Introduction to Python and Jupyter notebooks

We will learn quantum computation using the QISKIT-Toolbox, which is a Phython Interface to both Quanutm
Simulators but also Quantum Hardware, provided by IBM. In the very first subchapter we shall have a quick
look at the way we can use python to run simple calculations.

One way to code in Python is to use a Jupyter notebook. This is probably the best way to combine
programming, text and images. In a notebook, everything is laid out in cells. Text cells and code cells are the
most common. If you are viewing this section as a Jupyter notebook, the text you are now reading is in a text
cell. A code cell can be found just below.

To run the contents of a code cell, you can click on it and press Shift + Enter. Or if there is a little arrow thing
on the left, you can click on that.

Simple Arthmetics

In [146]:
1+1
out[146]:

2

There is of course much more you can do, than just adding 1+1. The notebook gives you full accesibility to
the entirety of Python's galore. Here are just a few examples.

Creating and manipulating variables

In [147]:

an_integer = 42 # Just an 1integer

an_integer #intermediate results are not displayed implicitly
print(an_integer) #use print to display instead

a_float = 0.1 # A non-integer number, up to a fixed precision

a_float = a_float * 2.1 #Multiply by 2.

print(a_float)

a_boolean = True # A value that can be
a_string = """’
tring''' # Text
print(a_string)

none_of_the_above = None # The absence
print(none_of_the_above)

1

True or False

just enclose text between two 's, or two "s, or do what we did for this s

of any actual value or variable type

a_float #last result 1is displayed implicity

42
0.21000000000000002

just enclose text between two 's, or two "s, or do what we did for this st

ring
None

out[147]:

0.21000000000000002

Creating and manipulating lists and dictionaries

In [148]:

a_list = [0,1,2,3] #A very simple Llist
a_list = [42, 0.5, True, [0,1], None,
print(a_list) #show List

print(a_list[@]) #access an individual

a_list[5] = 'apple' #change List item
print(a_list)

a_list.append(3.14) #append items to
print(a_list)

[42, ©.5, True, [0, 1], None, 'Banana']
42
[42, ©.5, True, [@, 1], None, 'apple’]

of 1identical 1items
'Banana’] #Lists can be of different types, too

List item

List

[42, ©.5, True, [0, 1], None, 'apple', 3.14]

Dictioraries are similar to lists, the difference being that were list have 0 to n-1 indicicies, dictionaries have
well-defined key:value pairs. Key must be unique, obvisouly.

In [6]:

a_dict = { 1:'This is the value, for the key 1', 'This is the key for a value 1':1, Fal
se:":)", (0,1):256 }

print(a_dict)

print(a_dict['This is the key for a value 1']) #you can acces any list items by 1it's un
ique key, whateever that may be

a_dict['new key'] = 'new_value' #add a new key:value pair

a_dict[1] = 'New Key' #Change the value for an existing key

print(a_dict)

{1: 'This is the value, for the key 1', 'This is the key for a value 1':
1, False: ':)', (0, 1): 256}

{1: 'New Key', 'This is the key for a value 1': 1, False: ':)', (0, 1): 25
6, 'new key': 'new_value'}

Looping lists and dictionaries

We start by simply looping over a range of numbers using the range(n) command to create a list running from
Oton

In [7]:

for j in range(5):
print(j)

PrwWwNPRERO

You can also loop over any 'iterable’ object, such as lists

In [8]:

for j in a_list:
print(J)

42
0.5
True
[0, 1]
None
apple
3.14

or dictionaries, where you automatically get access to key/value pairs

In [9]:

for key in a_dict:
value = a_dict[key]
print('key =',key)
print('value =",value)
print()

key = 1
value = New Key

key = This is the key for a value 1
value = 1

key = False
value = :)

key = (0, 1)
value = 256

key = new key
value = new_value

You can also use a slightly different notation

In [10]:

for key, value in a_dict.items():
print('key =',key)
print('value =',value)
print()

key = 1

value = New Key

key = This is the key for a value 1
value = 1

key = False
value = :)

key = (0, 1)
value = 256

key = new key
value = new_value

If-Then Statements

In [11]:

if 'strawberry' in a_list:

print('We have a strawberry!")
elif a list[5]=="apple':

print('We have an apple!'")
else:

print('Not much fruit here!")

We have an apple!

