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Chapter 1

Introduction

Since the invention of the laser in 1960 with the work of Maiman [1], the laser

pulse duration has been dramatically reduced through the development of various

techniques such as Q-switching and mode-locking [2]. In 1981, after two decades of

extensive research and innovation, the first laser pulse in subpicosecond region had

been successfully generated [3], initiating the revolution of ultrashort (< 1 ps) laser

pulse generation. Nowadays, with the discovery of the passive mode-locking based on

the nonlinear Kerr effect in the active material (Ti:sapphire), the shortest-generated

laser pulse duration of about 5 fs have been recently reported [4,5]. The ultrashort

laser pulses have then become an important tool to study ultra-fast phenomena

and to generate compact extremely high-intensity laser pulses. The decisive break-

through was the introduction of Chirped Pulse Amplification (CPA) technique [6],

making possible the generation of laser pulses in the laboratory with intensity up

to 1021 Wcm−2 [7]. Such ultrashort ultrahigh-intensity laser pulses are needed for

a variety of research fields, for instance: the study of multi-photon ionization [8],

high-harmonic generation [9], laser-matter interaction [10,11], and the laser-induced

nuclear physics [12]. Despite the fact that the oscillators can produce high-contrast

ultrashort laser pulses [13,14], the chirped pulse amplifiers may generate high-energy

laser pulses with a pedestal (for instance, Amplified Spontaneous Emission (ASE))

temporally extending much longer than the pulse duration.

In laser-matter interaction experiments, a high-peak power short pulse must usually

interact directly with a solid target, which can be seriously damaged or even vapor-

ized with an intensity of about 1010 − 1012 Wcm−2 (depending on target material

and pulse duration). Hence, when a laser beam with focused intensity 1017 Wcm−2

reaches the target, it is important to monitor the pre-pulses and pedestals with in-

tensities less than 10−7 of the peak intensity. If, however, the pre-pulses or pedestals

come with intensities above the threshold, they will create a large preformed plasma

before the arrival of the main pulse. Many experiments studying the influence of

1



INTRODUCTION 2

the preformed plasma have been reported. Measuring the preformed plasma from a

plastic foil target, Giulietti et al. [15] realized the significant influence of preformed

plasma on the production of collimated electrons. By elongating the rise-time of the

X-ray pulse, the preformed plasma prevents the creation of the population inversion,

as reported in [16,17]. In addition, the preformed plasmas also affect the propagation

of the main pulse, for example, through the channel formation processes discussed

in [18, 19, 20]. In X-ray experiments, which are of interest in our present projects,

it has been shown that the X-ray yield is increased if the laser pulse interacts not

with the surface of the solid target but with a preformed plasma generated by a pre-

pulse or a pedestal from the laser [21]. Therefore, detailed knowledge of the pulse

shape and contrast ratio is essential for experiments of ultrashort ultrahigh-intensity

laser-matter interactions.

The contrast1 ratio here implies a measure of how far in time and intensity the

main pulse can be considered to be free of pre- and post-pulses as well as the

level of pedestals. For ultrahigh-intensity laser pulses, the High-Dynamic-Range

measurements of optical pulse are therefore of great interest. In principle, such

a measurement must be fulfilled over nanosecond range to yield an entire history

of the laser pulse2. In the near infrared region, the contrast measurements using

second-harmonic and third-harmonic generation or plasma-shuttered streak camera

have been already realized.

Being the first autocorrelation technique invented to characterize the ultrashort laser

pulse, second-order autocorrelator is usually used for its simple implementation. Be-

cause of second-harmonic generated by scattering of either of the two input beams

on the surface of nonlinear crystal, the second-order autocorrelator is, however, lim-

ited by the dynamic range of about 105 and can be increased to about two additional

orders of magnitude by applying the chopper-technique [14, 22]. It, however, shows

ambiguity in time-direction.

To overcome the problem of time-direction ambiguity, the high-order correlation

techniques have been considered [23, 24, 25]. It has been proven that it is enough

to determine the pulse shape with third-order correlation technique. Applying

third-harmonic generation with combination of two nonlinear crystals, S. Luan and

coworkers [25] realized a high-dynamic range of about 108. The experiments with

third-order correlators show simple implementation, high contrast and reliable pulse

asymmetry measurement.

1Throughout this work, the contrast of a structure is assumed to be the ratio of the peak
intensity of the pulse to the intensity of this structure while the intensity of a structure is the
inverse of its contrast.

2For many cases, a temporally long (nanosecond) pedestal may have a significant percentage of
laser energy.
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Because of the requirement of the physical overlap3 of the interacting pulses in non-

linear crystals, the practical disadvantage of using the correlation technique is that

its temporal range is just around the main pulse (several hundred picoseconds).

Streak cameras allow one to measure over a long time duration but have a low-

dynamic range of about 100, while the required dynamic range is usually of about

106−108. To be able to measure the pedestals without damaging the streak camera,

a mechanism could be applied, which lets the pedestal through and simultaneously

attenuates the main pulse. Such a technique has been developed in the work of Tien

et. al [26] by combining a plasma shutter and a multi-shot averaging implemented

with photoconductive switch sweep circuit. This technique has been used success-

fully to measure the contrast of ultrashort laser pulse over 2 ns with 107 dynamic

range. The time-resolution of the streak camera, however, of ∼ 1 ps and hence

the technique can not be applied to measure the pulse duration in the femtosecond

range. Depending on the requirements of appropriate experiments in the laboratory,

the technique using correlation and/or plasma shutter with streak camera should

be chosen.

The purpose of this work is to build and characterize a high-dynamic-range third-

order correlator used to characterize the 1 kHz-laser system for laser-matter inter-

action experiments. With the focused intensity reaching 1017 Wcm−2, it is required

for the correlator to realize a high dynamic range of more than 7 orders of mag-

nitude. The experimental setup is principally similar to that discussed in [25] and

is theoretically expected to reach ∼ 1011 high-dynamic range. The work is mainly

structured as follows:� Chapter 1 introduces briefly the necessity and the requirements of a high-

dynamic range third-order correlator.� Chapter 2 discusses the background information about the ultrashort laser

pulses such as the generation and description of ultrashort laser pulses, and

the correlation technique exploiting nonlinear optics, which are very important

to understand, implement the experiments, and analyze the measured data.� Chapter 3 describes the principles and experimental setup of the high-dynamic

range third-order correlator. The 1kHz-laser system used to experiment is also

briefly discussed in this chapter.� Chapter 4 presents the experimental results and respective analysis for char-

acterizing the high-dynamic range third order correlator.

3”Physical overlap” means temporal and spatial overlap.



Chapter 2

Fundamentals of Ultrashort Laser

Pulses

2.1 Generation of ultrashort laser pulses

To generate optical pulses in the femtosecond regime one needs a bandwidth of more

than 1 THz, a suitable active medium-which is able to amplify this bandwidth, and a

mechanism to couple all of the modes (mode-locking technique, see for example [2]).

To date, many different laser mode-locking techniques have been developed, but

all have to provide two basic functions: forcing all the modes to be equally spaced

and to have the same phase at one instant of time. Normally, these requirements

can be achieved with help of an external modulation (active mode-locking) or a

saturable absorbing medium (passive mode-locking). However, in some types of

laser materials, the modes may be able to lock themselves, partially or totally, in

the active medium. One of the most common techniques for generating ultrashort

laser pulses is the passive mode-locking of Ti:sapphire (Ti:Al2O3) lasers based on the

nonlinear Kerr effect. In such a laser material, the laser waves with stronger peak

intensities experience less losses, and thus will be selectively modified with respect

to intensity.

Considered as the laser material with optimal properties, the Ti:Al2O3 crystal pro-

duces gain stretching from 650 nm to 1100 nm [27], what is equivalent to a bandwidth

of 200 THz and a shortest-possible pulse duration of ∼ 4 fs. It also has a very high

thermal conductivity, a relatively large emission cross section (∼ 3 ·10−19 cm2 at 800

nm), as well as a saturation flux density of about 1 J/cm2. Because the Kerr effect

of this crystal is instantaneous and not dependent on the stored energy density, it

enables a totally new class of laser systems with good beam quality and extremely

high powers. While the mode-locking process can be described relatively easily in

the frequency-domain [28], a truly successful, comprehensive, and quantitative the-

4



FUNDAMENTALS OF ULTRASHORT LASER PULSES 5

ory for ultrashort lasers is still not possible. Therefore, the generation of ultrashort

laser pulses of Ti:Al2O3 will be only qualitatively discussed.

A typical cavity design of a Ti:Al2O3 oscillator using the Kerr lens mode-locking is

shown in Fig. 2.1 [28]. The Ti:Al2O3 crystal is found in the focus of the two mirrors.

The dichroic mirror M2 is highly transparent at the wavelength of the pump laser

(usually about 0.53 µm) and reflects at about 0.8 µm, which is the central emission

wavelength of Ti:Al2O3 laser.

Fig. 2.1: Schema of a self-mode-locked Ti:sapphire laser using the Kerr lens mode-locking
process.

When passing through the Ti:Al2O3 crystal, a wave with, for instance, a Gaussian

profile feels an inhomogeneous refractive index because of its intensity dependence:

n = n0 + n2I(~r, t), n2 is of the order of 10−16 cm2/W. As shown later in the section

of nonlinear optics, the crystal behaves like a converging lens and focuses the laser

beam. The oscillator must be so designed that the losses are larger without the

appearance of this lens. This explains for the presence of the adjustable slit S in

Fig. 2.1.

The central wavelength of the laser system can be changed by turning the birefrin-

gent filter (B.R.F). Because the Ti:Al2O3 crystal shows positive dispersion in near

infra-red region, simple chirp compensation in the resonator, for instance, using

the two prisms as shown in Fig. 2.1, is required. Special dielectric mirrors, called

chirp-compensating mirrors, have also been used for the compensation of linear and

nonlinear dispersion. By these mirrors, the different wavelengths are effectively

reflected at different depths and thus have different optical delays in the sub-µm

range. In addition, the refractive index of the active medium varies as a function of
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time, and thus causes the self-phase modulation. This effect broadens the spectrum

and thereby introduces further shortening of the pulses. By using the compensation

techniques discussed above the shortest pulse generated with Ti:Al2O3 lasers has

been recently reported [4, 5], which has duration of ∼ 5 fs and contains only ∼ 2.7

optical cycles at FWHM.

2.2 Theoretical Description

2.2.1 Complex Representation

Electromagnetic waves can be completely described by the time and space depen-

dent electric field vector, which is a real quantity and may be directly measured

in three dimensions [29]. However, it is sometime more convenient for theoretical

descriptions to write the electric field vector in complex form, especially in dealing

with propagation problems of electromagnetic pulses. In the absence of the sources

of the fields, the Maxwell equations in an infinite medium are [30]:

∇× Ẽ = −∂B̃

∂t
(2.1)

∇× H̃ =
∂D̃

∂t
(2.2)

∇ · D̃ = 0 (2.3)

∇ · B̃ = 0 (2.4)

and the material equations

D̃ = ǫ0Ẽ + P̃ (2.5)

B̃ = µ0(H̃ + M̃), (2.6)

where

Ẽ: the electric field H̃: the magnetic field

D̃: the electric displacement B̃: the magnetic induction

P̃: the polarization vector M̃: the magnetization vector

ǫ0: the dielectric constant of vacuum µ0: the permeability of vacuum.
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The polarization vector P̃ describes the field-material interaction and generally de-

pends upon the electric field Ẽ in the form [31]:

P̃ = ǫ0χ
(1) : Ẽ the linear polarization (2.7)

+ ǫ0χ
(2) : Ẽ2 the second-order nonlinear polarization

+ ǫ0χ
(3) : Ẽ3 the third-order nonlinear polarization

+ · · · · · ·

Here the i-order susceptibility χ(i) are the (i + 1)-order tensors determined by the

symmetry properties of the nonlinear medium.

