IAP, Room 202
Albert-Einstein-Straße 15
07745 Jena

Investigating internal ultrafast laser–silicon interaction to design innovative applications.
Illustration: M. Chambonneau, IAP-FSUUltrafast laser processing in the bulk of transparent materials (e.g., glasses, polymers) is a well-established technique with no equivalent for silicon. Any attempt to permanently modify silicon internally with infrared ultrashort laser pulses in a conventional manner is doomed to failure. These limitations originate from nonlinear propagation effects called “filamentation”. In the ULISiS subgroup, we perform fundamental investigations on the propagation of infrared ultrashort laser pulses inside silicon to identify the nonlinear phenomena that govern light–matter interaction. This fundamental comprehension allows us to develop strategies to bypass the intrinsic limitations in energy deposition inside silicon. In turn, these innovative strategies are employed for devising numerous applications including wafer dicing, through-silicon welding, 3D optical functionalization, and backside amorphization.
M. Blothe, A. Alberucci, N. Alasgarzade, M. Chambonneau, and S. Nolte, “Transverse Inscription of Silicon Waveguides by Picosecond Laser Pulses,” Laser & Photonics Reviews 18, 2400535 (2024)External link.
M. Chambonneau, Q. Li, M. Blothe, S. V. Arumugam, and S. Nolte, “Ultrafast Laser Welding of Silicon,” Advanced Photonics Research 4, 2200300 (2023)External link.
M. Blothe, M. Chambonneau, and S. Nolte, “Nanostructured back surface amorphization of silicon with picosecond laser pulses,” Applied Physics Letters 121, 101602, (2022)External link.
M. Chambonneau, M. Blothe, Q. Li, V. Yu. Fedorov, T. Heuermann, M. Gebhardt, C. Gaida, S. Tertelmann, F. Sotier, J. Limpert, S. Tzortzakis, and S. Nolte, “Transverse ultrafast laser inscription in bulk silicon,” Physical Review Research 3(4), 043037 (2021)External link.
M. Chambonneau, D. Grojo, O. Tokel, F. Ö. Ilday, S. Tzortzakis, and S. Nolte, “In-volume Laser Direct Writing of Silicon—Challenges and Opportunities,” Laser & Photonics Reviews 15, 2100140 (2021)External link.
Q. Li, M. Chambonneau, M. Blothe, H. Gross, and S. Nolte, “Flexible, fast, and benchmarked vectorial model for focused laser beams,” Applied Optics 60(13), 3954–3963 (2021)External link.
M. Chambonneau, Q. Li, V. Yu. Fedorov, M. Blothe, K. Schaarschmidt, M. Lorenz, S. Tzortzakis, and S. Nolte, “Taming Ultrafast Laser Filaments for Optimized Semiconductor–Metal Welding,” Laser & Photonics Reviews 15, 2000433 (2021)External link.
A. Alberucci, N. Alasgarzade, M. Chambonneau, M. Blothe, H. Kämmer, G. Matthäus, C. P. Jisha, and S. Nolte, “In-depth optical characterization of femtosecond-written waveguides in silicon,” Physical Review Applied 14, 024078 (2020)External link.
H. Kämmer, G. Matthäus, K. A. Lammers, C. Vetter, M. Chambonneau, and S. Nolte, “Origin of Waveguiding in Ultrashort Pulse Structured Silicon,” Laser & Photonics Reviews 13, 1800268 (2019)External link.
M. Chambonneau, D. Richter, S. Nolte, and D. Grojo, “Inscribing diffraction gratings in bulk silicon with nanosecond laser pulses,” Optics Letters 43(24), 6069–6072 (2018)External link.
G. Matthäus, H. Kämmer, K. A. Lammers, C. Vetter, W. Watanabe, and S. Nolte, “Inscription of silicon waveguides using picosecond pulses,” Optics Express 26(18), 24089–24097 (2018)External link.
IAP, Room 202
Albert-Einstein-Straße 15
07745 Jena
IAP, Room 202
Albert-Einstein-Straße 15
07745 Jena
IAP, Room 202
Albert-Einstein-Straße 15
07745 Jena