Import Libraries, Math and Plotting

In [13]:

import numpy as np
print(np.sin(np.pi/2))

X = np.linspace(@,np.pi,100)
print(np.sin(x))

=
[\

O NWRAUUOOAONOWOKOWWOWWLWOVOLOWOLOVUOVULOVWONOTUPD,WNRERO -

.00000000e+00
.26592454e-01
.51147987e-01
.71662456e-01
.86196736e-01
.92907929%e-01
.90079011e-01
.76146464e-01
.49725430e-01
.09631995e-01
.54902241e-01
.84807753e-01
.98867339%e-01
.96854776e-01
.78802446e-01
.45000819e-01
.95993774e-01
.32569855e-01
.55749574e-01
.66769001e-01
.67059864e-01
.58226522e-01
.42020143e-01
.20310533e-01
.50560433e-02

A RPWPAUITONOKWOO WOWLWWOWOVULOULOVUONNOUEANEPW

.17279335e-02
.58001396e-01
.81732557e-01
.00930535e-01
.13677392e-01
.18158986e-01
.12694171e-01
.95761841e-01
.66025404e-01
.22354294e-01
.63842159%¢e-01
.89821442e-01
.99874128e-01
.93838464e-01
.71811568e-01
.34147860e-01
.81453363e-01
.14575952e-01
.34591709%e-01
.42787610e-01
.40640817e-01
.29794912e-01
.12033446e-01
.89251244e-01
.34239197e-02

W ENPRPUONNOOOOLLOWLWVOVOLOYVOULOVOWKONOU ~AWEO

.34239197e-02
.89251244e-01
.12033446e-01
.29794912e-01
.40640817e-01
.42787610e-01
.34591709%e-01
.14575952e-01
.81453363e-01
.34147860e-01
.71811568e-01
.93838464e-01
.99874128e-01
.89821442e-01
.63842159%e-01
.22354294e-01
.66025404e-01
.95761841e-01
.12694171e-01
.18158986e-01
.13677392e-01
.00930535e-01
.81732557e-01
.58001396e-01
.17279335e-02

R RN WPLUTOONOOWOLOU OOV OVOULOLVULOVUXXoNOUVLAWNO

.50560433e-02
.20310533e-01
.42020143e-01
.58226522e-01
.67059864e-01
.66769001e-01
.55749574e-01
.32569855e-01
.95993774e-01
.45000819%e-01
.78802446e-01
.96854776e-01
.9886733%e-01
.84807753e-01
.54902241e-01
.09631995e-01
.49725430e-01
.76146464e-01
.90079011e-01
.92907929%e-01
.86196736e-01
.71662456e-01
.51147987e-01
.26592454e-01
.22464680e-16]

In [19]:

import matplotlib.pylab as plt
plt.figure(figsize=(12,8), facecolor="white")
plt.rcParams.update({'font.size"': 22})
plt.plot(x, np.sin(x))

plt.xlabel('Angle [rad]')
plt.ylabel('sin(x)")
plt.grid(which="major',axis="both")

1.01

0.8

0.6

sin(x)

0.4

0.2;

0.0

0.0 0.5 1.0 1.5 2.0 2.5
Angle [rad]

Defining Functions

In [21]:
def add_sausages (input_list):
if 'sausages' not in input_list:
input_list.append('sausages"')
In [22]:

print('List before the function')
print(a_list)

add_sausages(a_list) # function called without an output

print('\nList after the function')
print(a_list)

List before the function
[42, ©.5, True, [0, 1], None, 'apple', 3.14]

List after the function
[42, ©.5, True, [0, 1], None, 'apple', 3.14, 'sausages']

3.0

Your first Quantum Circuits

Libraries

So far we have only looked into Pyhton/Juypiter in general. Next we start with the proper quantum. Do to so,
we must import a few important libraries/classes/functions.

In [5]:

from gqiskit import QuantumCircuit, assemble, Aer
from gqiskit.visualization import plot_histogram

In a circuit, we typically need to do three jobs: First, encode the input, then do some actual computation, and
finally extract an output. For your first quantum circuit, we'll focus on the last of these jobs. We start by
creating a circuit with eight qubits and eight outputs.

In [23]:

n=4
gc_output = QuantumCircuit(n)

This circuit, which we have called qc_output , is created by Qiskit using QuantumCircuit . The
QuantumCircuit takes the number of qubits in the quantum circuit as an argument.

The extraction of outputs in a quantum circuit is done using an operation called measure_all() . Each
measurement tells a specific qubit to give an output to a specific output bit. The command
gc_output.measure_all() adds a measurement to each qubitin the circuit qc_output , and also adds
some classical bits to write the output to.