In the case of a linear, isotropic, homogenous medium, the material equations are

written as:

D̃ = ǫǫ0Ẽ and B̃ = µµ0H̃, (2.8)

where ǫ and µ are the relative dielectric constant and the relative permeability,

respectively. Introducing Eq.(2.8) into the Maxwell equations, we obtain the ho-

mogenous wave equations for the electric field:

∇2Ẽ − 1

v2
p

∂2Ẽ

∂t2
= 0, (2.9)

where vp = 1/
√

ǫǫ0µµ0 = c/n and n =
√

ǫµ is called the refractive index of the

medium. For reason of simplification, we consider the solution of a monochromatic

planar light wave, which is linearly polarized and propagates in the z-direction with

frequency ν:

Ee(z, t) = E0 cos[2πνt − kz + ϕ0] = ℜe{E0e
i[2πν−kz+ϕ0]}, (2.10)

where E0 is the amplitude, ϕ0 is the initial phase, and k = k(ν) = 2πνn/c is the

wave number.

To avoid the complicated algebra of trigonometric functions, here and in what fol-

lows, we will use the complex representation and note that only the real part of

this expression describes the electric field. Because of the linearity of Eq.(2.9), the

general solution can be obtained by taking the linear combination of every possible

solution (2.10):

Ẽ(z, t) =

∫ ∞

0

E0e
i[2πνt−kz+ϕ0]dν

=
1

2π

∫ ∞

0

Ẽ(z, ω)eiωtdω (2.11)
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The electric field can be described more elegantly by using the Fourier-Transformation.

In order to do that, we assume

Ẽ(ω) = 0 for ω < 0. (2.12)

Now, neglecting the spatial dependence, we can express the relationships between

the temporal electric field and its spectrum as1:

Ẽ(t) =
1

2π

∫

Ẽ(ω)eiωtdω (2.13)

and

Ẽ(ω) =

∫

Ẽ(t)e−iωtdt. (2.14)

The real electric field can be then derived from the complex quantity by

E(t) = Ẽ(t) + c.c., (2.15)

where c.c. stands for complex conjugate.

In most practical cases of interest, the spectral amplitude will be centered around a

mean frequency ωl and will have appreciable values only in a frequency interval △ω

small compared to ωl. As a result, in the time domain, the complex electric field

can be separated into an amplitude function, which varies slowly with time, and a

phase term, which changes with carrier frequency ωl:

Ẽ(t) = A(t)eiϕ(t)eiωlt = Ã(t)eiωlt, (2.16)

where A(t) is called the field envelope, Ã(t) the complex field envelope, and ϕ(t) is

the time dependent phase, respectively. The definition of the concept of an envelope

and carrier frequency makes sense in the cases where the bandwidth is only a small

fraction of the carrier frequency, namely:

△ω

ωl

≪ 1. (2.17)

This treatment is also called the Slowly Varying Envelope Approximation (SVEA)2

It is obvious from Eq.(2.16) that the choice of carrier frequency and phase ϕ(t) is not

unique. The most useful choice of carrier frequency should be one that ensures the

minimum variation of phase during the intense portion of the pulse. For practical

reasons, the carrier frequency at the pulse peak is usually the choice. In general a

1In this work we imply that
∫

(· · · ) =
∫

∞

−∞
(· · · ) .

2This assumption also implies the neglect of backwards generated waves [32] in nonlinear optics,
which is referred to later.
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better definition, which is consistent in the time and frequency domains, is to use

the intensity weighted average frequency:

ωl =

∫

|Ẽ(t)|2ω(t)dt
∫

|Ẽ(t)|2dt
=

∫

|Ẽ(ω)|2ωdω
∫

|Ẽ(ω)|2dω
(2.18)

The intensity is defined as the instantaneous pulse power per unit area [W/cm2] and

reads:

I(t) = ǫ0cn
1

T

∫ t+T/2

t−T/2

E2(t′)dt′

= 2ǫ0cnA2(t) = 2ǫ0cn|Ã(t)|2, (2.19)

where T = 2π/ωl is the optical period. From the experimental point of view, T has

to be replaced by the actual response time of the detector. The spectral intensity

can be obtained with help of the Parseval’s theorem [33]:

S(ω) =
ǫ0cn

π
|Ẽ(ω)|2. (2.20)

2.2.2 Pulse duration and spectral width

It is difficult to assert the detailed characteristics of light pulse when its duration

becomes shorter and shorter. Part of the problem is how to define the pulse duration

and the spectral width so that they can give possibly exact information of the

considered pulse, especially in the femtosecond domain-where nowadays the shortest-

generated laser pulses contain only a few optical cycles. The standard statistical

definitions are usually used in theoretic calculations and given as:

τ 2
p =

∫

(t − tp)
2|Ẽ(t)|2dt

∫

|Ẽ(t)|2dt
(2.21)

△ω2
p =

∫

(ω − ωp)
2|Ẽ(ω)|2dω

∫

|Ẽ(ω)|2dω
, (2.22)

where tp is the intensity weighted average time [defined similarly to (2.18)]. With

help of the Schwarz’s inequality [34], one can show that these quantities are related

through the following universal inequality:

△ωpτp ≥
1

2
. (2.23)

From the relation (2.23), some important conclusions for experiments in the field of

ultrashort light pulses can be made:



FUNDAMENTALS OF ULTRASHORT LASER PULSES 10� In order to produce a ultrashort light pulse with a given duration, one needs

to find a active medium, which is able to support a broad enough spectral

bandwidth. For instance, a Gaussian-shaped pulse with pulse duration of 100

fs has a minimum spectral bandwidth of 4.41 THz.� The equality in (2.23) can only be reached with Gaussian time and spec-

tral envelopes and the pulse is then said to be a Fourier-transform-limited or

unchirped pulse. In this case, the instantaneous frequency, defined as the first

time-derivative of the phase factor [ωt + ϕ(t)] in (2.16), is a time-independent

quantity.� For a given spectrum, one pulse envelope can be constructed that has the

shortest-possible duration.

In practice, however, half-maximum quantities are easier to measure. Therefore, one

defines the pulse duration τp as the Full Width at Half Maximum (FWHM) of the

intensity profile and the spectral width △ωp as the FWHM of the spectral intensity.

The Fourier inequality is then usually given by:

△ωpτp = 2π△ντp ≥ 2πK, (2.24)

where K is a numerical constant, depending on the assumed shape of the pulse.

Gaussian pulses

Let us now consider an example of Gaussian pulse, which is most commonly used in

ultrashort laser pulse characteristics. The pulse is linearly chirped and represented

by:

Ã(t) = A0e
−(1+iα)t2/τ2

G with τp =
√

2 ln 2τG. (2.25)

The instantaneous frequency is given as:

ω(t) = ωl +
dϕ(t)

dt
= ωl −

2α

τ 2
G

t (2.26)

As one can see from (2.26), the pulse is down-chirped for a positive chirp parameter

α and vice versa. The spectral intensity can be derived by taking the Fourier-

transform of (2.25) and using the Eq.(2.20). It also has the Gaussian shape and

reads:

S(Ω) =
ǫ0cnA2

0τ
2
G√

1 + α2
exp

{

− Ω2τ 2
G

2(1 + α2)

}

, (2.27)
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where Ω = ω − ωl and with a FWHM:

△ωp = (1/τG)
√

8 ln 2(1 + α2) (2.28)

The pulse duration-bandwidth product is now given by:

△νpτp = (△ωp/2π)τp =
2 ln 2

π

√
1 + α2 (2.29)

The presence of chirp results in significant different delays between the spectrally

different components of laser pulse causing pulse broadening effect and leading to

a duration-bandwidth product exceeding the Fourier limit (KG = 2 ln 2/π ≈ 0.441)

by a factor
√

1 + α2. This conclusion is also true for the statistical definitions of

pulse duration and bandwidth given by Eq.(2.21) and (2.22), respectively:

△ω(s)
p △τ (s)

p =

√
1 + α2

2
. (2.30)

2.3 Propagation

2.3.1 The wave equation

The properties of ultrashort laser pulses have been briefly studied in the last section

for the simplest case. In this section, we will generally consider these topics in more

detail and the propagation of ultrashort laser pulses through a nonlinear medium

without free charges and free currents will be discussed .

The medium is assumed to be nonmagnetic, so that:

B̃ = µ0H̃ (2.31)

Introducing the material Eqs.(2.5) and (2.31) into the Maxwell’s equations again,

we obtain the wave equation:

∇×∇× Ẽ + µ0
∂2D̃

∂t2
= 0. (2.32)

The first term in (2.32) can be written as:

∇×∇× Ẽ = ∇(∇ · Ẽ) −∇2Ẽ. (2.33)

For vanishing gradient in the dielectric constant and hence ∇ · Ẽ = 0, we have

∇×∇× Ẽ = −∇2Ẽ. (2.34)
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It is usually convenient to split P̃ into its linear and nonlinear parts as:

P̃ = P̃(1) + P̃NL (2.35)

and write:

D̃ = D̃(1) + P̃NL with D̃(1) = ǫ0Ẽ + P̃(1). (2.36)

Here P̃(1) is the linear polarization vector, depending linearly upon the electric field

Ẽ. In terms of these quantities, the wave equation (2.32) becomes:

∇2Ẽ − µ0
∂2D̃(1)

∂t2
= µ0

∂2P̃NL

∂t2
. (2.37)

Considering first the case of a lossless, dispersionless, and isotropic medium, we can

express the relation between D̃(1) and Ẽ as:

D̃(1) = ǫ(1)ǫ0Ẽ, (2.38)

where ǫ(1) is a real scalar constant. The wave equation is now given as:

∇2Ẽ − ǫ(1)

c2

∂2Ẽ

∂t2
= µ0

∂2P̃NL

∂t2
. (2.39)

This equation has the form of a driven (i.e., inhomogeneous) wave equation - the

nonlinear response of the medium, namely P̃NL, acts as a source term. In the absence

of this term, Eq.(2.39) has a solution of the form of a free wave propagating with

velocity c/n, where n =
√

ǫ(1) is considered as the linear part of refractive index of

the medium.

For the case of a dispersive medium, we must consider each frequency component of

the wave separately. Therefore, we represent the electric field, the linear displace-

ment, and the nonlinear polarization by their Fourier-transforms:

Ẽ(t) =
1

2π

∫

Ẽ(ω)eiωtdω (2.40)

D̃(1)(t) =
1

2π

∫

D̃(1)(ω)eiωtdω (2.41)

P̃NL(t) =
1

2π

∫

P̃NL(ω)eiωtdω (2.42)

As well-known from classical electrodynamics [30], the linear displacement of a

medium and the electric field are related by:

D̃(1)(ω) = ǫ0ǫ
(1)(ω)Ẽ(ω) (2.43)
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Introducing the Eqs.(2.40) through (2.43) into the Eq.(2.37), we obtain the inhomo-

geneous Helmholtz wave equation in the frequency domain:

∇2Ẽ(ω) +
ω2

c2
ǫ(1)(ω)Ẽ(ω) = −µ0ω

2P̃NL(ω). (2.44)

For more simplifications, we assume the field to be linearly polarized and propagating

in the z-direction as a plane wave. The wave equation has now become3:

[

∂2

∂z2
+

ω2

c2
ǫ(1)(ω)

]

E(ω) = −µ0ω
2PNL(ω) (2.45)

This is the fundamental equation in solving the problem of ultrashort pulse propa-

gating in a dispersive medium. We will next consider the case of a linear medium,

where the phenomena such as absorption, dispersion, group velocity dispersion, and

diffraction effects, etc. are concerned. Then the nonlinear medium will be discussed.

