we consider quantum communication setting, since it requires a control-gate that acts on the input and
outputqubits, i.e. they have to be at the same location.
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While this two-qubit circuit accomplishes the same task as the regular teleportation (it transfers the
state of qubit 1 to qubit 2 up to anextra Pauli gate), there are also key differences: i) only one correc-
tive Pauli gateis required; ii) the Bell state measurement is replaced with a single-qubit measurement;
iii) the approach is not applicable in a quantum communication setting since it requires a control-gate
that acts on both teleportee and the teleporteur , which implies the in- and output qubits be at the
same location. For reasons that will become clearer inthe following, we will re-wire the circuit in Figure
62 using some basicidentities:

oy, r H | i

|0) X Z0|¢)

lp) _I: H x| i

|0) —H H VACIT))

lp) L H x| i

|+) HZO|p)y= XOH|p)

In the last stepwe used the fact that XHX=Z, i.e. XH=HZ. Again, and following the same line of inquiry
asin the preceding section, we now check what happens when we apply a unitary to the qubit in the
input state. Without loss of generality, we consider the state to be of the form |¢) = U, (@) |+), where

Uy(a) = exp(—i;aZ)is arotation around the z-axis of the Bloch sphere.

Uz(a)|+) H ﬁ\{ i

+) HZO+) = XOH U, (a)|+)

Since the Z-rotation commutes with the Z gate, we can commute it through the control-phase gate and
get:

[+) I Uz(e) H H Y] "

|+) XOH U,(a)|+)

We see that the desired unitary operation is transferred to the output (up to a corrective Pauli gate
and a Hadamard) by performing a single-qubit measurement in a modified basis M (a) :
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|+) V2@ H H ]

I+) XOH U, (@)+)

We can interpret this circuit as a preparation of an entangled resource state CZ |+, +) followed by a
measurement M (a), which implements the desired transformation X OH U, (a)|+).

The reader can verify that the measurement M () has the Eigenstates |t+a) = % (IO) + el |1)),

and thus corresponds to a projective measurement in the equatorial plane of the Block sphere. This
shows that we can implement rotations about the Z-axis of the Block sphere, but what about general
single-qubit unitaries? As you might guess, arbitrary single qubit unitaries —i.e. general rotations on
the sphere can be accomplished by concatenation of the above procedure.

1
|+) i | M(@) | k
===200aan
e— = 1
]
|4) +— x| M(B) ! |
L lout,) = XOH Uy(a)|+) Lomm=mm I::::' ______ i
[+ ' ] Moyt m
lout,) = XDH U, (B)|out,) el
|+)

XUVH U, (r) XOH U, (B) XUOH U ()| +)

The state after three-fold concatenation of the teleportation procedure is given by:
lout) = XM™WHU,(y) XVHU,(B) XD H U,(a)|+)

Where we notice that the corrective Pauli operations that need to be applied depend on the measure-
ment outcome of the previous measurements. In the following, we see that this will be taken into
account by adjusting the measurements conditional on the outcome of previous measurements (so-
called feedforward). To show that this three-fold concatenation is in fact sufficient to accomplish the
most general rotation on the Bloch sphere, we commute the corrective Pauli gates to the front of the

expression. After some basic algebra, and using the identities U,(a) = exp (—iz—z) = cos (g)i —

i sin (g) Z and U,(a)X = XU,(—a), X H=HZ, the reader can verify that

XMHU,(y) XVH U,(B) XBH U (a) »XMZOXOH U, ((-1)'y) HU,((=1)*B) H U,()

With this we have splitinto anoverall corrective Pauli gates, that can be applied at the end of the
computation (those appearing at the beginning of the expression) and gate operations for which the
time-ordering is in fact relevant. The direction of rotationinduced by the second measurement
U,((—1)*pB) depends on the outcome “k” of the first. Likewise, the rotation U,((—1)'y) depends on
the outcome “/” of the second measurement. Toshow how this all plays together in implementing an
arbitraryrotation, we re-write the term after the final corrective Pauli gates

HU,((-DYy) HU,((-1)¥B) H U, ()

using

All notes subject to change, no guarantee to correctness, corrections welcome.
Version of 5.07.2022, Page 94



Appendix for Lecture in Quantum Communication, WS 20/21, Friedrich-Schiller-University, Jena
Fabian Steinlechner and Falk Eilenberger

HU,(B)H = H|[cos (g) 1—isin (g)Z]H = [cos (g) 1—isin (g)X] = U,(B)

Which we recognize (up to an additional Hadamard gate) the well-known Euler decomposition of
generalrotations:

H U,((-D) Ux((=D*B) U(a)
In conclusion, to achieve a desired arbitraryrotation

Uz(V) Ux (B Uz(a’)

we must simply adjust the measurement basis of the previous measurements (k,/)to account for the
sign changes which would otherwise be incurred. For this reason, the scheme is called “one-way”
guantum computing. We can regard this as a sequence of measurements acting onan entangledre-
source state, a so-called cluster state or graph state. These states are conveniently represented by a
graphwhere vertices denote CZ gates acting on neighboring qubits. In the 4-qubit example above,
we have alinear cluster state:

Figure 63 Graphical representation of a linear cluster state of 4-qubits: vertices denote physical qubits and edges
denote thatthe qubits are connected via a CZ operation. Measurements onthe linear cluster state propagate the
unitary transformation from left to right. Linear cluster states are sufficient to perform any single-qubit unitary.

the unitary transformationis propagated from left to right by performing measurements M(.). The
linear cluster state is sufficient to implement any possible single-qubit unitary.

To show that the one-way quantum computing is indeed universal, we also need two-qubit gates,
which can be achieved by using different resource states. For example, consider we want to imple-
ment CZ|a)|B) on qubits |a) = U,(a)|+) and |B) = U,(B)|+). The corresponding circuit is depicted
in Figure 64 can be achieved using the “Horseshoe” cluster in Figure 65.