In [24]:

gqc_output.measure_all()

Qubits are always initialized to give the output @ . Since we don't do anything to our qubits in the circuit
above, this is exactly the result we'll get when we measure them. We can see this by running the circuit many

times and plotting the results in a histogram. We will find that the result is always 00000000 : a 6 from
each qubit.

sim = Aer.get_backend('aer_simulator') result = sim.run(qc_output).result() counts = result.get_counts()
plot_histogram(counts)

Initialization of QuBits

We first import a few helpful classes into visualize the state of QuBits

In []:

from qiskit.visualization import plot_histogram, plot_bloch_vector
from math import sqrt, pi

We then create a single quibt circuit

In [6]:

gc = QuantumCircuit(3) # Create a quantum circuit with two qubits

initial_stateV = [0,1] # Definean initial_ state as [1>

initial_stateU = [1/sqrt(2),1/sqrt(2)] # Definean initial_state as [1>
qc.initialize(initial_stateV, 1) # Apply initialisation operation to the 1sr qubit
gc.initialize(initial_stateU, 2) # Apply initialisation operation to the 1sr qubit
qc.draw() # Let's view our circuit

out[6]:
do
01 fﬂt

% —

Task1: Create a balanced single-bit quantum random number generator, draw
it, run it, and display the results

We first create the Quantum Circuit by inititalizing the QuBit into a 45° linear polarization state

In [7]:
#Deleted code. Students need to complete this.

Out[7]:

q

meas

Then we run the circuit on a simulator

In [8]:
#Deleted code. Students need to complete this.

<frozen importlib._bootstrap>:219: RuntimeWarning: scipy._lib.messagestrea
m.MessageStream size changed, may indicate binary incompatibility. Expecte
d 56 from C header, got 64 from PyObject

out[8]:

0.60 1

0.508 0.494

0.45 -

0.30 1

Probabilities

0.15 1

0.00 -

This is close to the expected 50/50-result. However, this never exactly hits 50/50 because we are merely
doing a sample over N=1000 runs, which means we get a probability distribution for the average of 0.5(1 +/-
1/sqrt(N)) = 0.5*(1 +/- 0.03). The simplified version of think about this is: we estmiate the probabilities.

Single Qubit Gates

This is however not the preferred way of creating quanutm circuits, instead we typicall start with a |0> state
and use a Hadamard-Gate (a 22.5° HWP) to create the superposition state. This time we would also like to
visualize the state vector.

In [71]:

qc = QuantumCircuit(1)
qc.h(®) #Add a Hadamard Gate to the Oth Qubit

qc.save_statevector()
gc.draw() # Let's view our circuit

Out[71]:

-

In [73]:

sim = Aer.get_backend('aer_simulator')

result = sim.run(qgc).result();
state = result.get_statevector()
print("State of Measured Qubit = " + str(state))

counts = result.get_counts()

plot_histogram(counts)

State of Measured Qubit = Statevector([0.70710678+0.7j, 0.70710678+0.j],
dims=(2,))

out[73]:

0.60

0.500 0.500

0.45 1

0.30 71

Probabilities

0.15 1~

0.00 -

You see two things. First you see that the state-vector is kind of hard to visulaize and second you see that
the omission of a specific measurement leads to the replacement of samples with properties. We can easily

visulize teh state-vectors unsing built-in fucntions.

In [75]:

from qiskit.visualization import plot_bloch_multivector
plot_bloch_multivector(state)

Out[75]:

In []:

We can nicely us this function to visualize the action of different gates

In []:

gc = QuantumCircuit(4)

qc.h(1) #Add a Hadamard Gate to the 1st Qubit --> diagonal polarization

gc.h(2) #Add a Hadamard Gate to the 2nd Qubit --> diagonal polarization
qc.p(np.pi/2,2) #Add a 90 Deg Phase to the [1> part of the 2nd Quabit --> Circular Pol
gc.h(3) #Add a Hadamard Gate to the 3rd Qubit --> diagonal polarization

gc.z(3) #Add a Z- Gate to the 3rd Qubit --> inverse diagonal pol

gc.save_statevector()

gc.draw() # Let's view our circuit

In [87]:

sim = Aer.get_backend('aer_simulator"')

result = sim.run(gc).result();
state = result.get_statevector()
plot_bloch_multivector(state)

out[87]:

A Real Quantum Computer Experimnent

So far we have only looked at very simple simulated exampled. Now we want to execute the quanum random
number generator example for real. We first must load into the networks of QCs properly.

In [90]:

from qiskit import IBMQ, Aer, assemble, transpile

from gqiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from giskit.providers.ibmq import least_busy

IBMQ.load_account()
provider = IBMQ.load account()
provider = IBMQ.get_provider("ibm-q")
device = least_busy(provider.backends(filters=1lambda x: x.configuration().n_qubits >= 3
and

not x.configuration().simulator and x.status().opera
tional==True))
print("Running on current least busy device:

, device)

ibmgfactory.load_account:WARNING:2022-04-19 11:06:15,106: Credentials are
already in use. The existing account in the session will be replaced.