Nowadays, with the developments of modern laser systems producing ultrashort and

ultrahigh-intensity laser pulses, the nonlinear optical phenomena become more and

more popular and diversified. Therefore, we will only concentrate on some of the

effects, which will be referred to later in this work.

2.3.2 Linear Propagation

In the case of linear optics, the term PNL(ω) vanishes and the wave equation (2.45)

has a simple form
[

∂2

∂z2
+

ω2

c2
ǫ(1)(ω)

]

E(ω) = 0. (2.46)

The general solution of (2.46) is:

E(ω, z) = E(ω, 0)e−ik(ω)z, (2.47)

where k(ω) is a frequency-dependent factor determined by the dispersion relation

k(ω) =
ω

c

√

ǫ(1)(ω) = nω/c (2.48)

Applying the SVEA and expanding the propagating factor k(ω) about the carrier

frequency ωl, we have

k(ω) = kl + k
′

lΩ +
k

′′

l

2
Ω2 + · · · = kl + △k(ω), (2.49)

3For convenience, we are working in the scalar field approximation.
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where

kl =
n(ω)ωl

c
=

2π

λl

n(λl) (2.50)

k
′

l =
∂k

∂ω

∣

∣

∣

∣

ωl

=
n(ωl)

c
+

ωl

c

∂n

∂ω

∣

∣

∣

∣

ωl

=
n(λl)

c
− λl

c

∂n

∂λ

∣

∣

∣

∣

λl

(2.51)

k
′′

l =
∂2k

∂ω2

∣

∣

∣

∣

ωl

=
2

c

∂n

∂ω

∣

∣

∣

∣

ωl

+
ωl

c

∂2n

∂ω2

∣

∣

∣

∣

ωl

=
λ3

l

2πc2

∂2n

∂λ2

∣

∣

∣

∣

λl

. (2.52)

In order for the SVEA to be valid, we order that the pulse envelope must not change

significantly while travelling through a distance comparable with the wavelength

λl = 2π/kl or
∣

∣

∣

∣

△k

kl

∣

∣

∣

∣

≪ 1. (2.53)

The Eq.(2.47) is now rewritten as

E(ω, z) = E(ω, 0)e−iklze−i△k(ω)z. (2.54)

The time evolution of the electric field in the pulse is then derived by Fourier-

transforming of (2.54)

Ẽ(t, z) =
1

2π

∫

E(ω, z)eiωtdω

=

{

1

2π

∫

E(ω, 0)eiΩ(t−k
′

l
z)e−i( 1

2
k
′′

l
Ω2+··· )zdω

}

e
iωl(t−

klz

ωl
)

(2.55)

= Ã(t, z)e
iωl(t−

klz

ωl
)
, (2.56)

where Ã(t, z) is the field envelope varying slowly in space and time, defined by the

term in the curled brackets in Eq.(2.55). In the third exponential term of (2.55), it

can be seen that the phase of carrier frequency ωl is delayed by an amount klz/ωl

after propagating over a distance z. Because the phase is not measurable, this effect

has no observable consequence. The quantity

vp =
ωl

kl

=
c

n(ωl)
(2.57)

is called the phase velocity, measuring the propagation speed of the central wave-

length component of the pulse in the medium. The first exponential term in (2.55)

shows that after propagation over a distance of z the pulse envelope is delayed by

an amount z/vg with vg = 1/k
′

l being the group velocity. From (2.51), we have the
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relationship between the phase and group velocity:

1

vp

=
1

vg

+
λl

c

∂n

∂λ

∣

∣

∣

∣

λl

. (2.58)

In the case of normal dispersion (∂n
∂λ

< 0), vg < vp. The factor k
′′

l is called the Group

Velocity Dispersion (GVD) parameter and relates to the group velocity vg through

∂vg

∂λ
=

ω2v2
g

2πc
k

′′

l . (2.59)

To study the influences of the GVD parameter k
′′

l on the field envelope, we return

to the wave equation for linear case written in time domain. This equation can be

derived from (2.37) and reads

[

∂2

∂z2
− 1

c2

∂2

∂t2

]

D(1)(z, t) = 0. (2.60)

For further considerations, we expand ǫ(1)(ω) as series about ωl, leading to the

following form for the linear displacement (2.43)

D(1)(ω, z) = ǫ0

[

ǫ
(1)
l +

∞
∑

m=1

1

m!

dmǫ(1)

dωm

∣

∣

∣

∣

ωl

Ωm

]

E(ω, z). (2.61)

For convenient reasons, we transfer to a coordinate system (η, ξ) moving with the

group velocity vg:

ξ = z, η = t − z

vg

. (2.62)

In the case of practical interest, where the dielectric constant changes slowly over

the frequencies within the spectrum, terms with m ≥ 3 in (2.49) and (2.61) can

be neglected. By introducing (2.56) and the appropriate expression of (2.61) in the

time domain into (2.60), we get the simple form of the wave equation [35] for the

complex field envelope Ã(η, ξ):

[

∂

∂ξ
− ik

′′

l

2

∂2

∂η2

]

Ã(η, ξ) = 0, (2.63)

For the case of zero GVD (k
′′

l = 0), the pulse envelope does not change its shape in

the local system. That means, in the laboratory system the pulse propagates at the

group velocity without any distortion.

For k
′′

l 6= 0, we can solve the Eq.(2.63) in the frequency domain by Fourier-transforming
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the field envelope Ã(η, ξ) as

Ã(η, ξ) =
1

2π

∫

A(ω, ξ)e−iωηdω (2.64)

Inserting (2.64) in (2.63) we have the wave equation for field envelope in frequency

domain
[

∂

∂ξ
+

ik
′′

l ω2

2

]

A(ω, ξ) = 0, (2.65)

and its solution is simply given as

A(ω, ξ) = A(ω, o)e−
i
2
k
′′

l
ω2z. (2.66)

As seen from (2.66), GVD leads the pulse to develop a spectral phase with a

quadratic frequency dependence, resulting in linear chirp. k
′′

l is thus also called

the linear chirp parameter. From the example of Gaussian pulse given previously,

we know that this is responsible for the broadening of the pulse envelope.

2.3.3 Nonlinear Optics

In this section we will discuss some of nonlinear phenomena occurring with the pres-

ence of ultrashort laser pulses. Soon after the first laser was detected by Maiman [1]

in 1960, the Second Harmonic Generation (SHG) was first observed experimentally

with the work of Franken and coworkers [36]. It occurs as a result of the part of

the atomic response that depends quadratically on the electric field. Consequently,

the intensity generated at the second harmonic frequency tends to increase as the

square of the intensity of the applied field. We now proceed to study in detail the

Sum Frequency Generation (SFG) as the general case of the SHG. We will show

relationship between intensity of the SFG-wave and the incident waves, which is

very important for the theories of the correlation technique described later in this

work. At the end of the section, some typical third-order effects useful for evaluating

the experiment results will be also discussed.

2.3.3.1 The Sum Frequency Generation

Considering the case of SFG in a isotropic lossless medium with quadratic optical

nonlinearity. The applied waves are assumed to fall onto the nonlinear medium at

normal incidence. We suppose that the solution for (2.39) has the form similar to

(2.56)

E3(z, t) = A3(z, t)e
i(ω3t−k3z) + c.c, (2.67)
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where

k3 = k3(ω3) =
n3ω3

c
, n3 =

√

ǫ(1)(ω3), (2.68)

Here A3(z, t) is assumed to satisfy the inequality of SVEA in space

∣

∣

∣

∣

∂2A3

∂z2

∣

∣

∣

∣

≪
∣

∣

∣

∣

k3
∂A3

∂z

∣

∣

∣

∣

, (2.69)

and time domain ∣

∣

∣

∣

∂2A3

∂t2

∣

∣

∣

∣

≪
∣

∣

∣

∣

ω3
∂A3

∂t

∣

∣

∣

∣

. (2.70)

Similarly, we represent the polarization and the incident waves as

PNL
3 (z, t) = PNL

3 (z, t)ei(ω3t−k3z) + c.c (2.71)

Ej(z, t) = Aj(z, t)e
i(ωjt−kjz) + c.c (j = 1, 2) (2.72)

and the amplitude of the nonlinear polarization [37]

PNL
3 ≡ P

(2)
3 = 4ǫ0deffA1A2e

−i(k1+k2)z, (2.73)

where deff is the so-called effective d-coefficient dependent on structure of the non-

linear medium and is tabulated elsewhere [37].

Introducing the Eqs.(2.67) through (2.73) into (2.39), we obtain the so-called coupled-

amplitude equation in the first-order approximation of dispersion theory

∂A3

∂z
+

1

u3

∂A3

∂t
=

2ω3deff

in3c
A1A2e

−iδkz, (2.74)

where u3 is the group velocity of the sum-frequency wave ω3 and δk = k1 +k2−k3 is

called the wave vector mismatch. When the variation of the ω1 and ω2 waves must

also be taken into consideration, we can derive the analogous equations for each of

these frequencies:
∂A1

∂z
+

1

u1

∂A1

∂t
=

2ω1deff

in1c
A3A

∗
2e

iδkz, (2.75)

and
∂A2

∂z
+

1

u2

∂A2

∂t
=

2ω2deff

in2c
A3A

∗
1e

iδkz, (2.76)

with u1 and u2 being the group velocity of the ω1- and ω2-waves, respectively.

In the case of monochromatic planar incident waves4, the time-derivative terms

∂Aj/∂t (with j = 1, 2, 3) in the coupled-amplitude equations vanish and the resulting

equations can be solved exactly using the Jacobi elliptic function [38]. By assuming

the applied waves to be undepleted by the nonlinear interaction, Boyd [31] shows

4Also called the Infinite Plane Wave Approximation.
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that the intensity of the sum-frequency wave is proportional to product of these of

the applied waves

I3 ∼ I1I2L
2sinc2(δkL/2), (2.77)

where Ij are the intensity of the ωj-wave, respectively, and L is the distance of the

nonlinear medium, over which the waves interact with each other. The intensity

I3 reaches its maximum value I3max when δk = 0 or also called the perfect phase-

matching (PM) condition. A more detailed discussion of phase-matching will be

described later in the section of conversion efficiency consideration.

In the case of ultrashort laser pulses, a generally exact solution for these equations

is impossible. These short pulses have an appropriate spectral width and it is not

possible to satisfy the phase-matching condition for all of the possible frequency

components in the spectrum. Here the group velocity mismatch comes into play

and complicates the conversion processes. For simplicity, we will next discuss the

case of identical incident waves or the second harmonic generation, whose processes,

in many respects, are similar to the sum-frequency process. More discussions about

SFG of ultrashort pulses can be found in [31,39] and the references therein.