+) | m@!

|+)

+)
+) mei w

Figure 64: Mapping two-qubit operations from the circuit modelto a corresponding cluster state

Figure 65 Horseshoe cluster state

In conclusion, the one-way measurement-based scheme is an alternative approachto universal
qguantum computing. To perform a particular computational task, we need a resource state resource
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state witha similar degree of connectivity as the corresponding circuit. The challenge of implement-
ing general multi-qubit gates inthe circuit model is thus translatedintothe challenge of preparing
large and potentially highly connected resource states.

— ~ —

nE|

Figure 66: lllustration of quantum circuit and cluster state of similar connectivity. A particular computational task
can always be mapped from the circuit modelto measurements on a resource state of similar topology. The cal-

culation proceeds from left to right via a sequence of single-qubit measurements, whereby the outcome of pre-
ceding measurements have to be considered in the next measurement (feedforward).

7.2.1 Definition of Cluster states
We conclude this section with a brief discussion of some of the defining features of cluster states and
their graphicalrepresentations. Tounderstand some of their features, itis instructive to consider
how cluster states can be constructed from unentangled qubits: A general n-qubit cluster state can
be constructed by initializing all n qubits in the state |+) and applying pairwise CZ operations to cer-
tain qubits. Formally we can write this as:

IC) =TI CZ; 1y 1B

Where n(i) denotes the neighborhood of qubit i, that s, all those qubits that are connected to it via
CZ operations. Since the CZ operations commute, the order in which these are applied is irrelevant
and we can represent the cluster by means of a graph (see preceding examples). A very compact de-
scription of cluster states is possible using the stabilizer formalism. Cluster states are positive eigen-
state of agroup of operators S;|C) = |C), where S; = X;II,,(;Z; denotes the stabilizer operator for
qubit n of the cluster state. A detailed discussion can be found in e.g. Kok and Lovett (pages 54-56,
and pages 67 ff).
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A1 The No-Cloning Theorem

The commutation rules for the Pauli-operators have some serious consequences on the type of oper-
ations, which can be implemented in a two-Qubit system.

Remember that the state of a (pure) qubit is represented by an arbitrary point on the Poincaré-sphere,
depending on the chosen basis vectors and the coefficients a and 5 or equally by the angles ® and ¢.
If you attempt to measure its state, you must choose a certain basis in which to measure. This basis is
represented by a specific Pauli-Operator or a superposition thereof. However, we have learned, that
these operators are complementary, which is essence means, that you only ever get one chance of
measuring your polarization state (with a result of +1), without permanently and irrevocably destroy-
ing the specific state.

If you knew the specific basis in which the qubit was operated, then you’d be quite fine (in the sense
of, that you’d only have to determine on which side of the sphere your stateis). In general, however,
you end up in a situation, where you have absolutely no chance of measuring the complete state of
your qubit, unless you have a lot of advance knowledge. Full stop.

To make it simple: a qubit may be any point on the Poincaré-Sphere, i.e. it’s defined by two real num-
bers, but you only ever get to measure on which side of the globe it (most likely) was. And as you
cannot copy, what you cannot measure, you end up in a situation that in most of the cases you cannot
clone a qubit.

This idea can be proven rigorously, with the two-Qubit notation, which will introduce in the next chap-
terl2, Suppose that we have a cloning operator U, which operates on two combined qubits with states
|¢) and | k), such that it copies the state of |¢) onto |k), i.e.:

U(1p)®Ik)) = |$)Bl) (146)
As a cloning-operator U must of course work in the same way for any other state [), too, i.e.
I(1)®Ik)) = [Y)®lp) (147)

Needless tosay, that U must be connectedto a physical process and thus must be unitarian. Let’s now
compare the two results by taking their scalar product:

({O)RIN|T([)®k))) = (pQPlYR1p)

(OUDRUN|T () BIKY)) = (K| T Tlp@k) = (p@KIP@E) (148)

The first line is simply taken from the definition of the cloning operator, whereas the last line utilized
the fact that U is unitarian. Thus we find:

(@Y ®Y) = (p Rkl ®k) (149)

Because the tensor and the scalar product can be exchanged, we simplify both sides of the equation
to:

(plYXoly) = (PlY)klk) (150)
Because (k|k) = 1 weget:

(Bly)* = (ol (151)

12 |n fact, this works for any type of quantum system; qubit or not.
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This resultis crucial. It can either be fulfilled if (¢p|y)) = 1, which means that |¢p) = |y), which is trivial
or if (¢|) = 0, which means that |¢) is orthogonalto [)). In other words: if you have found a cloning
operator that works on one specific quantum state (e.g. a Qubit), it can only work on orthogonal quan-
tum states as well but it will not work for arbitrary quantum states. Full stop. Thus, if you cannot find
a cloning operator, i.e. any physical process, that copies quantum states, then you cannot copy a quan-
tum state. As long as you have to stickto the laws of nature, that is.

The central argument for the derivation of the no-cloning theorem is obviously the unitarity of U. In
terms of time evolution unitarity is equivalent to time-reversibilityand thus to a constant entropy: In
other words quantum operations must not destroy information in an irrecoverable manner. The sup-
posed cloning-operator, however, would just do that: it would destroy any information of the prior
state |k) of the target system upon it being overwritten with |¢). Thus cloning, from a thermodynamic
point of view, is an irreversible process and quantum mechanics just does not provide any means to
do that.?3

13 Note that if you replace | k) with a many-body thermal bath, then you can “hide” the reversibility in the huge
state-space and the fact that most of these states are in reality very hardto differentiate. Reversibility this thus
practically impossible.
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