Running on current least busy device: ibmqg_belem

In [88]:

gc = QuantumCircuit(1)

gc.h(®) #Add a Hadamard Gate to the O0th Qubit
gc.measure_all()

gc.draw() # Let's view our circuit

out[88]:
q—H —
| 0
meas
In [91]:

from giskit.tools.monitor import job monitor

gc_transpiled = transpile(qc, device, optimization_level=3)
job = device.run(qc_transpiled)

job_monitor(job, interval=2)

Job Status: job has successfully run

In [95]:

results = job.result()
answer = results.get_counts()
plot_histogram(answer)

out[95]:

0.60 1

0.45 1

0.30 1

Probabilities

0.15 -

0.00 -

Multi-Qubit-Circuits and Entanglement

So far we have only looked into single-qubit states and hence have totally ignored the key-resource of
quantum computation, that is Entanglement. We'll start out with an extremely simple example to visualize the
computational power sclaing of a quanutm computer. A 4 g-bit Random number generator.

In [134]:

gc = QuantumCircuit(4)

gc.h(®) #Add a Hadamard Gate to the @th Qubit
gc.h(1) #Add a Hadamard Gate to the @th Qubit
gc.h(2) #Add a Hadamard Gate to the Oth Qubit
gc.h(3) #Add a Hadamard Gate to the oth Qubit
qc.save_statevector()

qc.draw() # Let's view our circuit

Out[134]:

o — i
e
o
e

Let's first display the state vector, which is 2*4=16 Dimensional:

In [135]:

sim = Aer.get_backend('aer_simulator")

result = sim.run(gc).result();
state = result.get_statevector()
state

Statevector([0.25+0.j, ©.25+0.j, 0.25+40.j, 0.2540.j, 0.254+0.j, 0.25+0.7,
0.25+0.7j, 0.25+0.j, 0.25+0.j, 0.25+0.j, 0.25+0.j, 0.25+40.7,
0.25+40.j, 0.25+0.j, ©.25+0.3j, 0.25+0.3],

dims=(2, 2, 2, 2))

This 16-Dimensional State-Vector then collapses into a 4-bit number (ranging from 0 to 15) with qual
probability. So each run of the circuit generates exactly one 4-bit number; their probability is:

In [149]:

gc.measure_all()

sim = Aer.get_backend('aer_simulator")
result = sim.run(qc).result()
plot_histogram(result.get_counts())

Out[149]:

0.60 1

0516

0.484

0451

030

Probabilities

0.15 1

0.00 -

Let's now move to entanglement and true-multi-qubit gates. The most important one is the controlled-NOT
gate. It is the quantum version of the g1=g1 XOR g0 gate and it can be used to create an entangled pair, in
this case a ¢ state

In [141]:

gqc = QuantumCircuit(2)

qc.h(®) #Add a Hadamard Gate to the Oth Qubit
qc.cx(0,1) #Add a Hadamard Gate to the 6th Qubit
gc.save_statevector()

gc.draw() # Let's view our circuit

out[141]:

qnii

a1

In [142]:

sim = Aer.get_backend('aer_simulator"')

result = sim.run(qgc).result();
state = result.get_statevector()
state

Statevector([0.70710678+0.7, O. +0.3j, 0. +0.7,
0.70710678+0.3],
dims=(2, 2))

In reality, we rather want to measure the probabilities of different results occuring:

In [143]:

gc.measure_all()

sim = Aer.get_backend('aer_simulator')
result = sim.run(qgc).result()
plot_histogram(result.get_counts())

out[143]:

0.60 T

0495 0505

0.45 1

0301

Probabilities

0.15 1

0.00 -

S ~

As expecte we find that the results are prefectly correlated. Either both systems meansure 0 (00) or 1 (11)
but never 01 (Qubit 0 in 0 and Qubit 1 in 1) or 10.

Task 2: Repeat the experiment from above but measure in the +/--Basis

Hint: Use the H-operator for 0/1 to +/- conversion

In [144]:

#Deleted code. Students need to complete this.

Out[144]:

« -l ——1l

a1

meas

In [111]:
#Deleted code. Students need to complete this.

Out[111]:

0.60

0.488 0.512

0.451

0.3071

Probabilities

0.151

0.00 -

S ~

As expected, again we find that the results are indeed perfectly correlated.

Task 3: Repeat the experiment from above but measure in the L/R-Basis

Hint: Use the H- and P-operator for 0/1 to L/R conversion

In [112]:
#Deleted code. Students need to complete this.

Out[1l12]:

do

a1

meas

In [113]:
#Deleted code. Students need to complete this.

Out[113]:

0.60

0.497 0.503

0451

0301~

Probabilities

0157

0.00 -