2.3.3.2 The Second Harmonic Generation

We now proceed to derive the coupled-amplitude equations for the second-harmonic

(SH) processes. The fundamental and SH waves can also be described as

E1(z, t) = A1(z, t)e
i(ωt−k1z) + c.c (2.78)

E2(z, t) = A2(z, t)e
i(2ωt−k2z) + c.c (2.79)

The electric field in the medium is then written in the form

E(z, t) = E1(z, t) + E2(z, t)

= A1(z, t)e
i(ωt−k1z) + A2(z, t)e

i(2ωt−k2z) + c.c (2.80)

The nonlinear polarization can be represented as

PNL(z, t) = PNL
1 (z, t) + PNL

2 (z, t)

= PNL
1 (z, t)ei(ωt−k1z) + PNL

2 (z, t)ei(2ωt−k2z) + c.c, (2.81)

where the expressions for PNL
j (with j = 1, 2) are given by [37]

PNL
1 = 4ǫ0deffA2A

∗
1e

i(k1−k2)z (2.82)

PNL
2 = 2ǫ0deffA2

1e
−2ik1z. (2.83)
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Substituting the equations (2.80) and (2.81) into (2.39), we obtain the coupled-

amplitude equations for SHG

∂A1

∂z
+

1

u1

∂A1

∂t
= −iγ1A2A

∗
1e

iδkz (2.84)

∂A2

∂z
+

1

u2

∂A2

∂t
= −iγ2A

2
1e

−iδkz, (2.85)

where

δk = 2k1 − k2 (2.86)

is the phase mismatch and

γj =
2ωdeff

njc
with j = 1, 2. (2.87)

Group velocity matching. We first consider the simplest case, where the phase-

matching and group velocity matching conditions are simultaneously satisfied:

δk = 0 and u = u1 = u2. (2.88)

We transfer to the local system (2.62) and introduce the real amplitudes and phases

Aj(η, ξ) = aj(η, ξ)eiϕj . The solutions for set of Eqs.(2.84) and (2.85) are [39]

a1(η, ξ) = a10(η)sech[γa10(η)ξ], (2.89)

a2(η, ξ) = a10(η) tanh[γa10(η)ξ], (2.90)

ϕ1(η, ξ) = ϕ10(η), (2.91)

ϕ2(η, ξ) = 2ϕ1(η) − π/2, (2.92)

where a10(η) = a1(η, 0) and γ = γ1 = γ2.

In the undepleted-pump approximation (UPA), the fundamental wave is assumed

constant along the whole interaction length. The SH wave then becomes

a2(η, ξ) = γza2
10(η). (2.93)

Using (2.19), we have the appropriate intensity relation between the interacting

waves:

I2(t, z) =
γ2z2

2ǫ0cn1

I2
1 (t − z

u
) (2.94)

The intensity of SH wave is quadratically proportional to the intensity of the funda-

mental wave and to the interaction length. This results in shortening the SH pulse

duration. For a fundamental Gaussian-shaped pulse a10(η) = a0e
−t2/τ2

G with pulse
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duration τ1 =
√

2 ln 2τG, the SH pulse duration is τ2 = τ1/
√

2.

Group velocity mismatch. In fact, the group velocity matching conditions are

not satisfied (u1 6= u2). Applying the UPA for Eqs. (2.84) and (2.85), we obtain the

solutions [39]

A2(t, z) = −iγ2

z
∫

0

A2
10(t − z/u2 + △u−1ξ)eiδkξdξ, (2.95)

where

△u−1 =
1

u2

− 1

u1

(2.96)

is called the group mismatch and

A10(t) = A1(t, 0). (2.97)

For more simplicity, we assume the fundamental amplitude is a Gaussian linear-chirp

pulse

A10(t) = a0e
−(1+iα)t2/τ2

G . (2.98)

The SH intensity can be obtained from (2.95) for the case of perfect phase-matching

δk = 0:

I2(t, z) =
γ2

2z
2

2ǫ0cn1

I2
1 (t − z

u2

)sinc2

[

αz△u−1

τ 2
G

(t − z

u2

)

]

. (2.99)

It can be seen from the above equation that for the case of unchirped Gaussian

pulses, α = 0, the SH intensity does not depend on the group mismatch △u−1. For

strongly chirped pulses, because of the group velocity mismatch effect, the nonlinear

medium acts as the frequency-filter, whose bandwidth is reversely proportional to

group mismatch. Generally, the filter function depends both on the fundamental

and SH frequencies.

2.3.3.3 Conversion Efficiency Consideration

Phase-matching. In relationship with the other aspects which are important for

achieving high conversion efficiency, the phase-matching condition briefly discussed

in SFG-process will be considered here in more detail. In this work, the conversion

efficiency of the SFG is defined from Eq.(2.77) as:

Π =
I3

I3max

= sinc2(δkL/2) (2.100)



FUNDAMENTALS OF ULTRASHORT LASER PULSES 21

where

δk = k1 + k2 − k3 =
1

c
[n1ω1 + n2ω2 − n3ω3]. (2.101)

If δk = 0, i.e

n1ω1 + n2ω2 − n3ω3 = 0, (2.102)

the SFG-process is said to be perfect phase-matching and the conversion efficiency

reaches its maximal value 1. When phase-mismatch occurs, δk 6= 0, the conversion

efficiency decreases severely and can be seen in figure 2.2. By replacing ω3 = ω1+ω2,

Fig. 2.2: The effect of phase-
mismatch on conversion efficiency of
the SFG.

we obtain:

n3 − n2 = (n1 − n2)
ω1

ω3

(2.103)

As shown by Boyd [31], in the normally dispersive materials the phase-matching

condition is impossible because of the increase of the refractive index with frequency.

One of the most commonly used techniques for achieving the phase-matching is angle

tuning, which exploits the birefringent property of nonlinear crystals. Birefringence

is the dependence of the refractive index on the direction of polarization of the

input wave. By tuning the angular orientation of the crystal with respect to the

propagation direction of input waves, one can find the polarized direction of the

highest-frequency ω3 which provides the lower of the two possible refractive indices.

There are two types of angle phase-matching [40] illustrated in figure 2.3:� Type I phase-matching: the two input waves have the same polarization� Type II phase-matching: the polarizations of the two input waves are orthog-

onal

For instance, Beta Barium Borate (BBO) crystal is a negative uniaxial crystal

(ne < no). Therefore, the polarization direction of the ω3 wave in the BBO crystal

is in the extraordinary direction and the phase-matching equations for type I and
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Fig. 2.3: Type I and II of phase-matching of the SFG-process. The ω1 and ω2- waves
are the input waves, and ω3-wave is the generated sum-frequency wave (ω3 = ω1 + ω2).
The arrows show the polarization vectors of respective waves (NOL crystal: nonlinear
crystal).

II, respectively, are [31]:

ne
3ω3 = no

1ω1 + no
2ω2 (Type I: ooe) (2.104)

ne
3ω3 = ne

1ω1 + no
2ω2 (Type II: eoe), (2.105)

where the indices o and e imply the ordinary and extraordinary directions in the

crystal, respectively. By each nonlinear crystal with certain polarization of input

waves, there is an optimum phase-matching angle θm made of the propagation direc-

tion and the optical axis of the nonlinear crystal. For the purpose of later use, some

useful angle phase-matching formulas for BBO crystal are given in table 2.1 [37].

NL process Phase-matching angle

SHG(ooe) sin2 θm =
(ne

2ω)2

(no
ω)2

[

(no
2ω)2 − (no

ω)2

(no
2ω)2 − (ne

2ω)2

]

SFG(eoe)
no

3
√

1 +

[

(no
3)

2

(ne
3)

2 − 1

]

sin2 θm

− (λ3/λ1)n
o
1

√

1 +

[

(no
1)

2

(ne
1)

2 − 1

]

sin2 θm

= (λ3/λ2)n
o
2

Table 2.1: The phase-matching angles of BBO crystal for the SHG (Type I) and SFG
(Type II) processes

Crystal acceptance angle. If the input wave propagates with an angle θ devi-

ating from the phase-matching angle θm, δk is different from zero causing inefficient

harmonic generation. The angular sensitivity is determined by an acceptance angle
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△θ defined by the condition5

|δkL| = 2π, (2.106)

at which the sinc2-function in Eq.(2.100) gets its first zero. For the case of SHG in

a negative uniaxial crystal, the acceptance angle is given as [41]:

△θ =
2(λω/L)

(no
ω)2[(ne

2ω)−2 − (no
2ω)−2] sin 2θm

(2.107)

Walk-off. Due to the birefringence of nonlinear crystals, the extraordinary wave

ne experiences Pointing vector walk-off (Fig. 2.4) and as the result, if the input laser

beam size is small, the generated harmonic beam and the fundamental beam will

be separated at a walk-off angle ρ in the crystal, causing low conversion efficiency.

Therefore, the walk-off effect must be taken into account when one tries to decrease

the beam size (for instance, by focusing the laser beam) to enhance the efficient

conversion due to increase in intensity.

Fig. 2.4: The walk-off effect due
to double refraction in birefringent
crystals (BC: birefringent crystal;
o.A.: optical axis; w: the beam ra-
dius; θ = (~k,o.A.)).

The walk-off angle for negative uniaxial crystal is given as [41]:

tan ρ =
[(no)2 − (ne)2] tan θ

(ne)2 + (no)2 tan2 θ
. (2.108)

The e- and o-beams become physically separated in a so-called walk-off length Lρ

given as:

Lρ =
2w

tan ρ
. (2.109)

For BBO crystal with no = 1.69298, ne = 1.66051, θm = 29.20 (phase matching

angle-type I) at 400 nm central wavelength and 1 mm beam diameter, we have:

ρ = 16.7 mrad and Lρ = 6 cm. (2.110)

5In some literatures, the acceptance angle is determined by the equation: |δkL| = π.
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Group mismatch. Generally, the interacting pulses travel with different group

velocities in nonlinear medium resulting in pulse broadening effect (Fig. 2.5). Over

a certain distance, they may no longer physically overlap and hence the conversion

efficiency will be dramatically reduced.

Fig. 2.5: The pulse broadening effect due to group velocity mismatch of SGH process

To keep efficient conversion without significant pulse broadening, it is recommended

to use nonlinear crystals, whose thickness is less than the pulse width divides group

mismatch, i.e:

Lc ≤
τp

△u−1
. (2.111)

For example for BBO:

800 nm:
1

u1

= 56.09 ps/cm

400 nm:
1

u2

= 58.01 ps/cm

△u−1 = 1.92 ps/cm

τp = 60 fs

⇒ Lc ≤ 300 µm (2.112)

2.3.3.4 The Third-Order Effects

The third-order effects, which can be found in both centrosymmetric and noncen-

trosymmetric materials, are related to the third-order susceptibility term of the

expansion of the polarization vector (Eq.2.7). When an intense ultrashort laser

pulse passes into an isotropic medium, its nonlinear refractive index can be gener-

ally written as

n = n0 + n2I(~r, t), (2.113)

where n0 is the linear refractive index of the materials, n2 is the nonlinear index

coefficient and is usually given in [cm2/W]. We will separately consider the effects

caused by the spatial and temporal dependence of the laser intensity. The general

treatments for ultrashort laser pulses are very complicated and beyond the scope

of this work. More approximate discussions can be found in, for example, [31, 39].
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Here, for the reasons of simplicity, we will investigate the propagation of a Gaussian

laser beam in a third-order nonlinear material. The results, however, still hold for

the case of ultrashort laser pulses.

Kerr Lens Effects. The refractive index distribution in this case is

n(r) = n0 + n2I(r), with I(r) = e−2r2/w2

. (2.114)

As seen from (2.114), for a positive n2 the refractive index has a maximum value

at the center by r = 0 and decreases with increasing r. After propagating over a

distance e the beam has a optical path ÃL(r) = n(r)e. The constant e is replaced

by a variable one such that its product with a constant refractive index remains the

same optical path:

ÃL(r) = n(r)e = e(r)n (2.115)

or

e(r) =
en(r)

n
. (2.116)

That means, the medium reacts as a Gaussian lens, which focuses the laser beam.

This focusing process becomes stronger along the path because the focused beam

increases the focal power of the dynamical lens. The increase of the focusing stops

when the diameter is so small that the linear diffraction is large enough to balance

the Kerr effect. This effect, also called self-focusing, is very important in the under-

standing of self-mode-locking, which occurs in Ti:Al2O3 lasers. If the path through

the medium is sufficiently long, the beam will be focused to a small filament (beam

collapse), and the medium will be usually damaged via avalanche ionization. The

critical power level for Gaussian beam at which beam collapse will happen is given

by [42]

Pcr =
κλ2

8πn0n2

, (2.117)

where κ is a correction factor accounting for the fact the severity of nonlinear phase

distortion6.

Self Phase Modulation. If the time-dependent laser intensity must be taken

into account, we can write the refractive index in the form

n(t) = n0 + n2I(t), with I(t) = e−2t2/τ2

G . (2.118)

To study the influence of this time-varying index on the frequency of laser beam,

we consider now the simple case of a plane wave propagating in the z direction of a

6The initial Gaussian profile is deformed during the self-focusing process.
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nonlinear medium:

E(t, z) = A0e
i(ωlt−kz), k =

ωln(t)

c
. (2.119)

The instantaneous frequency is

ω(t) =
∂

∂t
(ωlt − kz) = ωl

[

1 − n2z

c

∂I(t)

∂t

]

(2.120)

and the frequency variation

δω(t) = ω(t) − ωl = −n2ωlz

c

∂I(t)

∂t
. (2.121)

With n2 > 0, new low frequencies are created in the leading edge of the pulse

envelope and new high frequencies are created in the trailing edge (Fig. 2.6). These

Fig. 2.6: The instantaneous fre-
quency as function of time for the
case of n2 > 0.

new frequencies are created inside the original pulse envelope, result a chirped pulse

and, therefore, open the way to spectral broadening. Using the SPM for optical

compression technique man has generated ultrashort laser pulses less than 10 fs in

duration.

2.4 Correlation Techniques

2.4.1 The Intensity Correlations

We can easily determine the temporal profile Is(t) of an optical signal by correlat-

ing it with a shorter (reference) pulse of known shape Ir(t). The intensity cross-

correlation reads:

Ac(τ) =

∫

Is(t − τ)Ir(t)dt. (2.122)



FUNDAMENTALS OF ULTRASHORT LASER PULSES 27

The Fourier-transform of the intensity profiles is defined as7:

Ĩj(Ω) =

∫

Ij(t)e
−iΩtdt, (j = r, s). (2.123)

The Fourier transform of the correlation Eq.(2.122) can be now written as

Ãc(Ω) = Ĩr(Ω)Ĩ∗
s (Ω), (2.124)

and consequently the temporal profile Is(t) can be formally determined by

Is(t) =
1

2π

∫

Ĩs(Ω)eiΩtdΩ

=
1

2π

∫
[

Ãc(Ω)

Ĩr(Ω)

]∗

eiΩtdΩ. (2.125)

To increase the signal-to-noise ratio, the reference pulse should be the (temporally)

shortest pulse of the two correlated pulses. In ideal case of the Dirac-function δ(t),

the correlation becomes

Ac(τ) =

∫

Is(t)δ(t − τ)dt = Is(τ). (2.126)

So the shape of the correlation is identical to that of the signal Is(t). One general

disadvantage of correlation techniques is that the pulse shape has to be assumed and

thus the accuracy of the measurements depends strongly upon how well one chooses

the pulse shape. The most widely used pulse shapes are sech2- and Gaussian shapes.

2.4.1.1 The Intensity Autocorrelation

To measure a pulse duration one needs a shorter reference pulse. But how one

can measure the shortest pulse? Therefore, it is necessary to consider the limit

where the signal itself has to be used as reference pulse. In such the case with

I(t) = Is(t) = Ir(t), we have the so-called intensity autocorrelation8

Aac(τ) =

∫

I(t)I(t − τ)dt, (2.127)

and its Fourier-transform

Ãac(Ω) = |Ĩ(Ω)|2. (2.128)

7Here Ĩj(Ω) should not be confused with the spectral intensity S(Ω) given by (2.20). Spectral
intensity is measurable, the FT of intensity profile, however, is not!

8In this case, we have the intensity autocorrelator without background or noncolinear intensity
autocorrelator. The intensity autocorrelator with background will be also referred to later in the
section of interferometric autocorrelator.
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Fig. 2.7: The schematic experiment setups of a intensity autocorrelator showing the
ambiguity of time direction of the pulses. The laser pulses with shape of different asym-
metries can have similar intensity autocorrelations (L: Lens, BBO: Beta-Barium Borate
crystal; D: detector; ACT: autocorrelation trace).

As directly seen from (2.128), the Fourier transform of the autocorrelation is a real

function, implying a symmetric function, Aac(τ) = Aac(−τ), in the time domain.

Invented in the 1960s, autocorrelation was the first technique used to measure the

intensity versus time of an ultrashort pulse. However, it provides no information on

the phase of the pulses and shows an ambiguity of time direction (Fig. 2.7).

Despite the basic disadvantages referred to above the intensity autocorrelation, be-

cause of its easy implementation, is the most widely used diagnostic technique. The

autocorrelation techniques are generally related to second-order nonlinear effects

of media, such as SHG, two-photon absorption, two-photon ionization, etc. phe-

nomena. Basically, the technique involves splitting a laser beam into two replicas,

variably delaying one with respect to the other and overlapping them in a nonlinear

medium to produce SH radiation. The signal is then recorded by an integrating

detector. As discussed previously, the intensity of SH signal is proportional to the

product of the intensities I(t) of the two beams (only in the case of UPA). In other

words, the nonlinear medium and the detector act as an ”operator”, which correlates

the two beams with each other as a function of delay τ . The normalized intensity

autocorrelation is then given by:

Aac(τ) =

∫

I(t)I(t − τ)dt
∫

I2(t)dt
(2.129)
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For a Gaussian-shaped pulse with the intensity given as

I(t) = e−2t2/τ2

G , (2.130)

and the pulse duration

τp =
√

2 ln 2τG, (2.131)

the Eq.(2.129) becomes

AG
ac(τ) = e−τ2/τ2

G , (2.132)

and its FWHM

τA =
√

ln 2τG =
τp√
2
. (2.133)

In general, the pulse duration can be obtained from the known ratio between the

FWHM of the pulse and that of the autocorrelation. This ratio depends on the

assumed pulse shape and is equal to
√

2 for Gaussian-shaped pulse (2.133).

2.4.1.2 The Higher-Order Intensity Correlations

Generally relying on the higher-order nonlinear effects such as higher harmonic gen-

eration, multiphoton absorption, multiphoton ionization and optical Kerr effect, the

normalized higher-order intensity correlation (HOIC) of order (n+1) can be defined

as [35]

An+1(τ) =

∫

I(t + τ)In(t)dt
∫

In+1(t)dt
. (2.134)

For n > 1, the correlation function (2.134) has the same symmetry as the pulse.

In addition, it was shown that third-order intensity correlations are sufficient to

determine the time-dependent intensity of a laser pulse and all HOICs can be de-

scribed in terms of the third one [43]. Nevertheless, HOICs have become widely

used and powerful tools in ultrashort pulse measurements, specially for the cases

of lasers with very high intensity. The reason is that for most pulse shapes with a

well-defined maximum, lim
n→∞

In(t) ∝ δ(t) and the correlation An(τ) produces a good

approximation to the pulse shape I(t) [see (2.126)]. As shown in Fig. 2.8, only with

n = 19 the correlation trace has already merged with the original laser pulse.

As a specific case of high-order correlation techniques, the third-order correlation

will be discussed in more details in the next chapter.

2.4.2 The Interferometric Correlations

To produce the shortest pulses in a laser system, one has to compensate linear,

quadratic, or even higher-order chirp introduced by intracavity materials [35]. As a
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Fig. 2.8: The normalized correlations of various orders for gaussian and sech2-pulse
shapes.

result, techniques, which are able to reveal the phase structure of a laser pulse, must

be required. A simple method is to use second-order interferometric correlators. In

principle, such a correlator is similar to a Michelson or Mach-Zehnder interferometer

[44] except for the intensity detector being substituted by a nonlinear detector (a

combination of a nonlinear medium and an intensity detector)(Fig. 2.9).

For simplicity, the interferometric autocorrelator using SHG will be next discussed

in detail9. The interferometric autocorrelation A2(τ) is defined by

A2(τ) =

∫

|[E(t) + E(t − τ)]2|2dt. (2.135)

Substituting the expression (2.16) for the electric field, one obtains the following

decomposition

A2(τ) = K0(τ) + ℜe

{

4K1(τ)eiωlτ

}

+ ℜe

{

2K2(τ)e2iωlτ

}

, (2.136)

9The theory and experiments of THG interferometric autocorrelation with some advantages
have been recently reported in the work of Meshulach et. al. [45].
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Fig. 2.9: Setup of a interferometric autocorrelator (M1, M2: HR mirrors; BS: Beam
splitter; L: Lens; C: nonlinear crystal; F: fundamental-blocking filter; D: detector; ACT:
the interferometric autocorrelation trace).

where

K0(τ) =

∫

dt

{

A4(t − τ) + A4(t) + 4A2(t − τ)A2(t)

}

(2.137)

K1(τ) =

∫

dt

{

A(t − τ)A(t)

[

A2(t − τ) + A2(t)ei[ϕ(t−τ)−ϕ(t)]

]}

(2.138)

K2(τ) =

∫

dt

{

A2(t − τ)A2(t)e2i[ϕ(t−τ)−ϕ(t)]

}

(2.139)

At zero delay the autocorrelation signal, being a coherent superposition of the elec-

tric field from each arm, gets its peak value

A2(τ = 0) = 16

∫

A4(t)dt. (2.140)

At the next delay of one-half light period, the two fields add with opposite phase,

resulting in a near zero signal. For large delay compared to the pulse duration, the

envelopes of the constructive and destructive will merge into the intensity autocor-

relation, which reads

A2(τ → ∞) = 2

∫

A4(t)dt. (2.141)
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In this case, the interferometric autocorrelation is said to has a peak to back ground

of 8 to 1. Because of its dependence on the fourth power of the fields combining in

phase, the interferometric autocorrelation trace is more sensitive to the pulse shape

than the intensity autocorrelation.

In most practical cases of interest, the second and third terms in the expansion

(2.136) can be neglected by using, for instance, suitable glass filters. The inter-

ferometric autocorrelation reduces then to the sum of background term and the

intensity autocorrelation (2.127). As a result, A2(0) = K0(0) = 6
∫

A4(t)dt, and the

peak to background is 3 to 1. The function (2.137) is generally called the intensity

autocorrelation with background.

The third term (2.139) is a autocorrelation of the SH field. In the absence of phase

modulation, ∂2ϕ/∂t2 = 0, this function is identical to the intensity autocorrelation.

This property has been successfully exploited to study the phase modulation of

ultrashort laser pulse [46].

For more details, the interferometric autocorrelation of a linearly Gaussian-chirped

pulse (2.25) will be considered. Here, for convenient reason, the field amplitude is

assumed to be unit. The interferometric autocorrelation now becomes

A2(τ) =

[

1 + 2e−τ2/τ2

G + 4e−(3+α2)τ2/4τ2

G cos
ατ 2

2τ 2
G

cos ωlτ

+ 2e−(1+α2)τ2/τ2

G cos 2ωlτ

]

(2.142)

Replacing ωlτ by π and 2π in (2.142), one can respectively obtain the upper and

lower envelopes. Fig. 2.10 shows the interferometric autocorrelation traces and the

intensity autocorrelations with background for the cases of gaussian pulses without

chirp (α = 0) (Fig. 2.10.a) and with various chirp parameters (Fig. 2.10.b). As

discussed in [47], the lower envelope has a maximum at τ = τc, which is found by

setting the first derivative of the equation for lower envelope to zero.

As α is increased, this maximum moves toward zero delay along a curve close to

the intensity autocorrelation. For α ≫ 1, the pulse front and pulse tail are no longer

coherent with each other and the envelopes of the interferometric autocorrelation

merge with the intensity autocorrelation for τ > τc. So by identifying the measured

autocorrelation with Fig. 2.10.b, one can measure the pulse duration as well as the

chirp parameter α (from the height of the lower envelope maxima).

The interferometric autocorrelation discussed above is one of the first phase-sensitive

correlations used to study the shape of ultrashort laser pulses. It, however, can only

qualitatively test the presence and type of phase modulation and quantitatively mea-

sure a linear chirp. Nevertheless, it has been proven to be the standard technique,
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Fig. 2.10: The interferometric autocorrelation traces of Gaussian pulses: a) without
chirp and b) for various values of linear chirp parameter. In graph b), the appropriate
lower and upper envelopes are plotted with the same color and separated by the intensity
autocorrelation, which is independent on chirp (Inten. AC: the intensity autocorrelation;
Inter. AC: the interferometric autocorrelation). For more explanations, see text.

which is usually used to check out the accuracy of a new proposed correlator.

To date, one can also fully characterize ultrashort laser pulses by applying some

useful methods such as FROG (Frequency-Resolved Optical Gating) [48], SPIDER

(Spectral Phase Interferometry for Direct Electric-field Reconstruction) [49], and

PICASO (Phase and Intensity from Cross-correlation And Spectrum Only) [50].

Generally, all of the techniques must use a suitable iterative algorithm to retrieve

spectral phase from measured data. From this point of view, PICASO technique is

more favored because of its rapidity. FROG, however, is the most widely used and

powerful technique, and has become commercially available. To study these themes

in details is beyond the scope of this work. For more discussions, see the references

given above.



Chapter 3

The High Dynamic Range Third

Order Correlator

As discussed in chapter 1, it is essential to monitor the pre-pulses and pedestals in

laser-matter interaction experiments. In such experiments, if the temporal range

of interest is about several hundred picoseconds, the third-order correlation is ob-

viously the choice. In this chapter, the principles and experimental set up of a

High Dynamic Range Third-Order Correlator (HDRTC) will be discussed. The

femtosecond laser system used in this work is also briefly described.

3.1 Principles

Third-order correlation technique based on three-photon absorption has been real-

ized by Langlois et al. [51]. The method has been proven to be simple and sensitive.

However, this kind of correlator shows a short usable scan range (∼ 1 ps) and wave-

length region from 1.4 to 1.6 µm, which does not satisfy the requirements of laser

pulses in many experiments.

Third-order correlation is also possible using four-wave mixing (FWM) and has been

published elsewhere. Because of being the third-order nonlinear effect, the process

has very low conversion efficiency and therefore will not be suitable for the purpose

of building a high-dynamic range correlator.

In this work, the third-order correlator relies on the third-harmonic generation re-

quiring two BBO-crystal plates in series, a doubling crystal (doubler) followed by

a tripling one (tripler). The second-harmonic 2ω is first generated in the doubler

using SHG-type I (ooe), and then is mixed with the remnant first-harmonic ω in

the tripler to produce the third-harmonic 3ω by exploiting the SFG-type II (oee)

process. This setup configuration has many advantages compared with the previ-

ously mentioned systems. Firstly, by using only second-order nonlinear effects, one

34



THE HIGH DYNAMIC RANGE THIRD ORDER CORRELATOR 35

gets stronger harmonic signals. Secondly, the interplay between type I-II processes

makes it easier to implement the experiments. In addition, the conversion efficiency

is thereby automatically increased - one needs not use an extra λ/2-plate to drive

the polarizations of the harmonic pulses to achieve phase-matching.

In the third-order correlator, the second-harmonic pulse I2(t) and the fundamental

pulse I(t) are correlated with each other by varying the degree of temporal overlap

between them in the tripler. The normalized third-order intensity correlation can

be directly obtained by substituting n = 2 in Eq.(2.134)

A3(τ) =

∫

I(t + τ)I2(t)dt
∫

I3(t)dt
. (3.1)

By using any correlation technique, the pulse shape must usually be presumed. And,

as referred to previously, the pulse duration will sensitively depend on the assumed

pulse shape. The third-order correlation functions and their appropriate FWHMs

for some useful pulse shapes are listed in Table 3.1.

Pulse shape Third-order Correlation A3(τ) τ3p/τp

Gaussian
I(t) = e−t2/T 2

τp = [2
√

ln 2]T
e−2τ2/3T 2 1.22

Hyperbolic secant
square
I(t) = sech2(τ/T )
τp = [2 ln(

√
2+1)]T

5
2

sinh(τ/T ) cosh(τ/T )2 + 2 sinh(τ/T ) − 3
τ

T
cosh(τ/T )

sinh(τ/T )[cosh(τ/T ) − 1]2[cosh(τ/T ) + 1]2
1.29

Exponential
I(t) = e−|t/T |

τp = [2 ln 2]T
2e−|τ/T | − e−|2τ/T | 1.77

Table 3.1: The third-order correlation functions for some useful pulse shapes (τp: FWHM
of the fundamental pulse, τ3p: FWHM of the correlation function, T: constant) [25].

Before moving to the experiment setup of the HDRTC, we would like here to ana-

lyze the problems around its ”high-dynamic range”, which play the decisive role in

designing the correlator.

In this work, noise can be reduced to the order of 10−3 − 10−4 through averaging
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the correlation signal many times1, using the Trigger technique in combination with

Sample-And-Hold (S&H) box and taking into account the scattering problems of

laser pulses on the nonlinear crystals. Now, the remaining problem is how to generate

the maximum THG signal at zero delay. From the theory of SFM process discussed

previously, the harmonic (SH or TH) signal becomes stronger by increasing the in-

tensity of the incident waves. However, in the case of a third-order correlator, this

is not always the advantage. The two pulses can only be correctly correlated when

the nonlinear crystals acts in such a way that the generated harmonic signal is a

product of the intensities of the two incident pulses. In other words, in order for

the theory of third-order correlation to be true, the conditions of UPA by SHG and

THG processes must be satisfied. In addition, when the intensities are too high, the

nonlinear processes become saturated and, as the result, the correlation measure-

ments show longer pulse durations.

The other difficulty appears when one just thinks of applying thick nonlinear crys-

tals for more conversion efficiency. Because of the sinc2-dependence on the phase-

mismatch δk (2.77), the conversion efficiency of the harmonic generation is only con-

siderable for δk = 0, or in other words, the case of perfect phase-matching. However,

the ultrashort laser pulses have a very broad bandwidth. For instance, a 100 fs laser

pulse with cavity length of 1 m has a spectral bandwidth △ν ≈ 1013Hz equivalent to

about 105 longitudinal modes. And thus the phase-matching condition can never be

fulfilled for all the frequency components, especially in thick nonlinear crystals. In

addition, in such dispersive media and even in the case of absolute phase-matching,

the group velocity-mismatch also causes inefficient harmonic-conversion, as directly

seen from (2.99). Moreover, here plays the GVD an important role in deforming

the pulses as well. It causes the pulse broadening, and as the result, leads to an

inaccurate correlation measurements.

To overcome the problem of phase-matching in thick nonlinear crystal, the method

of using an angle-dithered nonlinear crystal has been recently reported [52]. It has

been shown that the phase-matching bandwidth needs not exceed the pulse band-

width on every pulse, but only the phase-matching bandwidth integrated over the

measurement period does need. This condition can be achieved by, because of the

sensitive dependence on angle of the range of wavelengths, angle-dithering the non-

linear crystal. The technique shows greater signal strength, removes the phase- and

group velocity-mismatch effects. The perturbation of the GVD effect, however, stays

unsolved.

In ultrashort laser pulse measurements, it is usually recommended to use thin non-

linear crystal, specially when the laser intensity is sufficiently high. For example, it

1From the practical point of view, it does not take much time by 1kHz laser systems.
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has been shown that for lasers with pulse duration in the sub-10-fs range the crystal

thickness should not exceed 25 µm [4, 53]. In such a crystal, the nonlinear effects

referred to above in this section are practically negligible.

The last but not least problem is how to wisely record the correlation signal. Because

of being the most sensitive, broadband, and very fast detectors, photomultipliers

(PMTs) are most widely used in measuring ultrashort laser pulses. However, even

the best PMTs have the dynamic range2 of only 103−104 while the dynamic range of

the correlators is usually required to be of about 106−108 or even higher, depending

on the requirements of appropriate experiments. Indeed, for typical ultrashort laser

pulses, the THG-signal usually decreases when the delay between the incident waves

become larger. Employing this fact, one can always operate so that the THG-signal

lies in the valid response region of the detector (Fig. 4.2.b). In order to do so,

one can vary either the intensities of the laser pulses in front of the tripler or the

THG-signal before it goes into the detector (for instance of using neutral density

filters), or both of them. The former is chosen in this work for practical reasons: the

experiment setup is simpler and because of the sensitive relationship between TH

and fundamental intensities: I3ω(t) ∼ I3
ω(t), it spares much time doing experiments.

3.2 Experimental Setup

3.2.1 The 1 kHz-Laser System

The 1 kHz-laser system is designed by the Quantronix firm to upgrade the ultrashort

laser system of 1 mJ energy levels up to 5 mJ at 1 kHz repetition rate in the near

infrared region of the spectrum. It consists of three main elements3:� The Ti:sapphire Mira-oscillator� The 8-path Odin-amplifier system� The 3-path MPA-amplifier system

The schematic of the fs-laser system is shown in figure 3.1. The Ti:sapphire oscilla-

tor works with configuration described in the section of the generation of ultrashort

pulses (Fig. 2.1) and has a repetition rate of 81 MHz. The laser pulse generated

by this system has a energy of about 6 nJ and a 28 nm bandwidth (FWHM). The

pulse duration from the Oscillator is about 60 fs4.

2By the dynamic range of a detector we mean the ratio of the maximum to the minimum value
of its linear response range.

3The 50fs-1kHz-1mJ Odin-amplifier system is also described in the works of Hacker [54] and
Stobrawa [55].

4This laser pulse is not Fourier-transmitted because of the intracavity dispersion materials,
specially by the output-window of the oscillator.
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Fig. 3.1: The schematic of the 1 kHz ultrashort laser system
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Fig. 3.2: The principle of the Chirped-Pulse-Amplification technique. A short laser
pulse with low energy level is initially chirped and stretched in an optical stretcher S.
After stretched, it has relatively low peak power and can be amplified to saturation in
an amplifier A. An optical compressor C is then used to restore the original short pulse
duration, producing a ultrashort optical pulse with large energy.

The seed laser pulse is then in turn amplified by the Odin-and MPA amplifier sys-

tems using the CPA5- technology [6]. The CPA technique (Fig. 3.2) is utilized here

in order to eliminate high peak power in the amplifier chain, which could lead to

damage of the optical components and mirror coatings, and avoid the unexpected

nonlinear effects. Accordingly, the seed laser pulse width is temporally stretched to

∼ 30 ps in a so-called optical stretcher, which allows different components of the

spectrum to travel through different optical paths. By a pulse picker, comprised of a

Pockels cell and two polarizers, the seed pulse at 81 MHz repetition rate is selected

to 1 kHz and then injected into Ti:sapphire as the active medium for amplifica-

tion. After travelling 8 paths through the Ti:sapphire crystal the seed laser pulse is

amplified to about 1.5 mJ. The pump laser used in this system is Q-switched diode-

pumped Nd:YLF laser at 527 nm central wavelength. It has a 1 kHz repetition rate,

10 mJ pulse energy and pulse duration of about 250 ns.

At this stage, the amplified laser pulse can be either compressed by the pulse com-

pressor in the Odin-amplifier system or sent to MPA system for further amplification.

In the former case6, the laser pulse after compressed has a energy of ∼ 1 mJ, 25 nm

5Chirped Pulse Amplification.
6This case is also referred to since the MPA-amplifier system sometime had technical problems

and the experiments must be accomplished with the laser from Odin-amplifier system.
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Parameters Mira-oscillator Odin-amplifier MPA-amplifier
Pulse energy 6 nJ 1 mJ 5 mJ

Repetition rate 81 MHz 1 kHz 1 kHz
Central wavelength 804 nm 806 nm 816 nm

Bandwidth 28 nm 25 nm 23 nm
Pulse duration 60 fs 47 fs 60 fs

Table 3.2: The parameters of the fs-laser system

bandwidth and 47 fs pulse duration. In the latter case, similar to that described

in the Odin-amplifier system, the seed laser pulse travels three times through the

Ti:sapphire crystal and is amplified to ∼ 6.3 mJ. After compression, it has an energy

of 5 mJ with 23 nm bandwidth and pulse duration of about 60 fs. The pump lasers

used in MPA-system are also Nd:YLF lasers with total pulse energy of 30 mJ. Table

3.2 summarizes again the parameters of the fs-laser system.

3.2.2 The High-Dynamic Range Third-Order Correlator

We now proceed to describe the experimental setup of the high-dynamic range third-

order correlator schematically shown in Fig. 3.3. The correlator is comprised of three

main parts:� The intensity attenuator� The harmonic generators: the doubler and the tripler� The detector

The ultrashort laser pulse with s-pol coming from Odin-MPA amplifier system is first

attenuated and driven by the intensity attenuator and then injected to the doubler

(BBO, 100 µm) to produce SH radiation (Type I: o+o → e). After leaving the dou-

bler, the generated SH and fundamental signals are split by a 1 mm-thick dichroic

mirror DM (OIB7 Jena), which is high-reflecting at 400 nm and high-transmitting at

800 nm central wavelength with AR-coating for 800nm at the backside, and travel

along different optical paths with help of the appropriate broadband mirrors.

The ω-beam is further attenuated by a substrat (Quartz) to reduce the unexpected

scattering signals and avoid the saturation in the tripler. The curved, aluminium-

coated mirror with the focal length of 20cm is used to physically overlap the two laser

pulses in the tripler (BBO, 100 µm) to generate 3ω-radiation (Type II: e + o → e).

The temporally overlapping degree of the pulses can be varied by changing the opti-

cal path of the 2ω-pulse with the help of a stepping motor (OWIS, SM30), which is

7Stands for Optische Interferenz Bauelemente.
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driven by a computer. The computer-simulation with Lab2 [56] shows that in this

case the phase-matching condition is only possible for SHG being o-pulse. As the

result, the 3ω-pulse has s-polarization, the same as that of ω-pulse. The polarization

of interacting pulses can be seen in Fig. 3.3.

To increase the signal-to-noise ratio, some special techniques have been applied in

Fig. 3.3: The schematic of the high-dynamic range third-order correlator(TFPs: the
thin film plates, DM: the dichroic mirror, QS: Quartz substrat; S: the after-crystal slit).

this work.

Firstly, the after-crystal slit S made of two razor blades is installed to stop the resid-

ual ω and 2ω-beams from going into the detector, and more important, to reduce the

3ω-radiation generated by scattering of the ω-pulse alone at the front surface of the

tripler. This 3ω-light can propagate in every direction and may reach the detector,

producing the delay-independent background. The slit is therefore placed as near

the crystal as possible. The razor blades are constructed at an suitable angle with

each other that minimizes the design and prevents the ω-pulse from being back-

wardly reflected, which may introduce additional background. Further reduction of

this kind of background can be achieved by carefully programming with LabView.



THE HIGH DYNAMIC RANGE THIRD ORDER CORRELATOR 42

Secondly, the third-harmonic beam after the slit is focused into a box through a

pinhole, which separates the detector from scattered signals coming from other di-

rections. Before arriving the detector, the 3ω-signal is ”cleaned” by a so-called

3ω-reflecting filter, which is comprised of two broadband mirrors for 266 nm central

wavelength positioned parallel to each other. The beam is reflected back and forth

about 10 times or more. This design has an additional advantage that because of

the multi-reflection on the mirrors, only the signal with certain direction can reach

the small window of the detector.

The third-order correlation trace (correlation function) versus delay is then read by

the detector and through the S&H box analyzed by the computer.

In what follows, the setup of the HDRTC with the main elements will be described

in more detail, and the measured data and appropriate evaluations will be given.

The problems emerging in the experiments and their solutions are also discussed.



Chapter 4

The Experiment Results

4.1 The Intensity Attenuator

The Intensity Attenuator (IA) consists of a 2.5 mm-thick halfwave plate1 and a pair

of broadband (700-900 nm) Thin Film Plates2, which are constructed parallel with

each other. This configuration allows the light wave, which falls onto one TFP, to

leave the other in the parallel direction. Moreover, if the incident angle is equal to

the Brewster-angle of the TFP [30], the reflected wave is linearly polarized with the

polarization normal to the incident plane (s-pol) or in other words, the TFP acts as

a broadband Reflecting Polarizer (RP). Normally, it is already enough to use just

one TFP for the IA [57]. However, with the reflectivity Rs ≈ 62% and Rp ≈ 0.2%

respectively for s-pol and p-pol at the Brewster-angle, the configuration of the two

parallel TFPs makes it easier for experiment alignments and offers higher contrast.

Fig. 4.1: The reflection and trans-
mittance of linearly polarized light
at Brewster-angle.

Assuming the incident wave with intensity Ii is linearly polarized and the polariza-

1Linos Photonics/362701244.
2TFPs, Layertec/999999.

43
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tion vector is made an angle θ with the incident plane as shown in the Fig. 4.1. The

intensity of the reflected wave coming at the Brewster-angle can be simply given as:

Ir = Rs1Rs2Ii sin
2 θ, (4.1)

where Rs1, Rs2 are the reflectivity coefficients of the s-pol components of light on

the first and second TFPs, respectively. The equation (4.1) implies a method to

drive the intensity of reflected light by changing the angle θ. This can be done with

a λ/2-plate in complication with a rotating motor3. The characteristic curve of the

polarizer is theoretically and experimentally shown in Fig. 4.2. From the experi-

Fig. 4.2: a) The dependence of reflected laser intensity on polarization angle θ; b) The
principle of using IA to drive the THG signal so that it always lies in the linear response
range of the detector (I: intensity of laser pulse leaving from IA and being function of
angle θ; Imax: the maximum value of intensity I). The IA works at various stages of
intensity. At large delay A), the IA works at first stage, where the laser pulse leaves it
with Imax (100%). And at near-zero delay, B) or C), where the THG-radiation is strong,
the IA works at lower stages of intensity, for instance, 50% or 10%, respectively.

mental point of view, even at angle θ = 00 the laser intensity leaving from the RP

actually has a nonzero value, what is unexpected from (4.1). The reasons for this

fact may be given as the followings.

Firstly, the Eq.(4.1) is only satisfied for monochromatic wave at a certain wave-

length. In the case of ultrashort laser pulses, it is implied to be true for the central

wavelength. And therefore, at the Brewster-angle of this central wavelength, the

p-pol component of the other wavelengths still exists and contributes to the nonzero

part of the reflected light. By using the Lab2-pack [56], one can estimate that the

error caused by this process is of the order of about 10−3.

3OWIS, DMT 40
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Fig. 4.3: The theoretical dynamic range of the HDRTC (DR: Dynamic Range).

Secondly, because of the technical limits, the error by determining the Brewster-

angle for the TFPs is about ±20, within which the measured intensity show a min-

imum value of the order of 10−2 and stays the same for all angles. In effect, the

contrast4 of the polarizer, defined as the ratio of the maximum and minimum inten-

sity Ir, is of about 2×102−3×102. On this occasion we can roughly estimate, with

this intensity attenuator how far we can hope to achieve the high-dynamic range of

the correlator. The schematic diagram is shown in figure 4.3. With the assumption

that the detector has a dynamics of 104, we receive the theoretical dynamic range

of 1011. It will be clear later, in which case it is possible to achieve this level.

4.2 The Harmonic Generators

The nonlinear crystals used in this work are the Beta Barium Borate or BBO

crystals. The BBO crystal is a trigonal negative uniaxial crystal and combines a

number of unique properties. These properties include wide transparency and phase

matching ranges, large nonlinear coefficient (about 6 times more than that of KDP5-

crystal), high damage threshold and excellent optical homogeneity. Therefore, BBO

provides an attractive solution for various nonlinear optical applications, especially

in ultrashort laser pulse measurements. Some important properties of BBO- crystals

are shown in the table 4.1. The BBO crystals used are provided with p-coatings6

to prevent the polished surfaces of BBO from exposure to moisture. This increases

the conversion efficiency, but still has some inconveniences, as shown later.

The main disadvantage when using a BBO crystal is that BBO has a small ac-

4Also called the dynamics of the intensity attenuator.
5PotassiumDihydrogen-Phosphate
6Protective coatings.
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β-BaB2O4

Transmission range: 190 - 3500 nm

Phase-matching range: 189 - 1750 nm

Optical damage threshold: 10 GW/cm2 (100 ps-1064 nm)

Optical homogeneity: dn ≈ 10−6cm−1

Therm-Optic coefficients: dn0/dT = −9.3 × 10−6/0C
dne/dT = −16.6 × 10−6/0C

Phase-matching angles:
SHG: 800 → 400 nm θm = 29.20, φ = 00

SFM: 800 + 400 → 266.6 nm θm = 55.40, φ = 00

Effective nonlinearity coefficients: dooe = d31 sin θ − d22 cos θ sin 3φ
deoe = doee = d22 cos2 θ cos 3φ

Dispersion Relations (λ in µm)

n2
o(λ) = 2.7359 + 0.01878

λ2−0.01822
− 0.01354λ2

n2
e(λ) = 2.3753 + 0.01224

λ2−0.01667
− 0.01516λ2

Table 4.1: The main properties of BBO used in this work.

ceptance angle (∼ 1 mrad) and relatively large walk-off angle (∼ 55 mrad), which

limits the harmonic conversion efficiency. Therefore, an input laser radiation with

good beam quality and low divergence is required. In this work, to reduce these

limitations and to increase the signal-to-noise ratio, the input laser beam at SHG-

crystal is therefore not focused. Since the input laser beam from the MPA-system

is relatively large (∼ 6mm diameter) while the useful surface of the doubler has a

diameter of 3 − 4 mm, it is suggested to use an appropriate reflecting broadband

telescope to increase the intensity of the input wave for more conversion efficiency.

The use of a transmitting telescope (for instance with lenses) will introduce, besides

causing the group velocity dispersion, the tilt of pulse front with respect to the phase

front leading also to increasing delay across the beam [35]. And as the result, the

measured correlation shows longer pulse duration.

4.3 HDRTC with the SiC detector

The detector used in this work to realize the 3ω-radiation is a SiC detector with

pre-amplifier. The calibration of its sensitivity with respect to the 3ω-radiation can

be seen in figure 4.4. The measurement shows a realizable dynamics of the detector

of about 104. The word ”realizable” here is related to the limitation of the S&H

box. Its solution is about 10−4 input signal (usually of order 1 V).

As discussed previously, the validity of the UPA is necessary for the theory of the
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Fig. 4.4: The calibration
of the SiC photodiode for
THG-signal

third-order correlator. Correspondingly, the following relations

SHG : I2ω ∼ I2
ω (4.2)

THG : I3ω ∼ Iω · I2ω ∼ I3
ω, (4.3)

must be experimentally realized and are shown in figure 4.5.
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Fig. 4.5: The tests for the validity of the UPA. The SHG intensity depends quadratically
on fundamental intensity: in log-scale (A)) and in linear-scale (a)). The THG-intensity
shows cubic dependence on fundamental intensity: in log-scale (B)) and in linear-scale
(b)).

It is also very important to make sure that the spectrum with broad bandwidth of

the input laser pulse must be approximately maintained while travelling through

the optical components of the correlator. For this purpose, the spectra of the input
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laser pulse and the ω-pulse in front of the tripler are measured and shown in figure

4.6. The measurement shows a slightly narrower bandwidth of the spectrum of the

ω-laser pulse before focusing compared with that of the input laser pulse. However,

the difference can be practically neglected. The Fourier-transmitted pulse duration

appropriate to this bandwidth (∼ 22nm) is about 43 fs (for Gaussian-shaped pulse).

Figure 4.7 shows the first third-order correlation trace of the HDRTC with a dy-
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tra of the input laser pulse (1) and
the fundamental pulse in front of the
tripler (2).

namic range of 7 orders and a pulse duration of about 80 fs. The measurement was

carried out using ultrashort laser pulses from the ODIN-amplifier system. The cor-

relation trace is a asymmetric function of delay time, as expected from a third-order

correlator. The measured pulse duration, however, is relatively long compared with

Fig. 4.7: The correlation trace of the HDRTC with SiC-detector.

that of the Fourier-transmitted laser pulse given above. That can be explained by
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the presence of chirp coming from the optical stretcher in the Odin-system, which

can be totally compensated by the compressor in the MPA-system only, not by the

compressor in the Odin-system.

What is unusual also on the Fig. 4.7 is the existence of the pre- and post-pulses

(p-pulses), which appear after a time period of about 1.3 ps and show a decreasing

amplitude with increasing delay to the main pulse. The intensity ratio between the

successive p-pulses is about 10−3. Moreover, they have similar shapes as that of the

main pulse. The question now is where they do come from: from the laser system

or from the HDRTC itself ?

4.3.1 The p-pulse problem

The widely realized process to generate post-pulses in laser optics is the back and

forth reflection of laser pulse when it travels through, for instance, a glass plate.

The time period of about 1.3 ps implies a thickness of ∼ 100 µm for such a plate,

depending also on the incident angle and the refractive index of the material. The

Fig. 4.8: The post-pulse generation of laser pulse because of multi-reflection on BBO
crystal’s surfaces

doubler (BBO crystal, 100 µm) used in this work has p-coatings, and therefore the

back and forth reflection of laser pulse on both surfaces of crystal is possible and

illustrated in figure 4.8.

In effect, the ω- and 2ω-pulses when leaving the doubler will have the appropriate

post-pulses. The correlation of the main ω-pulse with the post-pulses of the 2ω-pulse

will produce the pre-pulses of the THG, and similarly the post-pulses of THG are

generated through the correlation of the 2ω-pulse with the post-pulse of the ω-pulse.

Figure 4.9 shows the excellent agreement between the simulated and measured third-

order correlation functions, where the multi-reflection of the interacting pulses are

taken into consideration. The simulation program is written with LabView using

Lab2-pack [56] and taking into account the non-zero incident angle, the thickness of

the p-coatings, and the different polarizations between the ω- and 2ω-pulses.
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Fig. 4.9: The simulated and
measured correlation traces
with p-pulses generated by
BBO crystal

4.3.2 How to solve the problem?

In fact, the real p-pulses7 from the laser system may overlap with the p-pulses

generated by the doubler (BBO-generated p-pulses) of the correlator and may cause

some troubles in characterizing the laser pulse. Therefore, some solutions for this

problem should be here discussed8.

♠ To avoid this problem, it is suggested to use nonlinear crystal with dual-band

AR-coatings at 400 nm and 800 nm. In addition to the protective function like that

of p-coatings, the AR-coatings help to increase the contrast of the p-pulses to a

factor of about 105 − 106. In such a case, the first p-pulses in Fig. 4.9 (at delays of

about -1.3 ps and 1.3 ps, respectively) have a contrast of about 108 − 109 and the

problem is practically completely solved.

♠ Indeed, such a replaced AR-coating nonlinear crystal is not always available for

different reasons, and hence a simple computer program to analyze the measured

data may be useful. From the simulated third-order correlation function, we know

relatively well the time period of appearing (∼ 1.3 ps) and the contrasts of the p-

pulses. By comparing the measured correlation curve with the simulated curve, we

can quantitatively and qualitatively evaluate the possibly real p-pulses which may

emerge into the BBO-generated p-pulses.

For a better solution, the main pulse of the measured third-order correlation can

be fitted with a widely used pulse shape, for instance, gaussian or sech2-shape9.

7In most X-ray and plasma experiments, only pre-pulses are of interest.
8We would like here to mention that the simple technique using wedge-shaped crystals cannot

be applied here to remove the p-pulses problem. Such crystals introduce the tilting of pulse front
with respect to the phase front [35], leading to longer measured pulse duration.

9For the cases of complex pulse shapes, we refer to iterative fitting technique reported in the
work of Naganuma et al. [46].
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Then, the fitting parameters will be used with the appropriate contrast of the BBO-

generated p-pulses to remove them from the measured data. To be able to do so,

we have exploited the fact that the post-pulses, generated by multi-reflection of the

ω-pulse (or 2ω-pulse also), for instance, on the surfaces of the BBO crystal, and their

respective main pulse have a similar temporal shape. As a result, the p-pulses of

the third-order correlation also have a similar shape to its main pulse. The accuracy

of this method depends strongly on the fitting quality of the chosen pulse shape.

Therefore, it is recommended to use for well chirp-compensated laser pulse.
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Fig. 4.10: The simulation of modified high-dynamic range third-order correlation to
solve the BBO-generated p-pulse problem: 1) the HDRTC-trace of the original Gaussian-
shaped pulse; 2) the HDRTC-trace taking into account the multi-reflection of the inter-
acting pulses in the doubler; 3) the modified HDRTC-trace of 2).

To check the idea, the third-order correlations of an original Gaussian-shaped pulse

and its respective multi-reflected pulses are simulated and shown in Fig. 4.10. The

modified HDR third-order correlation compares relatively well with that of the orig-

inal pulse.

We have only concentrated on the multi-reflection of the main pulse, which comes

from the laser system, and neglected the fact that the pre- and post-pulses of the

input laser pulse experience the multi-reflection also, and thereby complicate the

third-order correlation (Fig. 4.11). However, with the computer simulation program,

we will show that all the BBO-generated p-pulses concerned this problem10 are less

10It should be here made clear that there are two types of BBO-generated p-pulses mentioned in
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Fig. 4.11: The simulation of the third-order correlation of an input laser pulse with two
pre-pulses taking into account the multi-reflections of the interacting pulses on the surfaces
of BBO-crystal: (a) - the input laser pulse (1) and the ω-pulse after multi-reflecting (2);
(b) - the third-order correlation traces of the input laser pulse without and with multi-
reflections (3) and (4), respectively. The graphics show how complicated it could be when
the multi-reflections of the pre-pulses of input laser pulse must be considered.

than the interested limit of detection in this work, which is assumed to be about

∼ 107 of contrast.

It can be clearly seen from figure 4.12 that only when the contrast (the inverse

quantity of the intensity) of the pre-pulse of the input laser pulse is less than about

2× 103, the problem involved the BBO-generated p-pulses of type B must be taken

into consideration. Nowadays, with help of the Pockel’s cell, a commercially available

high-intensity laser system can generate laser pulses with contrast (about 104 − 105

or more) much higher than the value given above. That means, the effect related to

the BBO-generated p-pulses of type B can be practically neglected.

4.3.3 Ultrahigh-dynamic range discussions

The measured correlations showed a dynamic range of about 107 − 108, compared

to the theoretical value 11 orders of magnitude. In this section, we would like to

discuss about the possibility to achieve the theoretical dynamic range and the prob-

this work. The first type (type A) are the p-pulses of the third-order correlation trace generated
by the multi-reflections of the main pulses of the ω- and 2ω-pulses only. The second type (type
B) are related to the correlation’s p-pulses generated by the multi-reflections of the p-pulses of the
both ω- and 2ω-pulses. More illustrations can be seen in figure 4.12.
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Fig. 4.12: The simulation of third-order correlations with various contrasts of the pre-
pulse of an input laser pulse a) and b) - on which the region of the interested pre-pulses
is magnified. In principle, both Ifp and ICp imply the intensity of the pre-pulse of the input

laser pulse. However, the curve related to Ifp is the input laser pulse, which is plotted to
help to determine the delay time of the ”real” p-pulses of the correlation traces; while
the other curves, represented by ICp , are the third-order correlation traces. The interested
limit of detection is determined by the focused intensity of the laser pulse and the optical-
breakdown threshold of the target material. See text for the definitions of the p-pulses of
type A and type B, respectively.

lem, which may occur by recognized contrast of more than 108.

It is realized that higher-dynamic range of the correlator can be achieved by in-

creasing the intensity of input laser pulse. In this work, the intensity attenuator

can change the intensity of laser pulse through 7 stages. The principle can be seen

in figure 4.2b. The change to the next stage of the IA will change the intensity of

3ω-radiation by about 1 order of magnitude. By working with the SiC detector,

the 3 last low-intensity stages cannot be used since at such low intensity levels, the

THG-signal is too weak for the detector to detect. That means the used dynamic
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range of the IA is lower than the measured shown in Fig. 4.2a (∼ 3 × 102), leading

to the low-realized dynamic range of the correlator. To be able to receive the the-

oretical dynamic range value, one can increase the intensity of the input laser11, as

mentioned above, or use a more THG-sensitive detector such as PMT12

Even a high intensity-laser pulse with well-compensated phase errors of third- and

higher-orders can only reach the contrast ratio of about 108 − 109, limited by the

pedestal caused by ASE, for example. Moreover, the pulse duration of ASE is in the

region of several nanoseconds while the useful temporal scan range of a third-order

correlator is just about several hundred picoseconds. So measuring such a laser

pulse with a third-order correlator of 1011 dynamic range, one will not be able to see

the noise-level, what is usual by using third-order correlators with dynamic range

lower than the contrast ratio of the laser pulse. To see roughly the noise-level, one

can block either the ω- or 2ω-beam (one-beam-blocked noise). The two levels of

one-beam-blocked noise should be similar to each other. Otherwise, there may be a

problem with scattering of laser pulses in the tripler.

11However, one may hit the saturation thresholds in the harmonic generators!
12At the beginning, the detector planed to use for this HDRTC was the solar-blind PMT (160-320

nm; Hamamatsu, R7154). Unfortunately, it showed a nonlinear response with respect to 3ω-signal
and is under repair.



Summary

The purpose of this work is to build and characterize a high-dynamic range third-

order correlator used to characterize the 1 kHz ultrashort laser system. The require-

ments for the correlator are that it must be sensitive to the temporal asymmetry

of ultrashort laser pulses and be able to realize a pulse contrast of more than 107.

We have proposed an experimental configuration, which promises a theoretical high-

dynamic range of about 11 orders of magnitude.

The background information was firstly discussed in chapter 2. The generation, de-

scription, propagation and measurement of ultrashort laser pulses were all included

in this chapter. By the measurement techniques of ultrashort pulses, we restricted

the discussion to the correlation techniques, which has been widely used because

of its simplicity. It should be here clear to the reader, how the characterizations

of ultrashort laser pulse can be measured. We also showed that for the purpose of

pulse-asymmetry measurements, it is enough to use the third-order correlation.

In chapter 3, we described the principles and the experimental setup of a high-

dynamic range third-order correlator using series of the two nonlinear crystals: the

second-harmonic and third-harmonic generators. We mainly concentrated on the

analysis of how to achieve a high-dynamic range. It was shown that there are two

main problems to resolve: increasing the signal-to-noise ratio and the harmonic con-

version efficiencies while the UPA must be maintained.

Chapter 4 showed the measured results and respective discussions. The charac-

terized curve of the intensity attenuator shows a dynamic of about 3 × 102, which

leads to a theoretically estimated dynamic range of about 1011. The p-pulses prob-

lems introduced by the correlator were described and some appropriate solutions

were also proposed and simulated with a computer program using Lab2. The high-

dynamic range correlation measured with the SiC detector showed a dynamic range

of about 107 or more, depending on the intensity of input laser pulse. It was sug-

gested to use a more sensitive detector to realize higher dynamic range, such as a
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PMT. The problem caused by ASE was also mentioned in this chapter.
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